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Preface

The habilitation thesis presents the development and application of advanced compu-

tational techniques used for the investigation of charge transfer processes by means of

computer simulations, in particular for biologically relevant systems. The author studied

this research area during his postdoctoral stays at the National Institute for Materials

Sciences (NIMS) in Japan, University College Dublin (UCD) in Ireland, and University

College London (UCL) in the United Kingdom, and further elaborated at the Faculty

of Science of the University of South Bohemia (USB) in České Budějovice, where he re-

cently established his research group after returning to the Czech Republic. The main

achievements in this research field are demonstrated by collections of representative arti-

cles published in international scientific journals during the last ten years.

The charge transfer, in general, can proceed by very different mechanisms. The author,

motivated by his interest in quantum phenomena in soft matter, focuses predominantly

on electronic transitions in molecular systems. These are typically realized by incoherent

hopping events, like in redox-active proteins, which can be computationally simulated by

hybrid quantum-mechanical/molecular-mechanical (QM/MM) approaches and statistical

techniques based on molecular dynamics (MD). However, the situation becomes more

complex when the molecules get in touch with electrified metal surfaces, like at solid/liquid

interfaces in electrochemistry or protein junctions in nanobioelectronic devices. These

interactions can dramatically change the electronic behavior of the molecules and the

transport mechanism as well. Coherent tunneling, usual for charge transfer in solid matter,

plays a more important role on such interfaces, requiring full-quantum computational

descriptions, typically based on density functional theory (DFT).

The theory of (in)coherent electron transfer (ET) is briefly reviewed in the first part of

the thesis, together with the computational approaches and techniques suitable for their

investigation. Then, the author demonstrates the applicability and performance of these

methods in several case examples. Special focus is given to biologically relevant problems

such as the ergodicity of ET in redox proteins, long-range ET efficiency in redox chains,

interactions of biomolecules with metal electrodes, and tunneling conductance of protein

junctions. Other applications, such as redox-state transitions in solvated molecules, elec-

tronic transfer on solvated semiconductor electrode interfaces, or external-field-induced

superionic transitions in ice systems, are mentioned in the last part of the thesis. The

thesis is supplemented by reprints of the author’s 14 most relevant scientific articles on

the presented research topic.
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1 Introduction

Charge transfer reactions are ubiquitous not only in chemistry, industry, and electronic

technologies but also in biology. For example, photosynthesis, respiration cycle, and

nitrogen fixation are just the most famous natural processes maintained by living cells,

where the electronic charges are transferred through complex redox cascades to support

other chemical reactions [1–12]. The charge transfer is mediated by redox-active proteins

like cytochromes or cupredoxins, which have suitable electronic structures to trap and

release electrons, and it is further supported by various organic compounds shuttling the

charge between such proteins. In contrast to inorganic solid-state matter, the range of

biomolecular structures is much richer, more flexible, and more complex.

In biology, electrons typically localize on an available redox site until they gain enough

energy from the molecular thermal movements to overcome a free energy barrier and

transfer to another place [11,13–15]. This mechanism is known as incoherent hopping [16].

The resident time of the electrons is often long enough to allow complete relaxation

of the redox site and its neighborhood to a changed electrostatic potential upon the

electron transfer event. The free energy connected with such relaxation, together with

the energy differences between the related sites, determines the barrier preventing the

hops, and so the kinetics of the overall process. Biomolecules such as redox proteins

are usually optimized by evolution to allow efficient electron transfer over long-range

distances [6,13,17] They often utilize transition metals and aromatic organic cofactors in

their redox sites to tune the electronic-state positions and couplings.

However, experimental detection of individual hopping events in native biomolecules

is challenging. Typically, protein must be labeled by suitable organic dye near the specific

redox site, which is then used for controlled electron injection during ultrafast transient

spectroscopy measurements, known as pump-probe [18–21] More often, biomolecular re-

dox properties are studied by electrochemical approaches [22–24], which are less specific

but easier to perform. For example, in protein film voltammetry [25–28], an electric

current-voltage (I-V) response is probed on a monolayer of proteins adsorbed on the

electrode surface in solution. The specific shape of the resulting I-V curves contains in-

formation about redox site energies and transfer kinetics, averaged over all the involved

proteins. Nevertheless, electronic interactions of the probed proteins with the metal-

lic electrode states and the external electric fields present during the measurements can

affect the molecular properties and the transfer mechanism in a considerable way.

Single-molecular probe techniques have recently been developed, allowing measure-

ments of current-voltage characteristics on individual peptides and proteins [29–33]. These
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methods are based on scanning tunneling microscopy (STM) or conductive atomic force

microscopy (AFM) [34], where the probed molecule is adsorbed on an electrode substrate,

and the current is measured via a sharp metal tip approaching the molecule from the other

side. The atomic resolution of these methods allows investigations of relations between the

adsorption geometries, electron structures, and transport properties of the biomolecules.

Yet, the interpretation of these data is not straightforward. The shapes, magnitudes, and

temperature dependencies of the detected I-V curves cannot be explained by the inco-

herent hopping mechanism [35,36]. Instead, coherent tunneling, a typical mechanism for

solid-state transport processes, has been suggested to explain measured data [33, 35–41].

On the other hand, efficient, coherent transport over large and flexible biomolecules is

challenging our understanding of tunneling phenomena as well.

The lack of detailed experimental data at the single-molecular level and their dif-

ficult interpretation call for accurate atomistic simulations of such systems. Last four

decades, there has been significant progress in the development of computational meth-

ods and techniques able to predict key parameters for incoherent transport, elucidate the

related experimental data, and understand the electron transfer in native biological envi-

ronments [11]. However, simulations of the coherent processes are still challenging because

they typically occur on, often solvated, bio/metallic interfaces with complex atomistic and

electronic structures. Moreover, the quantum nature of coherent tunneling requires the

treatment of these models fully at the quantum-mechanical level, which increases the com-

plexity of the theoretical description and the cost of the performed simulations [36, 41].

Yet, a detailed understanding of these phenomena is desired not only from the funda-

mental point of view but also for further development of the rapidly growing field of

nanobioelectronics [42–45].
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2 Theory of electron transfer

Electronic charge is transferred through various materials via different mechanisms de-

pending on positions, densities, and fluctuations of available electronic states. While in

metals and inorganic semiconductors, which are extended and rigid, the electrons move

through conduction bands of densely packed empty states, the electron hopping among

energetically and spatially well-separated states of redox-active species occurs in solutions

in flexible biomolecules.

2.1 Incoherent hopping

When the electronic charge, i.e. either electron or electron hole, is localized in spatially

well-defined region and looses its initial phase before moving to another site, we talk about

an incoherent hopping mechanism. The two sites participating in the electron transfer

reaction are known as an electron donor (D) and acceptor (A). This type of charge transfer

mechanism is typical for electron transitions between solvated ions or organic species,

charged vacancies or defects in metal oxides, and redox sites in the biomolecular systems

like peptide and proteins.

2.1.1 Marcus theory of electron transfer

Theory of the incoherent, non-adiabatic electron hopping was formulated by Marcus [46,

47] and Hush [48,49]. The initial state D−A of the electron-transfer reaction is supposed

to be surrounded by thermally-fluctuating molecular environment which eventually brings

the energies of the D/A sites to the same level (Fig. 1). When these energy states are

aligned (at the so-called transition state of the reaction) the electron transfers from D to

A. Consequently, the system relaxes to the final state DA−.

Within the Marcus-Hush theory, the diabatic free energy surfaces corresponding to

the initial and final states, further labeled as a and b, are parabolic, as it is shown in

Fig. 2. The two minima of these parabolas correspond to the equilibrium states and their

vertical difference has a meaning of the reaction free energy or driving force

∆G = Gb(ξb)−Ga(ξa). (1)

Steepness or curvature of the energy surfaces are characterized by the reorganization free
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Figure 1: The schematic illustration of the electron transfer between the donor (D) and
acceptor (A) species in solution. Initial equilibrium state D⊖A is perturbed by thermal
motion of the solvent to the transition state where the electron transfers from D to A
and, afterwards, the system is relaxed to the final state DA⊖.

energies, which are defined as

λa = Ga(ξb)−Ga(ξa) (2a)

λb = Gb(ξa)−Gb(ξb) (2b)

The reorganization energy is related to relaxation processes upon the vertical charge

transitions between the surfaces Ga and Gb. Within the Marcus-Hush theory, which is

based on the linear response approximation, the reorganization energies for the forward

and backward reaction are the same, i.e. λa = λb = λ.

The reorganization free energy can be decomposed to the inner and outer parts

λ = λi + λo. (3)

The inner-part contribution comes from the polarization and the internal vibrational

movements of the D/A sites, which change when the electronic charge is transferred [50].

This part of the reorganization free energy depends only weakly on the molecular envi-

ronment [51]. On the other hand, the outer-part contribution characterizes the relaxation

of the D/A surroundings (both molecular and electronic) and it grows with the increasing

distance RDA between the donor and the acceptor

λo =
1

4π

(
1

ϵo
− 1

ϵs

)(
1

2rD
+

1

2rA
− 1

RDA

)
(∆q)2. (4)
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Figure 2: The schematic illustration of the Marcus free energy diabatic surfaces Ga, Gb

(dashed red and blue curves) with indicated driving force ∆G, reorganization free energy
λ, free energy barrier ∆G‡, and crossing-region splitting caused by electronic coupling
Hab. The adiabatic surfaces G0, G1 of the system ground state and the first excited state,
respectively, are shown by underlying solid black curves. The vertical energy gap ∆E
plays the role of the reaction coordinate ξ. The parameters used to draw the scheme are
∆G = -0.2 eV, λa = λb = 1.0 eV, and |Hab| = 0.05 eV.

Here, the rD and rA are radii of approximately-spherical D/A sites, and ∆q is the trans-

ferred charge. The environmental prefactor expressed as the difference of reciprocal values

of the optical and static dielectric constants, ϵo and ϵs, respectively, is known as the Pekar

factor.

Thanks to the parabolic shape of the energy surfaces, the free energy barrier at the

crossing, transition-state region can be expressed by a simple formula [52]

∆G‡ =
(∆G+ λ)2

4λ
(5)

Assuming that the transition rate can be well described by the first-order time-dependent

perturbation theory, the rate constant of the given electron-transfer reaction is expressed

as

kET =
2π

ℏ
|Hab|2

1√
4πλkBT

exp

[
−∆G‡

kBT

]
(6)

The rate constant grows with the increasing reaction free energy until it reaches its max-

imum for the activation-less process where ∆G = −λ. Further increase of the driving

force then leads to the decrease of the rate constant. This effect is known as the Marcus
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kN−2,N−1

kN,N−1

kN−1,N

kN,out

k1,out kN,in

Figure 3: Linear-chain model of tightly-bound redox sites where the electron transfer
proceeds only between the adjacent sites.

inverted region and it served for experimental validation of this ET theory [53].

Marcus–Hush theory was then successfully applied to describe electron transfer in

redox molecular complexes [54–57], wide range of biomolecules [1, 5, 11, 16, 17, 51, 58–

68], long-range redox chains [13, 21, 69–72], microbial films [73, 74], inorganic and some

organic semiconductors [75–84], and also on electrochemical interfaces [85–88]. However,

systems where this theory is not applicable are well known too. Typical violations of

the Marcus assumptions are non-Gaussian energy-gap fluctuations caused by structural

changes occurring during the charge-transfer processes [11, 89–93], nonergodic behavior

due to the different time scales of electron transfer and molecular movements [64,94–101].

2.1.2 Electronic current

The system of interest where the electronic charge is moving by the incoherent hopping

mechanism can be described by the chain redox-site models [102] like in Fig. 3, where the

allowed transitions with the corresponding rate constants are indicated. In the simplest

case, the electron passes through the system in a linear fashion and only the transitions

between the nearest neighbours are considered, however, more complex models can be

designed to capture the ET pathways in particular systems [36,72,103].

Considering the linear-chain model shown in Fig. 3, the change of the electron popu-

lation Pi ∈ [0, 1] on the redox site i is given by difference between electron injection and

ejection to/from that site

dPi

dt
= [ki,i−1Pi−1 + ki,i+1Pi+1] (1− Pi)− [ki,i−1(1− Pi−1) + ki+1,i(1− Pi+1)]Pi (7)

at specific time t. Under the steady-state conditions, when the site populations do not
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change any more, the kinetics of the system is described by the following set of equations

k1,in(1− P1) + k12P2(1−P1) = k21P1(1−P2) (8a)

ki,i−1Pi−1(1−Pi) + ki,i+1Pi+1(1−Pi) = ki−1,iPi(1−Pi−1) + ki+1,iPi(1−Pi+1) (8b)

kN,N−1PN−1(1−PN) = kN−1,NPN(1−PN−1) + kN,outPN (8c)

where the first and third equation describes the electron injection/ejection to/from the

first/last site, respectively. By solving these equations, the equilibrium site populations

are obtained by recursive formulas

P1 =
k12P2 + k1,in

(k12 − k21)P2 + k1,in + k21
(9a)

Pi =
ki,i−1Pi−1 + ki,i+1Pi+1

(ki,i−1 − ki−1,i)Pi−1 + (ki,i+1 − ki+1,i)Pi+1 + ki−1,i + ki+1,i

(9b)

PN =
kN,N−1PN−1

(kN,N−1 − kN−1,N)PN−1 + kN,out + kN−1,N

(9c)

The electronic flux is then given by the populations of the frontier sites

J = k1L(1− P1) = kRNPN . (10)

2.1.3 Metal/molecule interfaces

While in original Marcus theory charge transfer between two redox states is treated, at

heterogeneous interfaces between metal electrodes and molecules interaction of the redox

state with continuum of metallic states need to be considered [104–108]. This problem

was investigated by Chidsey [86], who modified the Marcus rate-constant formula for the

oxidation (kMi) and reduction (kiM) of molecular species on metal surfaces

kMi = Γ
ℏ

√
kBT
4πλi

∫∞
−∞ exp

[
−
(
x− λi+e(ϵi−µM )

kBT

)2
kBT
4λi

]
/ [1 + exp(x)] dx (11a)

kiM = Γ
ℏ

√
kBT
4πλi

∫∞
−∞ exp

[
−
(
x− λi+e(µM−ϵi)

kBT

)2
kBT
4λi

]
/ [1 + exp(x)] dx (11b)

where

Γ = 2π
〈
|HiM |2ρ

〉
(12)

is the average interfacial coupling of the site i with the electrode M , assuming wide band

approximation. Fermi potential µM of the electrode is a material property, which is, under
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open-circuit conditions, determined by the surface structure.

Besides the direct electronic interaction of the redox species with the electrode states,

the electrochemical interfaces are affected by the applied bias potential, which effectively

shifts the Fermi potential of the electrode. The electrode charging, and the correspond-

ing electric field, are on the solvent side of the interface compensated by the electric

double layer form by mobile ionic species [109–111]. Finally, the resulting local elec-

tric fields and increased ionic concentration influence the molecular electronic states and

sometimes even structural conformations [112–114]. Due to these complex effects, theo-

retical investigations of charge transfer at electrochemical interfaces are not straightfor-

ward and applications of state-of-the-art computational approaches, like band-alignment

corrections [115–124], non-equilibrium molecular dynamics [125–128], and special bias-

potential-control techniques [129–135], are often required.

2.2 Coherent tunneling

Coherent tunneling is a type of quantum transport where the charge passes through

the potential region exceeding its available energy while the phase of its wavefunction

does not change during such process. The charge particle thus does not significantly

interact with its environment or other (quasi)particles. Therefore, the coherent tunneling

typically proceed balistically or in weak-interaction regime where inelastic scattering is

negligible [136–138].

2.2.1 Landauer-Büttiker formalism

The Landauer-Büttiker formalism [139,140], known also as the scattering method, relates

the transport properties to the electron transmission through the considered material.

In this formalism, the tunneling current can be obtained by integration of transmission

function T (E) within the so-called Fermi window

I(V ) =
e

πℏ

∫
T (E) [fL(E, V )− fR(E, V )] dE (13)

The Fermi window is given by the difference of Fermi–Dirac distributions fM , character-

ized by Fermi potentials µM , of the two contacts (M = L, R)

f(E) =
1

exp
(

E−µ
kBT

)
+ 1

(14)

The transmission function describes the probability that an electron tunnels from the
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Figure 4: Schematic illustration of Landauer integration of transmission function for
molecular system where the equilibrium Fermi level of the contacts is located in the
HOMO–LUMO gap. Occupied and empty states of the left (L) and right (R) metal
contact are shown in blue and red colors, respectively.

left contact region L via the scattering region S to the right contact R at energy level E. In

the Breit-Wigner approximation, where the electronic states within the scattering region

are regarded as independent and non-interacting, the transmission function is written as

a sum of single Lorentzian peaks [141,142]

T (E) =
∑
j∈S

Γ
(L)
j (E)Γ

(R)
j (E)

[E − ϵj]2 + [Γ
(L)
j (E) + Γ

(R)
j (E)]2/4

(15)

The Γ functions, known as spectral densities, are responsible for the molecular state

broadening due to their interactions with the metal contacts. The functions are related

to the electronic coupling elements between the molecular state j from the scattering

region S and metallic states m, Hmj, weighted by their densities ρM

Γ
(M)
j (E) = 2π

[
|Hmj|2ρM(ϵM,m)

]
ϵM,m=E

(16)

For the interpretation of experimentally measured tunneling current–voltage (I-V )

curves, this formalism is usually further simplified [35]. However, the Landauer-Büttiker

formalism can be used to predict the tunneling current magnitudes directly from the

ab initio data [143], typically obtained by the tight-binding (TB) potentials or density-
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functional theory (DFT). In these cases, full all-to-all transmission matrix is usually con-

sidered as a generalization of the simplified Breit-Wigner transmission function. Further,

the formalism allows description of devices with more than two contacts to the scattering

region [139,144], which makes it popular for theoretical description of various electronics

components and molecular junctions [145–149]. Recently, this methodology and its modi-

fications was also applied to investigation of extended biomolecular junctions [36,41,150].

2.2.2 Green’s function description

Alternatively, the transport problem can be mathematically formulated using Green func-

tions, which are more suitable for description of open and non-equilibrium systems. The

retarded (Ĝ) and advanced (Ĝ†) Green functions are propagators describing system evo-

lution, i.e. solution of the time-dependent Schrödinger’s equation

iℏ
∂ |ψ(t)⟩
∂t

= Ĥ |ψ(t)⟩ (17)

in time

|ψ(t)⟩ = iℏĜ(t− t0) |ψ(t0)⟩ , t > t0 (18)

or back in time

|ψ(t)⟩ = −iℏĜ†(t− t0) |ψ(t0)⟩ , t < t0 (19)

In energy representation, which is connected with the time representation by the

Fourier transform, the retarded Green function has the traditional form

Ĝ(E) =
[
(E + iη)Î − Ĥ

]−1

(20)

where η is small real number offsetting the energies to complex plane to avoid divergen-

cies at Hamiltonian poles ϵj. In the spectral representation, convenient for numerical

calculations, the retarded Green function has the form

Ĝ(E) =
∑
n

|ψn⟩ ⟨ψn|
E − ϵn + iη

(21)

where ψn and ϵn are eigenfunctions and eigenvalues of the Hamiltonian Ĥ, respectively.

The scattering can be then captured in perturbation fashion by Lippmann-Schwinger

equation [151]

Ĝ(E) = Ĝ0(E) + Ĝ(E)V̂ Ĝ0(E) (22)
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where Ĝ0 describes the incoming particle, Ĝ the scattered particle, and the scattering

potential is described by the operator V̂ . Finally, using the Fisher–Lee relation between

the Green function and the scattering matrix [152], the transmission function can be

expressed as [153,154]

T (E) = Tr
[
Γ̂(L)(E)Ĝ(S)†(E)Γ̂(R)(E)Ĝ(S)(E)

]
(23)

where Ĝ(S) is the Green function operator of the scattering region where the interaction

with the contacts is involved via the self-energy operators Σ̂(M). The operators Γ(M) are

related to self-energy as Im[Σ̂] = −1
2
Γ̂.

The Green function description of the open system can be generalized to non-equi-

librium cases by the so-called Keldysh formalism [155]. This method, known as non-

equilibrium Green function (NEGF) [156–163], has been implemented in many TB and

DFT software packages [164–167], and became popular for investigation of transport prop-

erties of semiconductor nanoelectronic components [136,137,168–170] and molecular junc-

tions [102,138,171].
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3 Computational approaches

3.1 Current-voltage curve modeling

Measured current-voltage (I-V ) curves from single-molecular experiments like STM are

usually first analyzed by using analytical models capturing the physical properties of the

probed sample [29, 32, 33, 35, 39, 41, 150,172–198]. For example, one can design multi-site

hopping models for modeling electron fluxes through redox protein chains [68, 102, 103]

or apply tunneling models [199, 200] to analyze current curves in solid-state junctions.

Usually, agreement of several different models with the experimental data is explored to

determine the electron transfer mechanism and estimate values of the key parameters (see

Fig. 5 for details).

 -1.2

 -1.0

 -0.8

 -0.6

 -0.4

 -0.2

  0.0

  0.2

  0.4

  0.6

  0.8

-0.4 -0.2 0 0.2 0.4

C
u
rr
e
n
t 
[µ
A
] 
@

 3
0
0

 K

Voltage [V]

Experimental values
Coherent (Simmons)
Coherent (Landauer)
Hopping (linear)
Hopping (two-path)

 -8.4

 -8.0

 -7.6

 -7.2

3 4 5 6 7 8 9 10

L
o
g
(I
/A
)

1000/T [K-1]

0.05 V

(a)

µ

µL

µ

µR

αLeV

αReV

1

4

2

3

k1L

kR4

k21
k32

k43

(b)

µ

µL

µ

µR

αLeV

αReV

32

41k12

k43

k32

k2L

k3L

kR4

kR1 (c)

µ

µL

µ

µR

αeV

(1−α)
eV

φ

L

(d) ǫ0
Γ

µ

µL

µ

µR

αeV

(1−α)
eV

(e)

Figure 5: (a) Fitting of experimental current–voltage (I-V ) and current–temperature (I-
T ) curves (inset) for the tetra-heme protein STC [35]. Models of incoherent hopping (b)
along a linear chain and (c) along a branched chain of redox sites are compared to coherent
tunneling (d) Simmons model and (e) single-channel Landauer model.

3.1.1 Incoherent hopping models

Incoherent hopping models, based on the kinetic master equations described in Sec. 2.1.2,

are popular for modeling of I-V curves measured on redox systems where applicability of

the Marcus–Hush theory of electron transfer [46,48] can be assumed. The hopping models

can be adapted to capture geometry and expected ET pathways in particular systems.

While simple linear chains can be applied to compute electronic fluxes, for example, in

multi-heme cytochromes [13, 68, 71, 201], branched chains are typically more suitable for

investigation of electron transfer in redox cascades involving more proteins [65, 72, 103].

Moreover, the model can describe also electron hopping events in molecular crystals [76,

77, 81, 82, 202–205] and in inorganic semiconductors [75, 78–80, 206], although solution of
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the kinetic master equations for such ET networks requires different methodology then

the simpler chain pathways.

For the small linear chains, analytical solution of the equations (9) can found directly

or by using various symbolic solvers [68]. However, this becomes impractical for the cases

where long chains involving many redox sites are investigated, and impossible for the

more complex, typically branched, ET pathways. In such cases, the solution (i.e. the

equilibrium populations of the individual sites and the steady-state current) is usually

obtained by iterative techniques, where the initial populations are guessed (often set to

zero) and then improved by iterative cycles [35, 36, 102]. Finally, for the complex and

extended ET networks, where the iterative methods would converge too slowly or suffer

from oscillations, kinetic Monte Carlo approaches are applied [202,203,207].

However, for analyzing the experimentally measured current data, number of free pa-

rameters must be reduced to ambiguities related to over-fitting. The input rate constants

are computed from the Marcus formula (6), which requires knowledge of the driving force

(∆G), reorganization free energy λ, and electronic coupling Hab. Typically, available ex-

perimental redox-potential values are employed to obtain ∆G, λ and Hab are estimated

from Eqs. 4 and 72, and parameters of interest (e.g., missing redox potential or rate con-

stant between specific redox pair) are fitted. Recently, we used such incoherent hopping

modeling of I-V curves measured on solid-state protein junctions based on multi-heme

cytochromes [35,36], where we simultaneously fitted the current dependencies on applied

bias potential and temperature (shown in Fig. 5), to prove that the hopping cannot explain

high current magnitudes and weak thermal effects in such devices.

3.1.2 Coherent models

Simmons model The model of Simmons [200] describes electron tunnelling through

a potential barrier of arbitrary shape representing a thin insulating film between two

conductive electrodes. Assuming the average barrier height ϕ above the Fermi level µL

of the negatively-charged left electrode and the potential drop occurring at the right

electrode, the current can be described as

I(V ) =
e2

2πh

[
(ϕ− αV ) e−K

√
ϕ−αV − (ϕ+ (1− α)V ) e−K

√
ϕ+(1−α)V

]
(24)

where

K = 4πL (2me)1/2 /h (25)
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is determined by tunnelling length L. The model involves also the so-called symmetry

factor α allowing description of arbitrary distribution of the potential drop on the elec-

trodes [208].

Landauer model In the Landauer formalism [142, 191], the transmission function is

approximated by a Lorentzian peak

T (E) =
ΓLΓR

[E − ϵ0]2 + Γ2
, Γ = (ΓL + ΓR)/2 (26)

representing the conduction channel, that is a molecular energy level ϵ0 mediating the

tunnelling current. ΓL and ΓR are spectral densities (interfacial protein/electrode cou-

plings exhibited by interfacial state broadening) determining the shape of the transmission

function.

As in the Simmons model, a symmetry factor α is introduced to control the potential

drop on the electrodes via the positions of their Fermi levels

µL = αeV/2, µR = −(1− α)eV/2 (27)

The integral with transmission function (26) is solved in the zero-temperature limit, where

the Fermi–Dirac distribution converges to a Heaviside step function f(E) → ϑ(E − µ)

and df/dµ → δ(E − µ). In this limit the electric conductance can be written in analytic

form,

g(V ) =
dI

dV
=

e

πℏ

[∫
T (E)

df

dµL

dµL

dV
dE −

∫
T (E)

df

dµR

dµR

dV
dE

]
=

= G0ΓLΓR

[
α

(αeV − ϵ0)2 + Γ2
− α− 1

((α− 1)eV − ϵ0)2 + Γ2

]
,

(28)

where G0 = e2/πℏ is known as the quantum conductance (i.e., the maximal conductance

of the single electronic level). The tunneling current is then obtained by integration of

(28), giving

I(V ) =
2G0

e

ΓLΓR

ΓL + ΓR

[
arctan

αeV − ϵ0
(ΓL + ΓR)/2

− arctan
(α− 1)eV − ϵ0
(ΓL + ΓR)/2

]
, (29)

For the fitting of the experimental I-V curves to (29), the same coupling values to the left

and right electrode (ΓL = ΓR ≡ Γ) are typically assumed. Hence, there are three fitting

parameters: ϵ0, Γ, α in this model.
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3.2 Molecular dynamics (MD) techniques

Due to the flexible nature of the molecular soft matter, including biomolecules, sampling of

configuration space by molecular dynamics is often employed. In the classical mechanics,

the state of a particle is determined by its position r and momentum p. Integrating the

equations of motion, time evolution of these two quantities can be written as

r(t) = r(t0) +

∫ t

t0

p(t′)

m
dt′ (30a)

p(t) = p(t0) +m

∫ t

t0

a(t′)dt′ (30b)

where a(t) = F (t)/m is atomic acceleration caused by the force F . The time-evolution

integrals can be solved by various numerical methods differing by complexity and accuracy,

for example, by the so-called ”velocity Verlet” algorithm, which is popular in atomistic

MD simulations.

Original Verlet algorithm is based on Taylor expansion of position in time [209]

r(t+∆t) = 2r(t)− r(t−∆t) + a(t)(∆t)2 (31)

without explicit formula for velocities. To avoid their calculations by finite differentiation,

the algorithm was later updated [210]

r(t+∆t) = r(t) + v∆t+
1

2
a(t)(∆t)2 (32a)

v(t+∆t) = v(t) +
1

2
[a(t+∆t) + a(t)]∆t (32b)

which is known as the velocity Verlet method.

3.2.1 Ab initio MD simulations

Naturally, the above-mentioned integration of the classical equations of motions is per-

formed on systems described by classical potentials (the so-called molecular mechanical

description or classical force-field description). This approach is typical for structural

studies of molecular systems like solvated organic molecules, biomolecules, solid/liquid

interfaces, bio/metallic interfaces, etc. However, when chemical changes such as bond

breaking/making or electron transfer occur, the quantum description needs to be em-

ployed. Such computations are usually referred as ab initio or first-principles simula-

tions [211]
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In the quantum mechanics, the time-dependent Schrödinger equations plays the role

of the equation of motion

iℏ
∂

∂t
|ψ(r,R, t)⟩ = Ĥ |ψ(r,R, t)⟩ (33)

where r and R denotes all electronic and nuclear coordinates, respectively. As the elec-

tronic motions are much faster than the nuclear movements, these two coordinate types

can be separated

ψ(r,R, t) = ϕ(r, t)χ(R, t) (34)

which leads to coupled time-depended self-consistent-field (TDSCF) equations

iℏ
∂χ

∂t
= −∑α

ℏ2
2Mα

∇2
αχ+ ⟨ϕ| −∑i

ℏ2
2m

∇2
i + Vne |ϕ⟩χ (35a)

iℏ
∂ϕ

∂t
= −∑i

ℏ2
2m

∇2
iϕ+ ⟨χ| −∑α

ℏ2
2Mα

∇2
α + Vne |χ⟩ϕ (35b)

where Vne stands for Coulomb potential describing electrostatic interaction between nuclei

and electrons (i.e., external potential in density functional theory).

Ehrenfest molecular dynamics Since the atomic nuclei are by three orders of magni-

tude heavier than electrons, their motion can be described classically while the electronic

wavefunction adiabatically follows the changing nuclear potential.

iℏ
∂ϕ

∂t
= −

∑
i

ℏ2

2m
∇2

iϕ+ Vneϕ (36)

The above equation of motion for electronic degrees of freedom is solved self consistently

while the nuclear propagation is obtained by integration of classical Newton’s equations.

This type of molecular dynamics is known and Ehrenfest MD or mean-field MD [212–214].

Born-Oppenheimer dynamics When the energy gap between the electronic ground

state and excited states is large compared to thermal energy kBT , the motion of the nuclei

can be restricted to the potential energy surface of the ground state.

Mα
d2Rα

dt2
= −∇αmin

{ϕi}

[
⟨ϕ0| −

∑
i

ℏ2

2m
∇2

i + Vne |ϕ0⟩
]

(37)

where |ϕ0⟩ is the ground state adiabatic wavefunction of the time-independent elec-

tronic Hamiltonian. This approach is known as Born-Oppenheimer molecular dynamics
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(BOMD) [211] and it is popular for the first-principles simulations because it allows to

propagate the nuclear motion with much larger time steps than in the Ehrenfest MD.

However, solving the stationary Schrödinger equation at each MD step is still very com-

putationally demanding.

Car-Parrinello dynamics To avoid expensive self-consistent finding of the ground

state in BOMD, Car and Parrinello formulated the extended Lagrangian [215]

L =
∑
α

1

2
MαR

2
α +

∑
i

µi⟨ϕ̇i|ϕ̇i⟩ − ⟨ϕ0| −
∑
i

ℏ2

2m
+ Vne |ϕ0⟩+

∑
i,j

Λij [⟨ϕi|ϕi⟩ − δij] (38)

leading to Car-Parrinello equations of motions

Mα
d2Rα

dt2
= −∇α ⟨ϕ0| −

∑
i

ℏ2

2m
+ Vne |ϕ0⟩ (39a)

µi
d2ϕi

dt2
=

∑
i

[
ℏ2

2m
∇2

i − Vne

]
ϕi +

∑
j

Λijϕj (39b)

where each state ϕi is propagated with fictitious mass µi, while its normalization is im-

posed by Lagrange multipliers Λij. The ground state ϕ0, constructed as a Slater determi-

nant of the one-electron states ϕi, is thus propagated without need of the self-consistent

solution. This method is popular in the plane-wave density-functional-theory codes, where

the individual terms are easily evaluated [211].

3.2.2 Thermodynamic properties

A connection between the atomistic simulations and the macroscopic properties of the

molecular systems is provided by the formalism of statistical mechanics [216]. The so-

called ergodic hypothesis represents the key relation of the time averaging of variable A

during the MD simulation and the statistical averages ⟨A⟩

Ā ≡ lim
T→∞

1

T

∫ T

0

A(t)dt =

∫∫
A(r,p) exp (−H(r,p)

kBT
)drdp∫∫

exp (−H(r,p)
kBT

)drdp
≡ ⟨A⟩ (40)

In practice, the exact time average Ā is approximated by mean value over the available

MD samples

Ā ≈ 1

N

N∑
i=1

Ai (41)
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and the variations are calculated by the block-average method

σ2 =
1

Nb − 1

Nb∑
β=1

(
A2

β − ⟨A⟩2b
)

(42)

where Nb is number of used blocks, Aβ is the block average, and ⟨A⟩b is the average over

all the blocks [217,218].

Besides the total energy E, the system temperature T , and pressure p are typically

tracked or controlled during the MD simulations. The temperature is obtained via the

Boltzmann equipartition theorem

3

2
NkBT =

〈
1

2

N∑
i=1

miv
2
i

〉
(43)

where N is total number of particles in the system and vi are their velocities. On the

other hand, the virial theorem is often employed to compute the system pressure

pV = NkBT − 1

3

〈 N∑
i=1

riFi

〉
(44)

While the direct propagation of the equations of motions conserves the total energy

E and leads to sampling of the microcanonical (NVE) ensemble, constraining the tem-

perature or pressure is usual to sample canonical (NVT) and isothermal-isobaric (NpT)

ensembles, respectively. For open systems, grand canonical ensemble (µVT) with fixed

chemical potential µ is often applied.

3.2.3 Free energy calculations

The statistical ensembles (NVE, NVT, NpT, µVT) are, via their partition functions (Ω, Q,

Λ, Ξ), directly related to thermodynamic potentials (S, A, G, pV ), which are important

for practical applications

Ensemble Potential Relation

microcanonical entropy S = kB lnΩ(N, V,E)

canonical Helmholtz free energy A = −kBT lnQ(N, V, T )

isothermal-isobaric Gibbs free energy G = −kBT ln Λ(N, p, T )

grand canonical mechanical work pV = kBT ln Ξ(µ, V, T )

However, these thermodynamic potentials cannot be obtained from MD directly because

proper evaluation of the related partition functions would require effectively infinitely-
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long simulations. Therefore, various approaches have been developed to compute the free

energies by methods of enhanced sampling [216,219,220].

Free energy perturbation theory From the practical point of view, only the free

energy differences between states of interest are relevant for applications. For exam-

ple, the free energy difference between the reactants and products of chemical reactions

determines exothermicity or spontaneity of such processes. When these two states are

energetically close, the perturbation theory can be employed to express the desired free

energy difference [216,221], leading to the formula

∆A01 = −kBT ln
〈
e−∆U/kBT

〉
0
, ∆U = U1 − U0 (45)

where U0, U1 are potential energies of the reactant and products, respectively, while ⟨. . . ⟩0
denotes mean value on reactant potential energy surface. When the potential-energy

distributions are Gaussian, the formula can be simplified to [220]

∆A01 = ⟨∆U⟩0 −
1

2kBT

(〈
∆U2

〉
0
− ⟨∆U⟩20

)
(46)

which is often used in practical applications.

When the energy differences between the two states are large, in a sense that the

Boltzmann factor e−∆U/kBT becomes negligibly small, the perturbation formula cannot be

directly used. However, the path from the reactants to the products can be interpolated

at Hamiltonian level

Ĥ(λ) = (1− λ)Ĥ0 + λĤ1 (47)

using the mapping parameter λ ∈ [0, 1] and divided into N segments. The total free

energy difference ∆A01 is then computed as a sum of free energy differences between

these segments [216]

∆A01 = −kBT
N−1∑
i=1

ln
〈
e−∆Ui,i+1/kBT

〉
i

(48)

Thermodynamic integration The Hamiltonian interpolation (47) between the two

states of interest is typical for the so-called thermodynamic integration approaches. In

general, the free energy difference can be obtained by integration of potential mean force

along the path between the reactants and products [222]

∆A01 =

∫ 1

0

∂A

∂λ
dλ =

∫ 1

0

〈
∂U

∂λ

〉
λ

dλ (49)
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where ⟨. . . ⟩λ denotes mean value at fixed λ. The free energy difference does not depend

on the chosen pathway between the two states. However, when the linear interpolation

(47) is used, the integration formula simplifies to [216,220]

∆A01 =

∫ 1

0

⟨U1 − U0⟩λ dλ (50)

In practice, the pathways is divided into N segments and the mean values ⟨∆U⟩λi
are

evaluated for the selected λi ∈ [0, 1] values. These are then integrated by standard

numerical algorithms.

Blue moon ensemble In molecular systems, the studied processes can be often de-

scribed by a reaction coordinate, i.e. a collective variable f(r1, . . . , rN) dependent on

positions ri of N particles involved in the system, which represent a natural pathway

between the reactant and the products. The free energy difference along the reaction

coordinate can be evaluated in the thermodynamic integration fashion by imposing the

holonomic constraints

σ(r1, . . . , rN) = f(r1, . . . , rN)− s (51)

where s is the pre-set value of the collective variable f . However, this affects the dynamics

of the system, and the formula (49) needs to be corrected in the following way [223–226]

∆A01 =

∫ 1

0

〈
z−1/2(r)[λ+ kBTG]

〉
s

⟨z−1/2(r)⟩s
ds (52)

where z(r) is a metric, known as the Fixman potential, which has a value

z(r) =
∑
i

1

mi

(
∂σ

∂ri

)2

(53)

while the G parameters can be expressed as

G =
1

z2(r)

∑
i,j

1

mimj

∂f

∂ri
· ∂2f

∂ri∂rj
· ∂f
∂rj

(54)

The Lagrange multiplier λ have a general form [216]

λ = − 1

z(r)

[∑
i

Fi

mi

· ∂σ
∂ri

+
∑
i,j

vi ·
∂2σ

∂rirj
· vj

]
(55)
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However, in practice, the simplified expressions for a specific constrains such as inter-

atomic distances are used [227].

Umbrella sampling In the umbrella sampling method [228,229], instead of constrain-

ing MD at specific segments of the reaction coordinate like in the blue moon ensemble

approach, the restraining bias potentials are are applied, which usually have the following

harmonic form

W (f, s) =
1

2
k[f(r1, . . . , rN)− s]2 (56)

The system fluctuates near the pre-set value s of the reaction coordinate f . The biased

distributions P b(q, s), which are functions of generalized coordinates q, are approximated

by histograms collected during the restrained MD simulations. The bias distributions

from different segments of the reaction coordinates are then reweighted to obtain the

unbiased distributions

Pi(q) = e−(Ai−A0)/kBT eW (q,si)/kBTP b(q, si) (57)

using the free energies Ai associated with the bias potentials Wi ≡ W (f, si). These are

related to the total unbiased distribution P (q) as

e(Ai−A0)/kBT =

∫
P (q)eWi/kBTdq (58)

The total distribution is constructed as a linear combination of unbiased distribution from

the individual reaction-coordinate segments, P (q) =
∑

i ci(q)Pi(q). The coefficients ci are

set to minimize the statistical error, which leads to the expression

P (q) =

∑
i niPi(q)∑

k nie(Ai−A0)/kBT e−Wi/kBT
(59)

Finally, the free energy profile along the reaction coordinate is obtained as

A(q) = −kBT lnP (q) (60)

However, as the equations (58) and (59) are coupled, they need to be solved iteratively

until the self-consistent solution if found. This approach is known as the weighted his-

togram analysis method (WHAM) [230, 231] and it can be easily generalized to describe

multidimensional free energy surfaces [232].

27



Metadynamics The bias potentials (56) in the umbrella sampling method need to

be distributed along the reaction coordinate in a way to ensure sufficient overlaps of

the bias distributions P b(q, si). However, as the free energy profile is not known a pri-

ory, additional restrained MD simulations need to be performed for the poorly sampled

reaction-coordinate regions, which makes the method computationally and time demand-

ing. To avoid these problems, Laio and Parrinello [233–235] invented the enhanced sam-

pling technique known as metadynamics, where the bias potentials of Gaussian shapes

are automatically placed on the already-sampled regions of the reaction coordinate as the

MD simulations progress

W (q, t) = H
∑
ti

exp

[
−|f(q)− f(q, ti)|2

2w2

]
(61)

The system is thus enforced to overcome free energy barriers and sample the higher-energy

configurations. Finally, the free energy profile converges to the negative sum of all the

bias potentials distributed along the reaction coordinate

A(q) = − lim
t→∞

W (q, t) (62)

Later, modified versions of metadynamics were designed where the Gaussian bias poten-

tials (61) adapt their widths w and heights H to sample the free energy profile in the

most efficient way [236,237].

3.2.4 Non-equilibrium MD simulations

The above discussed free-energy calculation method are related to canonical statistical

ensemble, sampled by equilibrium MD techniques. Nevertheless, the system of interest

can be perturbed by time-dependent external fields to which the system responds. For

example, charge transport events can be induced by applied bias potential or electric field,

respectively, which could be followed by faster or slower relaxation processes [238].

At the classical level of theory, the electromagnetic field effects can be studied by

non-equilibrium MD simulations based on the equations of motions involving the time-

dependent Lorentz force [126]

Mα
d2Rα

dt2
= −∇αV (R) + qαE(t) + qαvα ×B(t) (63)

where qα are particle charges andE,B are electric and magnetic field vectors, respectively.

These are perpendicular to each other, as well as to the field-propagation direction, as it

28



is required by Maxwell equations. In the nanoscopic simulations, the field intensities are

usually regarded to be uniform throughout the system and their magnitudes vary with

angular frequency ω

E(t) = Emax cos (ωt)ex (64a)

B(t) = Bmax cos (ωt)ey (64b)

The root-mean-square (RMS) electric field intensity is Erms = Emax/
√
2. Further, electric

and magnetic field intensities are related as Emax/Bmax = c/n where c is the vacuum

speed of light while n stands for the refractive index of a given environment.

In the first-principles simulations, the interaction of the system with external fields

need to be described at Lagrangian or Hamiltonian level. For example, the dipole inter-

action with the electric field can be studied by involving the potential

Vdip(t) = −µ ·E(t) (65)

where µ is the electric dipole moment of the system. However, more complex and general

field-matter interaction terms can be applied, depending on the particular problem of

interest [239]. For the molecular system, density functional theory (DFT) together with

Berry phase formulation and modern theory of polarization are employed to describe the

external field effects [125,240]. These techniques have been used, for example, for studying

electrocatalysis of chemical reactions [241–245], field effect of liquid water [128,246]. More

complex system, like biomolecules and the heterogeneous interfaces, are usually studied

at classical level of theory [127,247–251].

3.3 Electronic coupling

Diabatic electronic states, which represent localized charge states in the ET studies [46,55,

252], are, in contrast to adiabatic states, not eigenfunctions of the electronic Hamiltonian

of the system. Therefore, off-diagonal elements of the Hamiltonian matrix in diabatic-

state representation are not zero. These elements are known as electronic coupling matrix

elements Hab and they quantify interactions between the diabatic states ψa, ψb:

Hab = ⟨ψa| Ĥ |ψb⟩ (66)
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For investigation electron transfer in donor-acceptor system, a simple two-state model is

often used with electronic Hamiltonian

H =

(
Ea Hab

Hab Eb

)
(67)

Energies of the adiabatic ground state (E0) and the first excited state (E1) are

E0,1 =
1

2

(
Ea + Eb ∓

√
(Ea − Eb)2 + 4|Hab|2

)
. (68)

If the studied system is symmetric like in self-exchange ET reaction, then diabatic energies

of the donor and acceptor are equal (Ea = Eb) and the energy gap between the adiabatic

states is is simply twice the diabatic coupling matrix element

∆E01 = E1 − E0 = 2|Hab|. (69)

This is often utilized in high-level quantum-chemistry calculations of the coupling elements

between homo-dimer units [253–256].

The two state model can be generalized to the case where the two diabatic states ψa,

ψb are not orthogonal. [257] Then, the overlap matrix has non-zero off-diagonal elements

Sab = ⟨ψa|ψb⟩ and the adiabatic energy gap equals to

∆E01 =
1

1− S2
ab

√
(Ea − Eb)2 − 4[HabSab(Ea + Eb)−H2

ab − EaEbS2
ab]. (70)

The coupling element Vab, also known as electron-transfer matrix element or transfer

integral, is defined as the half of the adiabatic energy splitting at the crossing point of

the diabatic surfaces

Vab =
1

2
∆E01|Ea=Eb

=
1

1− S2
ab

√
Hab − Sab

Ea + Eb

2
. (71)

Obviously, the coupling is close to the off-diagonal diabatic matrix element Vab ∼ Hab

when the overlap between the two charge states is negligible (Sab ≪ 1). This expres-

sion is typically used to evaluate the coupling for the intra-molecular electron transfer

reactions. [257–263]
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3.3.1 Empirical approaches

Evaluation of the electronic coupling elements by quantum wavefunction methods or by

density-functional-theory (DFT) approaches is computationally demanding. Therefore,

several empirical methods for estimating the coupling values have been developed, which

are employed in more complex calculations of electron-transfer processes. These meth-

ods are used, for example, in studies of long-range electron transfer in multi-heme pro-

tein, where the structural details are affected by relatively large uncertainties [70], or in

non-adiabatic molecular dynamics (NAMD) simulations of charge propagation where fast

estimation of the coupling element values is crucial [264–268].

Distance decay Interaction between the diabatic states is exponentially decaying with

the growing distance d between the donor and acceptor centers

|Hab| = A exp [−βd/2] (72)

Value of the decay factor β is characteristic for different types of molecular systems. Its

value, together with the pre-exponential factor A, are obtained by fitting of experimental

data or computed data from higher-level methods. Then, the decay law (72) is used to

predict the coupling values at various distances.

Correlation with the overlap The decay law (72) captures well the long-range dis-

tance regions where specific shapes of donor/acceptor centers can be disregarded. How-

ever, structural orientations together with localization of the molecular orbitals partic-

ipating in the given electron transfer process are important. These effect are naturally

described by overlap integrals

Sab = ⟨ψa|ψb⟩ (73)

Therefore, more accurate empirical estimates do not fit the coupling values to distances

but their assume their linear dependence on the overlaps [256,269]

Hab = CSab (74)

The scaling factor C is obtained by fitting of accurate quantum-chemistry or density-

functional-theory data.

For example, in the analytic overlap method (AOM) [269], which is used for non-

adiabatic charge-transfer studies of organic crystals, the factor C = 1.819 eV is used,

obtained by fit to 43 data points. This factor is applicable on π-conjugated hydrocarbon
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homo-dimers, where the overlap Sab is evaluated for the diabatic states projected to

optimized minimal Slater basis set. Recently, the AOM was extended to polyaromatic

hydrocarbons with heteroatoms [270], and it is used for simulations of charge propagation

in organic semiconductors [84,267].

3.3.2 Generalized Mulliken-Hush (GMH) method

The Mulliken-Hush method [49, 271] is based on the two-state model and it relates the

electronic coupling element Hab to the adiabatic transition moment µ01:

|Hab| =
|µ01|∆Eab

|∆µab|
(75)

where ∆Eab = Eb − Ea is the diabatic energy gap and ∆µab = µb − µa is the difference

between the diabatic dipole moments. The diabatic energy gap can be approximated

by excitation energy ∆E01 = hν01, ∆µab is well described by the distance between the

two charge centers eRab, and the transition moment is directly related to the oscillatory

strength, which is proportional to the corresponding absorption peak area. Therefore, the

Mulliken-Hush expression is often used to extract the coupling values from the spectro-

scopic measurements. [49,272,273]

In generalized Mulliken-Hush (GMH), unitary transformation diagonalizing the dipole

moment matrix is applied to the adiabatic two-state Hamiltonian. [274,275] This leads to

expression

|Hab| =
|µ01|∆E01√

(µ00 − µ11)2 + 4(µ01)2
(76)

where the diabatic electronic coupling is related only to adiabatic energies and transition

dipoles. The relation can be thus easily implemented in standard quantum chemistry

codes where the adiabatic quantities are directly available (note that for the self-exchange

ET in homo-dimers the GMH expression reduces to the half-splitting formula (69)).

Therefore, the GMH method is often used for high-level calculations of electronic cou-

pling elements between selected states of small molecules. [253–256,276–281]

Fragment charge differences When the charge transitions lead to well separated dia-

batic states ψa, ψb, with negligible overlap Sab, it is more natural to express the electronic

coupling in terms of charges localized on the donor/acceptor centers rather than dipole

moments. Such approach is known as fragment charge differences (FCD) [282] and the
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expression for the coupling elements is formally analogous to GMH

|Hab| =
|∆q01|∆E01√

(∆q0 −∆q1)2 + 4(∆q01)2
(77)

Here, the ∆q0 and ∆q1 are the charge differences between the donor and the acceptor

regions in the ground and first excited states, respectively, while the ∆q01 denotes the

adiabatic cross term. These charges can obtained from the expansion coefficients of elec-

tronic states in localized basis sets which are readily available in quantum chemistry codes,

or by projection to donor/acceptor regions in plane wave codes.

Fragment energy differences The idea of obtaining the coupling elements by diag-

onalizing dipole and charge matrices in GMH and FCD methods, respectively, was later

used also for computing a Coulomb coupling in excitation energy transfer (EET) [283].

The adiabatic electronic Hamiltonian is now transformed by unitary matrix diagonalizing

the matrix of transition density differences between donor/acceptor regions for them→ n

excitation. Again, this leads to the coupling expression formally analogous to GMH

|Hab| =
|∆xmn|∆Emn√

(∆xm −∆xn)2 + 4(∆xmn)2
. (78)

This method is known as fragment energy differences (FED) [283, 284] and it has been

used in various studies of photoexcitations in biomolecules [285–288] and organic semi-

conductors [289–291].

3.3.3 Constrained density functional theory (CDFT)

Conventional DFT exchange-correlation functionals suffer from self-interaction error [292–

295], which leads to artificial delocalization of adiabatic Kohn-Sham (KS) states. Con-

struction of localized diabatic states is thus almost impossible in DFT without special opti-

mization techniques. In the so-called constrained density functional theory (CDFT) [296–

298], the localization of the charge density in a desired region is forced by applying a charge

constraint Nc on the system as an integral of charge density n(r) weighted by a function

w(r) defining the donor and acceptor regions,

Nc =

∫
w(r)n(r)dr. (79)
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The Lagrange multiplier technique is then applied to add this constraint to the energy

functional

W [n, V ] = E[n] + V

(∫
w(r)n(r)dr −Nc

)
. (80)

The resulting new functional W [n, V ] is minimized with respect to the charge density n

and maximized with respect to the Lagrange multiplier V . The latter can be interpreted

as the external potential needed to enforce the constraint Nc.

To obtain the electronic coupling matrix element, the diabatic states are chosen to be

the Kohn-Sham determinants ψa, ψb resulting from the constrained energy minimization

described above. Within this approximation the two-state Hamiltonian matrix has the

following form

H′ =

(
Ea FbSab − VbWab

FaSab − VaWab Eb

)
. (81)

While there are diabatic energies Eα = ⟨ψα| ĤKS
α |ψα⟩ on the diagonal, the off-diagonal

terms contain diabatic potential energies Fα = ⟨ψα| ĤKS
α + Vα

∑
iw(ri) |ψα⟩ involving the

interaction with the external potential, diabatic-state overlap Sab = ⟨ψa|ψb⟩, and the

weight function matrix element Wab = ⟨ψa|
∑

iw(ri) |ψb⟩. The Hamiltonian matrix is

then transformed into the orthogonal diabatic states, which are eigenstates of the weight

matrix W. These are obtained by solving the general eigenvalue problem

W · V = S · V · L, (82)

where the diagonal L matrix contains the eigenvalues and the unitary matrix V is con-

structed from the generalized eigenfunctions of W. Finally, the desired Hab elements are

the off-diagonal elements of the transformed Hamiltonian H = V† ·H′ · V.

3.3.4 Fragment orbital density functional theory (FODFT)

The opposite approach to CDFT represent fragment orbital density functional theory

(FODFT) [299–302] where the KS wavefunctions are calculated on isolated donor/acceptor

fragments in their reduced forms, neglecting their mutual interaction. The diabatic states

are constructed from these donor/acceptor orbitals. Assuming that there are N occu-

pied orbitals of reduced donor {ϕ1
D, . . . , ϕ

N
D} and M occupied orbitals of reduced acceptor

{ϕ1
A, . . . , ϕ

M
A } then we can write the approximate diabatic states as Slater determinants
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of the combined N +M − 1 states

ψDA
a = [(N +M − 1)!]−1/2 det

[
ϕ1
D, . . . , ϕ

N−1
D , ϕ1

A, . . . , ϕ
M
A

]
(83a)

ψDA
b = [(N +M − 1)!]−1/2 det

[
ϕ1
D, . . . , ϕ

N
D , ϕ

1
A, . . . , ϕ

M−1
A

]
(83b)

for the case of D− + A → D + A− electron transfer. Because the KS Hamiltonian is

constructed from one-particle state-dependent operators ĤKS
α =

∑N+M−1
i ĥKS

α,i and the

diabatic-state determinants differ only in the highest occupied orbitals, the electronic

coupling element is according to the Slater-Condon rules equal to the integral over these

two orbitals only [303]

Hab =
〈
ψDA
a

∣∣ ĤKS
b

∣∣ψDA
b

〉
=
〈
ϕN
D

∣∣ ĥKS
b

∣∣ϕM
A

〉
. (84)

The complementary elements Hab and Hba can in principle differ in asymmetric charge-

transfer systems, where the donor/acceptor fragments are not identical, and their average

is then taken as the resulting electronic coupling matrix element.

3.3.5 Projector-operator based diabatization (POD)

All the computational approaches for the coupling calculations reviewed above are de-

signed for single-electron transfer between the electron donor and acceptor molecules.

However, to investigate electron transfer on heterogenous interfaces with solid-state sur-

faces, like in electrochemistry or nanoelectronics, efficient and accurate calculation of

all the coupling elements between the surface and molecular states is needed. For this

purposes, the projector-operator based diabatization (POD) method was developed [304].

The POD method constructs the localized charge states from the Kohn-Sham (KS)

adiabatic states

Ĥ |ψi⟩ = ϵi |ψi⟩ , (85)

which are obtained by standard SCF calculations. Without loss of generality, the adia-

batic states can be represented in an orthonormalized basis set of atom-center localized

functions {ϕi}. Partitioning the system to donor/acceptor fragments, the Hamiltonian

matrix can be reordered to block structure

H̃ =

(
H̃DD H̃DA

H̃AD H̃AA

)
. (86)

The desired localized charge-transfer states are obtained by diagonalization of the diagonal
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blocks, H̃αα (α = D,A), while the off-diagonal blocks are transformed correspondingly:

H̄αα = U†
α · H̃αα · Uα, (87a)

H̄αβ = U†
α · H̃αβ · Uβ. (87b)

By this unitary transformation the system Hamiltonian is transformed to the following

form

H̄ =

(
H̄DD H̄DA

H̄AD H̄AA

)
=



ϵD,1 . . . 0
...

. . .
... H̄DA

0 . . . ϵD,N

ϵA,1 . . . 0

H̄AD
...

. . .
...

0 . . . ϵA,M


. (88)

While there are N donor and M acceptor one–electron energies ϵα,i of diabatic states

on the main diagonal, the off-diagonal blocks H̄αβ contain electronic coupling elements

between the corresponding states.

The POD method was implemented [87, 305] by the author of this thesis to CP2K

software package [306–308] and its accuracy was assessed on the HAB7−, HAB11, and

HAB79 data sets [253, 254, 256]. For the Kohn-Sham calculations performed with range-

separated hybrid functionals such as LRC-wPBEh [309–311] and wB97XD [312,313], the

method provides electronic coupling values in excellent agreement with high-level ab initio

calculations, giving a mean relative unsigned error of ∼5%. The procedure was shown

to be less accurate for large numerical basis sets, however, the accuracy is regained in

the POD2L variant [314]. The method was later employed as a reference for the AOM

parametrization [269,270] and used for studies of electron transfer kinetics in multi-heme

proteins [68,72,201,315] and their heterogeneous junctions [36].

3.4 Electron hopping simulations

The key factors for electron-hopping simulations are the free energy difference ∆G between

the D/A pairs, the reorganization free energy λ, and the electronic coupling Hab. These

determine the rate constants (6) entering the master equations (8).
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Cluster models The free energy differences are related to experimentally measurable

redox potentials E by the Nerst equation [109]

E = E0 − ∆G−∆G0

nF
(89)

where F is the Faraday constant, ∆G0 denotes the free energy change in the standard

state (concentrations 1 mol/l, pressure 1 atm, temperature 25 ◦C), and E0 is the stan-

dard potential. The experimental redox potentials are referenced to standard hydrogen

electrode (SHE), which has the absolute potential ∼4.44 V [316].

Computationally, the redox potentials are often computed on cluster models of the

studied D/A pairs [317–325] These models often utilize the continuous screening approx-

imation of the surrounding environment based on the Poisson equation, usually referred

as implicit solvent [326–331]. The curvature of the free energy surfaces, i.e. the reorgani-

zation free energy, is typically estimated from ionization energies evaluated on the D/A

sites, which is the procedure known as a four-point scheme [332–334].

Extended models The cluster approaches are performing well for D/A pairs in solu-

tion, however, they tend to be inaccurate for the biomolecular electron transfer. The redox

sites in biomolecules are typically restrained by steric effects and influenced by oriented

intrinsic electric fields induced by the surrounding molecular environment, which cannot

be captured by implicit solvent models. However, the localized nature of the hopping

electron-transfer mechanism allows application of the hybrid computational approaches

such as quantum-mechanical / molecular mechanical (QM/MM) method [335–341] or

perturbed matrix method (PMM) [342–346], where the redox sites are treated at higher

level of theory than the rest of the molecules. At this level, the free energies can be esti-

mated from optimized structures like in the cluster models or evaluated by the molecular-

dynamics techniques reviewed in Sec. 3.2 [347–354].

However, in the electron-transfer studies, the reaction coordinate or collective variable

used for the free energy calculations, can be set as the vertical ionization energy gap [252]

∆E = EOx(R
N)− ERed(R

N) (90)

where RN = {R1, . . . ,RN} denotes the coordinates of the N -particle molecular system.

The free energy profile of the state M = {Red,Ox} is then

A(∆E ′) = −kBT ln
〈
δ(∆E(RN)−∆E ′)

〉
M

(91)
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fulfilling the linear free energy relation

AOx(∆E)− ARed(∆E) = ∆E (92)

The reorganization free energy is directly related to the variance of the energy-gap distri-

butions σ2
M = ⟨(∆E − ⟨∆E⟩M)2⟩M

λvarM =
σ2

2kBT
(93)

When these distributions are Gaussian, the free energy curves have parabolic shapes,

following the Marcus theory, and the linear response approximation can be applied in the

thermodynamic integration. This significantly simplifies the calculations, because in the

linear-response regime the free energy change and the reorganization free energy are fully

determined by the mean vertical energy gaps at the initial and final states

∆A =
1

2
[⟨∆E⟩Ox + ⟨∆E⟩Red] (94)

λSt =
1

2
[⟨∆E⟩Ox − ⟨∆E⟩Red] (95)

This approach have been successfully applied to study electron transfer in various redox

active biomolecules, in particular metalloproteins [11,100,355–358].

3.5 Electron tunneling calculations

The tunneling current through molecular junctions are usually computed by NEGF tech-

nique (Sec. 2.2.2), while Landauer-Büttiker formalism in Breit-Wigner approximation

(Sec. 2.2.1) can be applied to larger biomolecular junctions. Nevertheless, all approaches

require full quantum treatment of the model.

Here, we focus on the latter case of large junctions involving biomolecules with thou-

sands of atoms, for which we developed the state-of-the-art computational procedure [36,

41]. After preparing the junction structure by molecular dynamics techniques, the project-

ion-operator diabatization (POD) method [87], implemented in CP2K software package

by our group, is employed to localize Kohn-Sham (KS) DFT electronic states on the sys-

tem fragments (left electrode L, scattering region S containing the molecule, and right

electrode R). The method also provides the electronic coupling elements Hmj between

metallic states m and scattering states j.
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Localization Technically, the KS Hamiltonian is transformed to orthonormalized basis

set of atom-center localized functions {ϕi} and rearranged to the following block struc-

ture [36, 41]

H̃ =

 H̃LL H̃LS H̃LR

H̃SL H̃SS H̃SR

H̃RL H̃RS H̃RR

 (96)

and then transformed to the following form by series of block diagonalizations H̄µµ =

U†
µ · H̃µµ · Uµ and transformations H̄µν = U†

µ · H̃µν · Uν , µ, ν ∈ {L, S,R}

H̄ =



ϵL,1 . . . 0
...

. . .
... H̄LS H̄LR

0 . . . ϵL,NL

ϵS,1 . . . 0

H̄SL
...

. . .
... H̄SR

0 . . . ϵS,NS

ϵR,1 . . . 0

H̄RL H̄RS
...

. . .
...

0 . . . ϵR,NR



(97)

The diabatic state energies are located on the main diagonal, while the off-diagonal blocks

contain the electronic coupling elements. In practice, the H̄LR blocks are not evaluated

because the direct tunneling between L, R electrodes is not considered.

Band alignment The DFT calculations are performed at GGA level, which can rel-

atively well describe both the metallic and molecule states. However, due to the self-

interaction error and the lack of image-charge interactions, the molecular states are in-

correctly places with respect to the Fermi level EF of the metal electrodes in GGA.

Typically, the valence band edge, i.e. molecular HOMO, is aligned to EF , although in

reality there should be offset between these states at the bio/metallic interface. We use

the DFT+Σ [115,121,359] approach to correct these deficiencies.

In general, each molecular orbital energy ϵS,j deviates from the accurate reference

value ϵ0S,j by an energy shift ΣS,j. In DFT+Σ this shift is decomposed to

ϵΣj
= ϵS,j + ΣS,j (98)

ΣS,j = Σ0
S,j + Σpol

S,j, (99)
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where Σ0
S,j is the self-interaction-error correction, while Σpol

S,j stands for the polarization,

image-charge correction.

The self-interaction error is responsible for the HOMO-LUMO gap underestimation in

GGA. To obtain the correct energies of HOMO and LUMO, the optimally tuned range-

separated hybrid functionals (OT-RSH) [360–362] are applied on selected parts of the

system. On the contrary, the incapability of DFT to capture the image-charge interactions

is exhibited by the lack of interfacial state renormalization, i.e. the HOMO-LUMO gap

narrowing. The image-charge potential between two metal planes is given by the following

series

Vimg(z) =
q

4πϵ0

∞∑
n=−∞

(
1

|z − 2nd− z0|
− 1

|z − 2nd+ z0|

)
, (100)

where q is the charge of the particle and d is the distance between the two surface planes.

The offset z0 is obtained by the fitting of Vimg to exchange-correlation potential VXC

obtained from DFT. Then, the polarization corrections can be obtained by integration of

the given molecular orbitals ψS,j in the image-charge potential

Σpol
S,j = q

∫
V

|ψS,j(r)|2Vimg(r)dr
3 (101)

Obviously, the DFT+Σ is applicable only on weakly interacting systems where the frontier

orbitals are not hybridized with the metallic state.
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4 Methodology development

4.1 Double-QM/MM method

Conventional QM/MM techniques partition the system to the inner part, described at

QM level of theory, and the outer part parametrized by a MM potential. Therefore,

when applied on the ET processes, the method is limited to the half-reaction description

where either the oxidation of an electron donor or the reduction of an electron acceptor

is simulated.

D → D+ + e, A+ e→ A− (102)

As a result, the donor and acceptor do not interact with each other and the ET process

is studied in the so-called dilute limit.

However, the rate of the electron transfer reaction is of course distance dependent. The

free energy barrier increases with the growing distances due to the reorganization free

energy dependence on the donor–acceptor distance. On the other hand, the electronic

coupling between the two redox centers is exponentially decaying with the increasing

distance. These effects need to be considered when the full ET reactions at finite distances

are investigated

D + A → D+ +A− (103)

This is typical for example for the intra-molecular ET where the distance between the

two centers is restrained by the bridging chemical groups and surrounded molecular en-

vironment.

Although the full reactions are conceptually easier to investigate because one does not

need to deal with the unknown electrochemical potential of solvated electron, in practice,

stabilization of a desired diabatic charge states is computationally difficult. At full QM

description, constrained density functional theory (CDFT) can be applied, however, this

approach is limited by the size of the system and chemical properties of the donor and

acceptor regions. For example, high-spin states or more complicated electronic structures,

like anti-ferromagnetic configuration of the iron-sulfur clusters present in many important

metalloproteins, cannot be maintained by CDFT.

Therefore, we developed the so-called multiple-QM/MM technique with generalized

QM/MM partitioning where more than one inner part can be defined within the same

outer part [363]. For the case of two inner parts (double-QM/MM, see Figure 6) the

method can be applied to the full ET reactions. Thanks to the chosen partitioning with

well defined boundaries of the inner parts, the charge density is naturally localized in
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Figure 6: Schematic illustration of QM/MM partitioning: (a) conventional QM/MM
where the whole system S is divided into the QM inner part (I) and the MM outer part
(O), (b) the double-QM/MM method with two inner parts surrounded by the common
outer part. The charge layers (CL) used for electrostatic embedding are shown as green
regions.

desired regions and its spin state can be easily controlled. The method is limited to

the outer–sphere description where the two redox regions are separated and therefore

applicable on non-adiabatic electron hopping described by Marcus theory.

The method was implemented in the QMS software [364], which is a program interface

for coupling QM and MM software to perform QM/MM calculations, coded by the author

of the thesis. QMS is based on the subtractive QM/MM scheme where the MM energies

of inner parts are substituted by the QM energy contributions

EQM/MM(S) = EMM(S) +
N∑
i=1

[EQM(Ii)− EMM(Ii)] . (104)

Several optimization methods including steepest descent, conjugate gradient, and L-BFGS

algorithms, are implemented in QMS together with molecular dynamics (MD) based on

velocity Verlet integration technique. Available stochastic (Andersen, Langevin) and de-

terministic (Berendsen, Nose-Hoover) thermostats allow temperature control needed for

simulations in the canonical NVT ensemble.

The performance of the d-QM/MM method was demonstrated on the cross-ET reac-

tion between iron and ruthenium cations in solution [365]

Fe3+ +Ru2+ → Fe2+ +Ru3+. (105)

The first hydration shells of the cations were included in the inner parts, forming the hexa-

aqua metal complexes. These were treated at DFT level of theory using hybrid functionals,

core pseudopotentials and Pople-type basis sets while the explicit water solution was

described by classical TIP3P model. Molecular dynamics at d-QM/MM level was run to

sample the vertical ionization energies at initial and final states to compute the Marcus free
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Figure 7: The model of Ru2+/3+ and Fe2+/3+ cations exchanging electron in the aqueous
solution with Cl− counterions. Reconstructed free energy surface A(RDA,∆E) is shown
on the right-hand side where the minimum free energy path is shown by a thick black
arrow while the dotted lines below 10 Å indicate the region where crossing the barrier is
probable.

energy surfaces at different donor–acceptor distances. We showed that the d-QM/MM

method converges to conventional QM/MM results at the dilute limit, while the free

energy barrier is considerably lowered as the interaction distance is shortened.

4.2 Projector operator-based diabatization (POD) method

The POD method, described in Sec. 3.3.5, was originally designed for quantum dynamics

studies of electron transfer on heterogeneous interfaces of organic molecules with semicon-

ductor surfaces [304]. However, we implemented the method into to the CP2K program

package [307], and demonstrated in Ref. 87 and 305 that it can also be used for efficient

and accurate coupling element calculations in organic-molecule pairs. For example, the

coupling element between HOMO and LUMO frontiers in cationic benzene dimer (see

Fig. 8) is known to be 435.2 meV at plane interaction distance 3.5 Å and it decays expo-

nentially with the rate 2.85 Å−1. Using the POD method on Kohn-Sham wavefunction

obtained by a popular hybrid range-separated functional wB97X [313], nearly identical

values 429.5 meV and 2.82 Å−1, respectively, are obtained [305].

Further, we evaluated the performance and accuracy of the POD method on the

HAB11 database of organic homo-dimers (see Fig. 9), which was designed for benchmark-

ing electronic coupling computational level [253]. As other DFT-based methods, such as

CDFT or FODFT, also POD accuracy is strongly dependent on applied functional [87].

As in the other cases, the best performance exhibit the hybrid functionals with mixture

of DFT and Hartree-Fock (HF) exchange, although the coupling magnitude increases

with the fraction of HF exchange in contrast to other approaches where the trend is op-
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Figure 8: Illustration of electronic interaction (coupling element) between the highest
occupied molecular orbital (HOMO, red) and the lowest unoccupied molecular orbital
(LUMO, blue) in the co-planar cationic benzene dimer (charge +1).

Figure 9: The HAB11 set of organic homo-dimers with +1 positive charge. The database
contains high-level quantum-chemistry reference values for the electronic coupling ele-
ments at four inter-molecular distances (3.5, 4.0, 4.5, and 5.0 Å), and the corresponding
exponential decay β factors.

posite [87, 253]. Naturally, the range-separated hybrid functional, where the Coulomb

potential is split into short and long-range parts to capture both the correct chemical

character of organic bonds as well as assymptotics of charge density at large distances,

are the most suitable for the coupling calculations. The POD methods was shown to have

only 5% mean unsigned relative error on HAB11 set compared to high-level, and much

more expensive, quantum chemistry techniques [305].

Later, the method was used as a reference in analytic overlap method (AOM) [269,

270], an ultrafast electronic coupling estimator for non-adiabatic molecular dynamics

(NAMD) simulations. For that purposes, new HAB79 dataset was designed, containing

921 dimer configurations of organic dimers typical for molecular-crystal electronics [256].

This methodology was then successfully used to simulate polaronic charge transport in

organic crystals [84, 267] using the NAMD technique known as fragment orbital-based

hopping (FOB-SH) [82,265,366].

Besides the organic pairs, the POD method can be applied to such a complex systems

as semiconductors with defects or heterogeneous interfaces of molecules with solid sur-

faces [87] (see Fig. 10), where the other electronic-coupling calculations methods reviewed

in Sec. 3.3 are hardly, if at all, applicable. Finally, the post-processing nature of the

method and relatively simple evaluation of coupling elements between all the states be-
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(a) (b) (c)

Figure 10: Illustration of applicability of the POD method for electronic coupling element
evaluation between (a) semiconductor defects, (b) organic molecules on semiconductor
surfaces, (c) and organic molecules on metal surfaces. Localization of Kohn-Sham HOMO
is shown by green/orange lobes for each system.

tween considered system parts makes the POD method suitable also for transport studied

on molecular junctions between metallic contacts [36,41].

4.3 Gold-sulfur interactions in GolP-CHARMM force field

Organic molecules and biomolecules can suprisingly often get into contact with solid

surfaces. Besides obvious interactions of biological tissues with metal tools, jewelry, and

implants, various bioelectrochemical measurements and nanobioelectronic components are

directly utilizing properties of such heterogeneous interfaces [173,367–370]. Biomolecules

can be interacting weakly with the surfaces via the so-called physisorption, however, more

often they are chemically attached to the surface to prevent the undesired lateral move-

ments. This process, known as chemisorption, can proceed either directly, for example

by direct binding of sulfate chemical groups to gold surfaces, or indirectly via suitable

organic linkers [371–373].

Regarding the charge transport, interfaces of biomolecules with semiconducting metal-

oxide surfaces or conducting metal surfaces are typically studied. While the metal-oxide

surfaces often exhibit complex ridged structures and strong hydrogen bonding interactions

to the solution, the metal surfaces are usually flat and weakly interacting [374–380].

However, due to the high polarizability of metals, image charge interactions need to be

taken into account in simulations of biomolecular adsorption to correctly predict the

adsorption structures and interactions energies [381, 382]. To capture these effects on

gold surfaces, popular in nanobioelectronics, Iori et al. [383, 384] developed a polarizable

GolP force field, which is parametrized for quantitative simulations on organo-metallic

interfaces.
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(a) (b)

Figure 11: Structure of the model gold slab in (a) top and (b) side views with the
chemisorbed methanethiolate as described in GolP-CHARMM force field. The gold atoms
are shown as orange balls, surface interface sites are in blue, and the dipole charges in red.
The binding-site atom and interface types, where the molecule is bonded, are highlighted
in yellow and magenta, respectively.

(a) (b)

Figure 12: Potential energy profile of (a) the Au-S bonding and (b) rotation around the
Au-S bond for cysteinethiolate on the gold surface parametrized in GolP-CHARMM. The
reference vdW-DF profiles are indicated by solid black curves, while the dashed green
curves show the potential obtained by the original GolP-CHARMM without the modified
binding-site types.

The force field was later combined with popular and well-tested CHARMM27 param-

eter set, designed for biomolecular simulations in aqueous solutions. The resulting GolP-

CHARMM force field [385, 386] became very popular for simulations of biomolecules, in

particular proteins, with flat gold surfaces [250,387–390]. However, it allowed to simulate

only physisorbing processing, without chemical anchoring of the molecules to the surface.

Therefore, we extended the force field by introducing new atomic types for describing

Au-S binding sites [391], as shown in Fig. 11.

Besides initial benchmarks of the Au-S interaction potentials on the small sulfur-

containing molecules like methanecysteine (c.f. Fig. 11), we focused on accurate descrip-

tion of cysteine binding to gold surfaces [391]. The cysteine residues are often utilized

to anchor proteins on gold as they are naturally present in the protein structure either

as single thiols or disulfide (S-S) bridges [392–395]. In the latter case, the S-S bonds are

known to spontaneously dissociate near the gold surfaces and the resulting thiolates then
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(a) (b)

Figure 13: Response of bulk water to applied external electric fields, as obtained from
the ab initio molecular dynamics. (a) Changes in the mean number of hydrogen bonds
per water molecule, and (b) response of the libration and stretching vibrational spectral
modes (figures from Ref. [396]).

form the Au-S bonds.

We employ the GolP-CHARMM force field to prepare models of biomolecular junc-

tions, experimentally studied by STM and EC-STM methods [36, 41]. In our pioneering

study of small-tetraheme cytochrome (STC) junction, we demonstrated that this force

field can well describe such complex structures including chemisorbing interactions [36].

The predicted adsorption structures are in good agreement with experimental AFM

scratching measurements of STC monolayer thickness on Au(111) substrates. Moreover,

the simulated electronic currents on such structures are in accord not only with the I-V

measurements but also with EC-STM probing of distance decay.

4.4 Ab initio non-equilibrium MD with electric fields

In electrochemical measurements or molecular electronic devices, geometries and elec-

tronic structures are affected by external electric fields induced by applied bias poten-

tials. To investigate these effects by atomistic computer simulations, we modified the

CP2K software package [307] to implement the time-dependent external electric fields in

semi-classical fashion, as described in Sec. 3.2.4. The electric-field intensity in Berry phase

formulation [125, 240] is uniform over the simulation cell treated at DFT level, however,

its magnitude is harmonically varying in time with given angular frequency [396]. The

modified code thus allows simulations of molecular systems not only under static but also

oscillatory external electric fields.

Nevertheless, due to the flexible nature of the most of the molecular systems, espe-

cially biomolecules in solutions, molecular dynamics and statistical techniques need to

be employed to study even the effects of static fields. On the other hand, the DFT-
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Figure 14: Dipolar response of the ice VII within 100 ps first-principles dynamics affected
by oscillating electric field of RMS magnitude 0.2Å and frequencies 50, 100, 250, and
500 GHz. The detected collective dipole is shown in red while the fitted harmonic functions
are in blue.

based first-principles MD simulations are computationally very demanding, applicably

on relatively small systems only, and limited to short simulations times (typically tens

of picoseconds), insufficient to capture the field responses with longer relaxation times.

Therefore, we combined the external field implementation with the so-called second gen-

eration Car-Parrinello dynamics, developed by Kuhne and Parrinello [397, 398]. This

dynamics is in fact based on Born-Oppenheimer approach, however, the instead of full

SCF solution of Kohn-Sham equations at each time step, the new solution is estimated

by the always stable predictor-corrector (ASPC) method [399], iteratively improved up to

pre-set accuracy, and modified by stochastic Langevin thermostat ensuring the long-time

stability. In this way, these first-principles MD simulations can be extended to hundreds

of picoseconds [396,400–402].

We demonstrated the performance of this approach on bulk water simulations [396].

Using the correlation-corrected optB88-vdW density functional [403–405], which can well

describe the liquid structure of water [406–408], we carried out the room-temperature

NEMD simulations with static and oscillatory electric fields of various magnitudes and

frequencies. The 100 ps trajectories were obtained, long enough to capture response

effects of fields with frequencies 50 GHz and higher. The statistically analyses applied

on these trajectories then proved that even the fields of 0.05 V/Å intensities, which are

small compared to intrinsic field magnitudes in bulk water (1.5 – 2.5 V/Å [409]), affects

the structure of liquid water. While the static fields tend to increase the water ordering,

which is exhibited by larger number of hydrogen bonds (see Fig. 13a), the oscillatory field

influence the molecular vibrations at both intra- and inter-molecular levels (Fig. 13b).

Later, we applied the time-varying electric fields to study the dielectric properties of
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ice VII, which is a high-pressure phase of water [410,411] that can be found on some Solar-

system exoplanets [412, 413]. In contrast to standard hexagonal ice, the dipole moments

of individual molecules are ordered along the external field direction and the structural

constraints considerably hinder their thermal fluctuations. Therefore, the applied oscilla-

tory electric fields at first-principles level of theory can probe the electronic polarization

by tracking the responses of the collective dipole of such system, as shown in Fig. 14 [402].

In contrast to liquid phase, these electronic changes have little effect on the vibrations,

although the static fields can promote the splitting of the symmetric and antisymmetric

stretching modes.
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5 Applications to biologically relevant systems

5.1 Ergodicity of ET in redox proteins

One of the key assumptions of the Marcus theory, which is usually employed as the theo-

retical framework for computational studies of electron-transfer events in redox proteins,

is the ergodicity. The transfer events must be divided by long enough time intervals so the

protein structure and the surrounding aqueous solution can adapt to the changed electro-

static potential and reach the equilibrium state. Only in such case, different structural

configurations are populated in accord with the Boltzmann distribution, the processes

follow exponential dynamical behaviour, and the Marcus theory is valid. [11,46,47]

Typically, the ergodicity is violated in systems with high transfer rates where the

transient times are on femtosecond timescales, for example, in rapid charge flow in photo-

systems or artificially photosensitized proteins. [97, 98, 414–418] During such short times

these proteins do not fully relax to the equilibrium and the transferred charge thus moves

to another site from the non-equilibrium, high-energy state. This effectively reduces

the reorganization free energies and free energy barriers to lower values that would be

predicted by the Marcus theory, and modified theoretical descriptions were developed

to capture these situations. [94, 419, 420] However, when the electronic coupling is low

compared to the barrier height, the hopping mechanics can be still applied using the cor-

rections for the reorganization free energy based on the spectral decomposition. In other

cases, non-adiabatic molecular-dynamics approaches need to be applied. [63,67,421,422]

On the other hand, proteins, due to their soft-matter nature, might undergo relatively

slow motions and structural changes similar to glass transitions, which could exceed nano-

or even microsecond timescales. As the typical electron-transfer evens proceed in times

less then 1 ns, the ergodicity could not be assumed in such proteins. This problem was

theoretically investigated by Matyushov [90,95,99,423–428], who generalized the Marcus

theory by introducing reaction reorganization energy λr = (λSt)2/λvar < λSt. In contrast

to Marcus theory, the separation of free energy surfaces does not correspond to their

steepness and the free free energy barrier lower lowered (c.f. Fig. 15a). Based on this

behavior, Matyushov formulated a hypothesis that the slow motions of redox proteins are

utilized by Nature to optimize the electron-transfer efficiency in redox chains.

However, some of the Matyushov’s predictions are rather controversial. For exam-

ple, significant reduction of the cytochrome c reorganization free energy to 0.57 eV due

to the alleged large discrepancy between the λSt and λvar was reported. Although this

value is close to the mean experimental value from the aqueous-solution measurements,
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(a) (b)

(c) (d)

Figure 15: (a) Effect of the ergodicity violation on the Marcus free energy curves. Due to
the insufficient relaxation, the Stokes λSt is lower that variational λvar, which is exhibited
by shift of the free-energy parabolas and lowering the barrier (red) comparing to the
Marcus theory (blue). (b) Time series of vertical ionization energies ∆E obtained by
PMM on Cytochrome c and convergence of λ. (c) Comparison of λ obtained by different
computational approaches with experimental value for the Cytochrome c. (d) The same
comparison for polarizable force fields.

0.6 eV [5, 429–432] and lower than typical reoganization free energies of redox proteins

(0.7–1.2 eV [11]), slow glassy-like transition in the cytochrome c structure are improba-

ble. Cytochrome c is a small globular protein, formed by a peptide chain of 104 amino

acids folded around the redox-active heme cofactor [433], for which standard behaviour in

accordance with the Marcus theory could be expected. Therefore, we reinvestigated the

reported non-ergodic effects by extended computer simulations based on long-time MD

and sampling in various potentials. [434,435]

We compared two hybrid-potential approaches, namely QM/MM and PMM, applied

on cytochrome c in two different partitioning to schemes and biomolecular force fields to

eliminate any computational artifacts. Nevertheless, the λvar consistently converging to

λSt was observed in all the cases for both redox states (c.f. Fig 15b here and Table 1

in Ref. 434). The calculated reorganization free energies are overestimated compared

to the experimental value (see Fig 15c) due to the lack of electronic polarization in the

standard force fields based where the electronic density distributions are approximated by
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Figure 16: Vertical ionization energy gap (∆EM , M = Red, Ox) series on the reduced
(blue) and oxidized (red) azurin structure adsorbed on a gold surface. Different configura-
tion states corresponding to twists of a peptide loop near the Cu redox site are indicated
by colors (figure taken from Ref. 100).

atomic point charges. Yet, when the polarizable force fields are employed, the λ values are

correspondingly reduced and get into accord with the experimental reference (Fig. 15d).

Therefore, the numerical evidence for the ergodicity-breaking effects was not observed in

the particular case of cytochrome c. [434,435]

However, it does not mean that the non-ergodic effects cannot occur in biology. On

the other, it is quite probable that in more complex and bulky systems, which are typi-

cally composed of several protein domains, for example, photosystem II (PSII), the non-

ergodicity plays a role in tuning of electron-transfer efficiency. [97, 98] Obviously, inves-

tigation of these effects on such extended systems is very difficult and limited by the

computational power, as the systems are large, the required simulation times are long

(> µs), and the electronic polarization should be considered.

Further, the non-ergodic effects may become more significant in protein structures

incorporated in vacuum nanobioelectronic applications. Recently, we investigated reorga-

nization free energy for azurin oxidation on gold surfaces [100], as electron transfer on such

interfaces is being extensively studied by various experimental techniques. [30,35,436–443]

During the extensive MD simulations performed on various azurin structures in vacuum

and on gold interfaces, we observed that the loss of hydration shell leads to destabilization

of relatively flexible peptide loop near the redox site of the protein. The loop flips and

twists on ∼100 ns time scales which effectively increases the reorganization free energy.

However, as the charge transitions through azurin/gold junction proceed on shorter time

scales (∼1 ns), the non-ergodicity can be expected. Nevertheless, the transport properties

on bio/metallic interfaces and especially junctions cannot be always interpreted in terms

of Marcus theory as the coherent tunneling might play dominant role there. [36,41]
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(a) (b) (c)

Figure 17: Stable chignolin conformations under (a) zero-field conditions, (b) static elec-
tric field of 0.02 V/Å magnitude, and (c) oscillating electric field of 0.02 V/Åmagnitude
(r.m.s.) and 2.45 GHz frequency. Probability of the structural transitions is indicated by
the crossing line thickness (figures from Ref. [445]).

5.2 Electric field effects on biomolecules

Electric field, comparing to magnetic component of the electromagnetic (e/m) radiation,

can relatively strongly interact with the molecular structures. Besides the thermal effects

induced by absorption of electric or e/m energy, electron and proton transfer, hydrogen

bonding stimulation or disruption, structural and dynamical responses of biomolecules,

and other events are often consequences of acting external fields. [126] Surprisingly, mi-

croscopic details are not very well known and their investigation were initiated by re-

cently developed state-of-the-art computational and experimental techniques. While the

progress in optimization of ab initio molecular dynamics (AIMD) methods [397, 398] to-

gether with development of Berry-phase formalism [125, 444] allows studying the field

effects in solid state matter at quantum level, advanced experimental measurements like

vibrational sum-frequency generation (VSFG) provide detail knowledge about molecular-

interaction responses to static as well as alternating external fields. [114]

We investigated these effects on chignolin mutant CLN025 [445], which is an artifi-

cial minimal protein structure designed for protein folding studies. Chignolin consists

of 10 amino acids only that form β-hairpin structure, which undergoes relatively rapid

(un)folding transitions between four configurational basins (see Fig. 17a). However, when

the structure is perturbed by weak external static electric fields of magnitude 0.02 V/Å,

the free energy landscape considerably changes and the structure might appear in seven

different configurations (Fig. 17b). These configurations remain (meta)stable even under

influence of time-varying fields of the same magnitude and microwave frequency 2.45 GHz,

however, the transition probabilities changes (Fig. 17c). Obviously, although the equi-

librium chignolin structure is stabilized by hydrogen bonding, the external electric fields

can substantially affects its geometry, and the similar effects can be expected on flexible

parts of large proteins as well.
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Figure 18: Adsorption structures of (a) lysine and (b) aspartic acid on aqueous gold (111)
surface, and (c) response of the adsorption free energies of selected amino acids to external
static electric fields (figures from Ref. [250]).

Next, we investigated the external field effects on amino acids adsorbed to aqueous

gold surfaces [250], focusing predominantly on 20 proteinogenic structures. The amino

acids differ by their side chains, which can have aliphatic or aromatic character, behave as

acids, bases, or neutral molecules in aqueous solutions, and could contain specific chemical

groups such as hydroxyls, amids, thiols, or thioethers. Naturally, acidic and basic amino

acids bear -1 and +1 charge, respectively, in water solutions and respond strongly to the

external fields due to the electrostatic interactions. However, we showed that this response

is surprisingly considerably larger for the positively charged amino acids than for the neg-

atively charged ones, when they are adsorbed to the gold-electrode surfaces (see Fig. 18).

This is effects is caused by different solvation interactions affecting the adsorption struc-

tures [250, 391, 446–448] and it is important for understanding structural field responses

of biomolecules in electrochemical methods like protein film voltammetry [25–28].

5.3 Long-range ET in multi-heme cytochromes

The recently discovered multi-heme proteins facilitating long-distance extracellular elec-

tron transport (EET) in metal-reducing bacteria such as Shewanella oneidensis are bio-

molecules containing well-organized chains of heme cofactors designed by nature for fast

and efficient electron transfer (ET) and electron transport (ETp). Similar to chains of

multi-heme cytochromes found in Geobacter sulfurreducens, these protein can shuttle elec-

trons across the periplasm and outer cell membranes and act as molecular wires [11,449].

To understand the mechanism of these charge transfer processes, series of computa-

tional studies have been performed on two integral proteins MtrF and MtrC located in

the bacterial outer membrane (see Fig. 19a), and on small-tetraheme cytochrome (STC)

known to carry charge in the periplasm [19,68,70,72,103,201,315,450]. The structure of all

these proteins were resolved experimentally by X-ray diffraction methods and their con-

ductive properties are intensively studied by several research groups [20, 21, 69, 451–453].
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Figure 19: Multiheme cytochromes from Shewanella oneidensis : (a) structure of the
MtrFDE transmembrane complex, (b) heme cofactor arrangement in MtrF with indicated
electron-hopping transitions, and (c) three types of heme pair motifs found in MtrF (T-
shaped, coplanar, and stacked). The figure is taken from Ref. 450.

These measurements revealed large number of iron-containing heme cofactors in the cy-

tochrome structures, organized to chains suggesting possible intra-molecular electron-

transfer pathways.

We combined classical molecular dynamics (MD) with density functional theory (DFT),

as described in Sec. 3.4, to investigate why the long-range electron transfer is so efficient

in these multi-heme proteins. Analyzing the redox potentials, reorganization free ener-

gies, and the electronic coupling elements, we discovered that not only iron cations but

also sulphur in cysteine linkages covalently attached to the heme cofactors play the key

roles in the transfer processes [68]. Enhanced charge-density delocalization over the heme

planes and cysteine linkages increases the heme-pair rates by 1-2 orders of magnitude in

STC [68, 315] and similar effect was found also in MtrF and MtrC proteins as well [72].

Large electronic coupling can kinetically compensate the free energy barriers between

cofactors, resulting in large electronic fluxes.

5.4 Charge transfer properties of bio/metallic interfaces

For understanding the electronic charge transfer occurring at heterogeneous interfaces

of biomolecules with surfaces of metal electrodes, detail knowledge of their adsorption

structures and electronic states is needed. However, these are very difficult to predict

computational at quantitative level due to the large structural flexibility of biomolecular

systems and extended sizes limiting the application of accurate quantum approaches.

Therefore, first we analyzed such properties of proteinogenic amino acids only, which

are the basic building blocks of all proteins [250,454]. We employed the polarizable GolP-
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Figure 20: Interaction of proteinogenic amino acids with vacuum gold (111) surfaces:
(a) adsorption energies and distances, electronic-level alignment with respect to the gold
Fermi level EF . The figures are taken from Ref. 454.

CHARMM force field to sample their adsorption structures at gold (111) surfaces, which

we then refined by accurate DFT methods based on vdW-DF functionals. This procedure

allowed us to determine adsorption energies and interaction distances at gold not only for

the natural but also for capped amino acids, mimicing the peptide binding (see Fig. 20a).

Further, we applied the DFT+Σ procedure to establish the electronic-state alignment

between frontier HOMO, LUMO energy levels of amino acids and the Fermi level of gold

electrodes (see Fig. 20b). Knowledge of these state positions is key for evaluating of charge

transfer feasibilities and their mechanisms. Most of the aliphatic amino acids were found

unsuitable for electronic hopping as their frontier levels are far from the Fermi level. The

exceptions are aromatic histidine, and in particular tryptophane, which have high-energy

occupied states suitable for hole transfer.

Then, we started to analyze the gold interface with peptides and proteins. First, we

investigated adsorption interactions of chignolin, the 10-amino acid β-hairpin, that unfolds

and strongly sticks to the aqueous gold surfaces due to the large contain of aromatic amino

acids. Less structural changes at the gold interfaces undergoes insulin, small double-chain

protein containing three disulfide bridges stabilizing its geometry. However, the bridges

can be dissociate at gold surfaces and the two released thiolates form the Au-S bonds

immobilizing the protein structure at the surfaces by relatively strong chemisorption [394,

455–457]

Finally, we studied the gold interactions with azurin [100,358], the blue-copper redox-

active protein often utilized in nanobioelectronic devices (see Fig. 21). Azurin can be

directly immobilized at the gold surfaces via a disulfide bridge, which is naturally present

in its structure [456,458]. The protein lies at the surface, maximizing its adsorption inter-

action by gold contacts with suitable folded β-sheets, while keeping its overall structure ,

and the copper redox site in particular, relatively well preserved. Nevertheless, we showed
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Figure 21: Blue copper protein azurin: (a) crystal structure extracted from Pseudomonas
aeruginosa, (b) chemical structure of the Cu1+/2+ redox site, (c) representative adsorption
structures at gold surface. The figures are taken from Ref. 100.

that the reorganization free energy is practically unchanged at vacuum gold interfaces,

keeping its ∼0.8 eV value known from solution [459] This, together with the large off-

set between the azurin and gold electronic states (∼1.8 eV), makes the electron hopping

unfavourable in azurin-based gold junctions, where the tunneling currents were detected

experimentally.

5.5 Electron transport through protein junctions

Rapid development of single-molecular-junction technologies in recent years and their

applicability to protein junctions allows measurements of electric conductivities on single-

molecular level [42, 44, 370, 460, 461]. This was demonstrated on blue-copper protein

azurin and on small-tetraheme cytochrome (STC) with iron-containing heme cofactors

(Fig. 22a) [35]. Strikingly, the measured conductance of the STC junction is by 3 orders

of magnitude larger than the one detected for azurin although these two proteins have

similar size and shape. Moreover, the experiments suggested coherent electron tunneling

as an undergoing charge transfer mechanism in contrast to incoherent electron hopping,

which is dominant in solvated multi-heme proteins.

Using the state-of-the-art computational procedures (Sec. 3.5), we computed the junc-

tion currects and confirmed the tunneling mechanism [36, 41]. The hole transfer proceed

in the off-resonant regime, flowing through the protein over delocalized heme states and

amino-acid side chains (see Fig. 22c). Presence of these aromatic states, which are rel-

atively high in energy, explains the large difference in conductance of STC and azurin,

where no organic cofactors are incorporated into the protein structure. Interestingly, the

redox states of metal cations were not found important for the conductance, in contrast

to hopping transfer in solutions.

By evaluation of the tunneling currents on STC junction models of different orienta-

tions of sizes, we showed that the current magnitudes decay exponentially, however, due
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Figure 22: Small-tetraheme cytochrome (STC) junction between gold contacts: (a) ex-
perimental setup of the suspended nanowire method, (b) the junction model for DFT
calculations of tunneling currents, (c) one of the dominant conduction channels in the
off-resonant regime. The figures are taken from Ref. 35 and 36.
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Figure 23: Electron transport through multi-heme cytochrome junctions between gold
contacts: (a) schematic diagram of redox state positions in STC junction with indicated
hopping transitions, (b) comparison of incoherent hopping and coherent tunneling current
magnitudes and their distance dependence in the stacked STC junctions. The figures are
taken from Ref. 41.

tot the large density of protein states, the decay factor has a small magnitude of 0.2 Å−1,

ensuring the tunneling over several nanometers. The hopping mechanism was shown to

be uncompetitive due to the large potential decrease at the interface preventing efficient

electron hole injection (c.f., Fig. 23a). However, we predicted a crossover of transport

mechanism from coherent tunneling to incoherent hopping for multi-heme cytochromes

at ∼7 nm (Fig. 23b), in near resonant regime, which could be accessible, for example, by

electrochemical gating.
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6 Other applications

6.1 Donor-acceptor ET reactions in solution

Electron transfer events between redox pairs in solutions are well described by outer-

sphere Marcus theory (Sec. 2.1.1) and typically studied by molecular-dynamics techniques

in QM/MM potentials (Sec. 3.4). However, in the conventional QM/MM description the

reduced and oxidized species are simulated separately, neglecting their mutual interac-

tions, and so limiting to dilute-limit regime [51, 356, 462] Therefore, we developed the

so-called double-QM/MM method (Sec. 4.1), where both species are treated in the same

simulation box and the distance dependencies of the free-energy surfaces can be directly

studied [363].

First we explored the distance dependencies of electron transfer between hexaaqua

Ru2/3+ and Fe2/3+ complexes in water solution (c.f. Fig. 7), where we relied on the linear

response approximation (Eqs. (94) and (95)), which was well justified for the studied

system. Recently, we focused on ferricyanide ([Fe(CN)6]
4−) / ferrocyanide ([Fe(CN)6]

3−)

redox couple [354, 463–467], which often used in electrochemistry as a standard, thanks

to the reversible electron transfer at low concentrations. We investigated the reliability of

the linear response approximation for higher concentrations by reducing the interaction

distance down to touching sphere limit.

The ferri/ferro-cyanide complexes have octahedral symmetry and their frontier HOMO,

LUMO orbitals facilitating the electron transfer are dominated by the iron d orbitals (see

Fig. 24a). Nevertheless, these molecular orbitals are partly delocalized to nitrogens in

cyano groups that effectively increases the Marcus radii of these species. This effect,

together with the stable and very similar configurations [468–471], is responsible for the

relatively low reorganization free energies (1.47 eV, measured by photoemission spec-

troscopy [472]). We reproduced this value by using conventional QM/MM as well as

dilute-limit double-QM/MM calculations (these results were not published yet).

To justify the linear response approximation, we applied the free-energy computational

techniques with Warshel’s energy-gap reaction coordinate [252] to obtained the reorga-

nization free energy directly from the free energy surfaces (see Fig. 24b where both the

free energies and the energy-gap distributions are shown). The linearity is well justified

in the dilute limit (Fe-Fe separation 20 Å, error in free energy 0.01 eV) and well pre-

served down to the touching-sphere limit (7.5 Å, error 0.03 eV). Finally, we combined

the double-QM/MM treatment with polarizable force fields to avoid Pekar-factor based

reorganization free energy corrections for electronic polarizability, and evaluated the elec-
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Figure 24: Ferricyanide / ferrocyanide redox pair: (a) frontier HOMO / LUMO orbitals
facilitating the electron transfer, (b) free energy surfaces obtained by WHAM.

tronic coupling between the redox species by POD method. In this way, we were able to

well reproduce the experimental rate constants from NMR measurements [473].

6.2 Intramolecular redox-state transitions

Resorcinarenes are cyclic macromolecules formed by cyclotetramerization of an aldehyde

and resorcinol [474–476] that are used for chiral host-guest recognition and formation of

supramolecular self-assembled structures [477–481]. These molecules are relatively flexi-

ble, substituents in their meso-positions can flip to different positions, and according to

their relative orientations the resorcinarenes form four configuration types conventionally

labeled as rctt, rccc, rcct, and rtct.

The complexity of resorcinarene dynamics and structural stability is further increased

when the meso-substituent have redox character, i.e. they can be exist in either reduced

or oxidized charge states. Often, hydroquinone and benzoquinone are incorporated in

these molecules, which can undergo intramolecular charge transfer transitions detectable

by characteristic changes in UV/VIS spectra. Simultaneously, the structural changes

induced by the charge transfer, are recognizable by nuclear magnetic resonance (NMR)

techniques.

We investigated such intramolecular charge transfer events on resorcinarenes bearing

four 3,5-di-t-butyl-4-hydroxyphenyl (DtBHP) redox-active groups [476]. As the electron

transfer events are in this case coupled with the proton transfer, the conformational

changes can be controlled by pH of the solution via acidic concentrations. Due to the

resorcinarene symmetries, five different optical patterns, distinguishable by color changes

in visible light region, were observed. The whole system thus represent single-molecular

redox-active photochemical switch that could be utilized as chemosensor.

The redox-active resorcinarenes can be also used for manufacturing molecular rotors.

The rotation dynamics can be initiated/stopped by the oxidation/reduction, respectively,

of the suitable meso-substituents, and further controlled by solvent polarity and temper-
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Figure 25: Comparison of relative rotation of the meso-substituents in resorcinarenes
(left) and fuchsonarenes (right), and the corresponding high field (t-butyl) region of 1H
NMR spectra in acetone at different temperatures (DDQ: 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone). The figure is taken from Ref. 482.

ature. We demonstrated this behavior or DtBHP-substituted resorcinarenes and their

transitions to fuchsonarenes (i.e. oxidized resorcinarenes with hemiquinonoid groups in

diagonal arrangement, see Fig. 25) [482]. In all these cases, we supported the experimental

works by series of classical molecular dynamics simulations and DFT calculations to sug-

gest the best molecular design and interpret the UV/VIS and NMR measurements [483].

6.3 Charge transfer on aqueous semiconductor interfaces

While diamond is a well known insulator exhibiting large gap (∼5.5 eV) between valence

and conduction bands, diamond surface terminated by hydrogen exhibit negative elec-

tron affinity and p-type conductivity [484–486]. This effect can be enhanced by boron

doping and it can lead even to superconductive behavior when the diamond is heav-

ily doped [487–489]. However, at low doping levels, the boron-doped diamond (BDD)

exhibit the semiconductor properties.

BDD became popular material in electrochemistry thanks to its wide potential win-

dow (from -1.25 V to 2.3 V vs. SHE), low background currents, and large stability [490].

Nowadays, it is used, for example, for electrochemical wastewater treatment, water dis-

infection, pH detection, biosensoring, and electrochemical synthesis [491–493] However,

the BDD electrode properties differ based on their surface termination. When the elec-

trodes are prepared by chemical vapour deposition (CVP) technique, they are hydrophobic

and mostly reversible, while after their oxidation, the BDD surfaces exhibit the opposite

properties (compare CV curves in Fig. 26) [494, 495]. Besides the surface termination,

the boron doping concentrations are known to affect the electrochemical response of BDD

electrodes as well [496].

We employed density functional theory (DFT) to predict termination stability (phase
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(a)

(b)

Figure 26: Electronic band alignment and electrochemical response on (a) reduced and
(b) oxidized aqueous interfaces with boron-dopped diamond (BDD).

diagrams) of both diamond and BDD surfaces of (100) and (111) orientations [365]. The

calculations showed that the as-grown electrode surfaces are terminated by atomic hy-

drogen, which is replaced by mixture of hydroxyl groups and carbonyl oxygens, when the

electrodes are electrochemically oxidized. As these groups are forming relatively strong

hydrogen bonds with the nearest hydration layers in solution, in contrast to hydrogen

termination where these kinds of interactions are not preferred, the BDD oxidation leads

to hydrophobic / hydrophilic character change.

On the other hand, explanation of the different electrochemical response of the reduced

and oxidized BDD electrodes, requires analyses of the interface electronic states [365,497,

498]. The hydrogen termination forms the opposite surface dipole than the hydroxyl and

oxygen species, which affects the electrode work functions. The reduced electrodes have

the Fermi level higher than redox potential of ferricyanide / ferrocyanide couple, typically

used to measure the CV curves. Interface electron transfer equilibrating these two level

thus flatten the depletion layer in BDD, which leads to reversible current-voltage response

like at metallic electrodes (see Fig. 26). The level alignment at the oxidized interfaces

is opposite, the band bending over the depletion layer is enhanced, and, as a result, the

electrochemical response is irreversible.

6.4 Catalytic charge transfer processes on metal-oxide surfaces

Metal oxides are popular as surface materials in electrochemistry for their catalytic activ-

ities related to large structural and electronic variability of such surfaces [109]. Transition

metals such as iron, titanium, manganese, zirconium, cobalt, or nickel are often utilized
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Figure 27: Snapshots from the non-equilibrium first-principles molecular dynamics of
hematite / water interfaces under external static electric fields applied parallel or anti-
parallel with respect to the outward surface plane. The hematite slab’s Fe atoms are shown
in light blue and oxygen atoms in orange. Adsorbed non-dissociated water molecules
are highlighted by cyan color, while dissociated hydrogen protons, hydroxyl groups, and
oxygens adsorbed to the surface are depicted in green, yellow, and magenta, respectively.
The figure is adapted from Ref. 401.

for biomolecular sensing [499], recently also in the form of nanoparticles, which have larger

surface areas and richer electronic properties than traditional flat surfaces.

One of the most popular metal-oxide materials in electrochemistry is titania (TiO2),

which is famous for its photocatalytic activity, i.e. splitting of water at the electrode

surface largely enhanced by illumination [500–502]. We investigated the structural wa-

ter confinement at two titania polymorphs – rutile and anatase – by classical molecular

dynamics simulations and studied the effects of applied static and time-varying electric

field on dynamical properties of the interface water layers [377, 503]. In particular, we

investigated response of the hydrogen-bond lifetimes, self-diffusivity, and vibrations.

Later, we employed reactive force field (ReaxFF [504, 505]) to investigate the spon-

taneous water splitting reactions catalysed by titania [506]. In contrast to the classical

biomolecular force fields, ReaxFF allows to describe not only bond breaking/making but

also charge transfer processes [507, 508], although the charge densities are also approx-

imated by point charge distributions there. Therefore, changes in mean potentials and

fields can be studied. For titania, we showed that there is a large potential drop and corre-

sponding intrinsic field variation at the aqueous interfaces of both rutile and anatase [506].

These strong local fields enhance the surface water confinement and participate in cat-

alytic O-H bond breakage by orienting the water molecules to reactive configurations.

Hematite (α-Fe2O3) is another photocatalytic material able to split water, which re-
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cently became as popular as titania thanks to its relative ubiquity and low costs [509–512].

However, because of the anti-ferromagnetic layer composition and complex surface prop-

erties, computational studies of hematite interfaces are challenging and often require

advanced simulation techniques [206, 513]. For example, it was shown by von Rudorff

et al. [378, 514] that to capture the correct surface geometry, protonation, and related

charge transfer phenomena in aqueous solution, the computationally very demanding

first-principles simulations at hybrid functional level need to be applied.

We performed the non-equilibrium first-principles molecular dynamics to study the

water splitting on aqueous hematite interfaces induced by external electric fields mimicing

the electrochemical bias potential effects [401]. The fields were applied perpendicular to

the surface, both in parallel and anti-parallel orientation with respect to the outward

surface-plane normal, with increasing intensity up to 0.1 V/Å(see Fig. 27). The field-

induced water dissociation was observed, followed by hopping-like proton transfer across

the simulation cell, and development of Helmholtz layers compensating the induced surface

charge. The performed calculations thus simulated simple electrochemical cell with the

catalytic electrodes.

6.5 External-field induced charge transport

Ice VII is one of the 18 known ice polymorphs, which is form under high pressures

(above 2 GPa). It has a cubic structure composed of two interpenetrating sublattices

of water molecules mutually interacting by hydrogen bonding [515,516]. Experimentally,

methods like water confinement in nanomeniscus [517], and subnanosecond laser-induced

shock waves can be used to prepare the ice VII phase [518]. Besides, the ordered high-

pressure phases could be prepared by electrofreezeing techniques employing static electric

fields [519,520].

Due to the densely packed structure and high pressures, the bonds between oxygen

and hydrogen atoms are weakened and the protons can relatively easily change their

positions in the double-well potentials between neighbouring O. . . O pairs in the same

sublattice. Consequently, when an external field is applied, the protons are dragged in

the field direction, diffusing in the preserved lattice of oxygens. This state is known as a

superionic (SI) ice phase and its existence was recently proved by Millot et al. by shock

compression [411]. Although these phases might seem artificial at Earth, there is indirect

evidence for its presence in Solar-system exoplanet ”ice giants” Uranus and Neptune.

We performed a series of first-principles MD simulations [400, 402, 521] to investigate

the O-H bonding in ice VII, its pressure dependence, dielectric properties, as well as
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(a) (b)

Figure 28: External-field induced proton hopping in ice VII: (a) snapshots from the non-
equilibrium first-principles molecular dynamics, (b) field response of in the stretching
band of the vibrational spectrum. The figures are taken from Ref. 400.

the field-induced dissociation. As the pressure increases from 5 to 20 GPa, the O. . . O

distances shrink and the O-H bonds start to be more ionized, which is exhibited by the

increased gap between the valence and conduction bands of ice VII [521]. These changes

affect the stretching band of the vibrational Raman spectra, on which the transition to

SI phase can be detected [522].

Finally, we applied the static electric fields of magnitudes between from 0.02 to

0.50 V/Å to induce the phase transition [400]. Indeed, when the dissociation threshold

∼0.3 V/Å was exceeded, the proton hopping between practically unperturbed positions of

oxygen atoms was initiated. The protons were propagated though the ice VII crystal by

Grotthus-like mechanism following the zig-zag pathways oriented along the field direction

(see Fig. 28a). The simultaneous changes in the Raman spectra (Fig. 28b) were in this

case significant and followed the trend observed in experimental measurements [522].
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7 Conclusion

Transfer of charge can proceed in many different materials by various mechanisms, for

examples, ionic diffusive transport in electrolytes, proton Grotthus-type transfer in wa-

ter, incoherent electron hopping through biomolecular redox chains, coherent tunneling

through molecular junctions, polaronic charge propagation in molecular crystals, band-

like electron transport in metals, or quantum transport in superconductive metallic alloys.

Here, we limited ourselves to electronic transfer in molecular systems, with a special focus

on transport facilitated by biomolecules.

Incoherent electron hopping and coherent tunneling were briefly reviewed as limiting

cases of the transport mechanisms that can be facilitated by biomolecules in their native

environment, on electrochemical interfaces, or in nanobioelectronic devices. Then, the

most popular computational approaches applicable in electronic charge-transfer studies

were summarized, although many other techniques can be found in literature. Also,

methods of potential energy evaluations (i.e. molecular mechanics, quantum-chemistry

methods, density functional theory, etc.), inherently used in the discussed approaches,

were not reviewed to not exceed the scope of the thesis.

The research activities of the author are introduced and discussed in the second half of

the thesis. First, works on the methodology development related to biomolecular charge-

transfer studies were listed. These include the design of double-QM/MMmethod for inves-

tigations of outer-sphere electron hopping, implementation of the POD method for elec-

tronic coupling element calculations, tuning and refining works on the GolP-CHARMM

force fields for the biomolecular interfaces with gold surfaces, and improving performance

of ab initio non-equilibrium molecular dynamics with external electric fields.

Finally, the main applications focused on electron transfer in various systems are intro-

duced as successful study cases. Five selected applications involving biologically relevant

systems are followed by another five applications on other systems. These selections il-

lustrate the research activities of the author and its research group during last decade

and their relevance is supported by the reprints of relevant articles from peer-reviewed

journals, where this research was published.

Besides these research activities, the author participate in education of students at

Faculty of Science at University of South Bohemia in České Budějovice. There, at De-

partment of Physics, he established two new courses: ”Density Functional Theory (DFT)

and Its Applications” and ”Charge Transfer Processes and Their Simulations”. The latter

course covers the theory and computational approaches summarized in this thesis, and

the up-to-date scientific knowledge in this field is communicated to students.
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