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Chapter 0

Introduction

This habilitation thesis consists of this introduction, as well as the following eight
original research papers:

(P1) Liran Shaul,
Hochschild cohomology commutes with adic completion,
Algebra & Number Theory 10-5, 1001-1029 (2016),
doi:10.2140/ant.2016.10.1001.

(P2) Liran Shaul,
The Cohen-Macaulay property in derived commutative algebra,
Transactions of the of the American Mathematical Society, 373 (2020), no. 9,
6095–6138,
doi:10.1090/tran/8099.

(P3) Liran Shaul,
Koszul complexes over Cohen-Macaulay rings,
Advances in Mathematics, Volume 386, 6 August 2021,
doi:10.1016/j.aim.2021.107806.

(P4) Liran Shaul,
Sequence-regular commutative DG-rings,
Journal of Algebra, Volume 647, 1 June 2024, Pages 400-435,
doi:10.1016/j.jalgebra.2024.02.034.

(P5) Liran Shaul, Jordan Williamson,
Lifting (co)stratifications between tensor triangulated categories,
Israel Journal of Mathematics, in press, 2024,
doi:10.1007/s11856-023-2578-5.
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https://doi.org/10.2140/ant.2016.10.1001
https://doi.org/10.1090/tran/8099
https://doi.org/10.1016/j.aim.2021.107806
https://doi.org/10.1016/j.jalgebra.2024.02.034
https://doi.org/10.1007/s11856-023-2578-5
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(P6) Isaac Bird, Liran Shaul, Prashanth Sridhar, Jordan Williamson,
Finitistic dimensions over commutative DG-rings,
preprint at arxiv:2204.06865.

(P7) Liran Shaul,
The finitistic dimension conjecture via DG-rings,
preprint at arxiv:2209.02068.

(P8) Liran Shaul, with an appendix by Tsutomu Nakamura and Peder Thompson,
Acyclic complexes of injectives and finitistic dimensions,
preprint at arxiv:2303.08756.

The common theme of all these papers is the notion of a differential graded ring (which
will always be abbreviated as DG-ring). A DG-ring is an associative unital ring which
is also a cochain complex, such that the multiplication of the ring and the differential
of the complex are compatible with each other (see precise definition in Section 0.1
below). In particular, any ring is a DG-ring, making the category of DG-rings a natural
extension of the category of rings. The aim of this thesis, carried out in these papers, is
to make a detailed study of DG-rings and their derived categories, and to apply these
results to prove new facts about rings.

More specifically, we will always focus on non-positively graded (in cohomological
grading) DG-rings, also known in the literature as connective DG-algebras. From a
homotopy-theoretic point of view, such DG-rings carry naturally a model structure,
and this model category is Quillen-equivalent to the model category of simplicial rings
(see [31, Theorem 1.1(3)]). This implies that one can view these DG-rings as a model
for derived rings, and allows replacing a map of rings by a semi-free DG-algebra
resolution, which behaves better from a homological point of view. This is analogous
to the situation in ordinary homological algebra, where the category of modules is
embedded into the category of cochain complexes, which allows one to replace modules
by projective resolutions, and define derived functors. We shall now provide some
preliminary background that will put the results of this thesis into perspective.

https://arxiv.org/abs/2204.06865
https://arxiv.org/abs/2209.02068
https://arxiv.org/abs/2303.08756
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0.1 DG-rings

A DG-ring A is an associative unital graded ring

A =

∞⊕
n=−∞

An.

It is further equipped with a degree +1 map, the differential of A, which is a Z-linear
map d : A → A, such that d ◦ d = 0, and such that the Leibnitz rule

d(a · b) = d(a) · b+ (−1)deg(a) · a · d(b)

holds for any pair of homogeneous elements a ∈ Am, b ∈ An, with m,n ∈ Z, where
deg(a) = m. The earliest mention of DG-rings we were able to find in the literature is
in the paper [11] by Cartan from 1954. We say that A is non-positive if An = 0 for all
n > 0. We will always assume that DG-rings are non-positive, so everywhere below
when we write DG-ring we mean a non-positive DG-ring. Any ring A can be considered
as a DG-ring by letting An = 0 for all n ̸= 0, and taking d = 0.

The zeroth cohomology H0(A) of a DG-ring A is a ring, and there is a map of DG-rings
A → H0(A). The DG-ring A and the ring H0(A) are closely related, and many of the
results presented below build upon the connection between these two.

To gain a better understanding about the relations between A and H0(A), we must
discuss DG-modules and derived categories. Triangulated and derived categories, which
are the heart of modern homological algebra were first introduced by Verdier [36],
following ideas of Grothendieck [13], and independently by Puppe [28].

Left DG-modules over a DG-ring A, which generalize left modules and complexes of
left A-modules, are by definition left graded A-modules M =

⊕∞
n=−∞ Mn with a

differential d : M → M of degree +1 which satisfies a Leibnitz rule. In particular, for
n ∈ Z, it follows that the cohomology Hn(M) is an H0(A)-module. If f : M → N is a
map of left DG-modules over A, it is called a quasi-isomorphism if Hn(f) : Hn(M) →
Hn(N) is an isomorphism for all n ∈ Z.

Considering the category DGMod(A) of all DG-modules over A, and formally inverting
all quasi-isomorphisms one obtains the derived category of left DG-modules over A,
denoted by D(A). It is a triangulated category. We refer the reader to the recent book
[40] for a modern treatment of derived categories of DG-rings.

One key reason for the intimate relation between A and H0(A) arises from the theory
of t-structures. Recall that a t-structure on a triangulated category T , first defined by
Beilinson, Bernstein and Deligne in [8], is a pair (T ≤0, T ≥0) of subcategories of T ,
such that for any X ∈ T ≤0 and any Y ∈ T ≥0, HomT (X,Y [−1]) = 0 (where [−1] is
the inverse of the shift functor of T ), such that T ≤0 is closed under shift and T ≥0 is
closed under the inverse of shift, and such that for any Z ∈ T , there is a distinguished
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triangle
X → Z → Y [−1] → X[1]

with X ∈ T ≤0 and Y ∈ T ≥0.

It is shown in [8, Theorem 1.3.6] that the intersection T ≤0 ∩T ≥0 is an abelian category,
called the heart of the t-structure. If A is a ring, the derived category of left A-modules
D(A) carries naturally a canonical t-structure given by

D(A)≤0 := {M ∈ D(A) | Hn(M) = 0,∀n > 0},

and
D(A)≥0 := {M ∈ D(A) | Hn(M) = 0,∀n < 0}.

The heart of this t-structure is simply Mod(A), the category of left A-modules.

More generally, if A is a non-positive DG-ring (we emphasize non-positivity here,
because this fact is not true otherwise), then, as follows from the discussion in [40,
Section 7.3], it is still the case that

D(A)≤0 := {M ∈ D(A) | Hn(M) = 0,∀n > 0},

and
D(A)≥0 := {M ∈ D(A) | Hn(M) = 0,∀n < 0}

define a t-structure on the derived category D(A) of left DG-modules over A. The
important fact that connects A and H0(A) for A non-positive is that the heart of this t-
structure on D(A) is equal to the abelian category Mod(H0(A)). This is used implicitly
throughout this thesis to prove many new results about DG-rings. Our recent paper [35],
which is not a part of this thesis, offers a systematic study of other relations between
D(A) and D(H0(A)). The paper [P5] discussed in detail Section 0.4 studies an even
more intimate connection between D(A) and D(H0(A)) in some specific cases.

To study DG-rings further, it is essential to introduce some finiteness condition. We
say that a DG-ring A is left noetherian if the ring H0(A) is left noetherian, and for
any n < 0, the left H0(A)-module Hn(A) is finitely generated. One can justify this
definition using the derived Bass-Papp theorem we proved in [33, Theorem 6.6]. Right
noetherian DG-rings are defined similarly. We say that A has bounded cohomology if
Hn(A) = 0 for all n ≪ 0. Many results of this thesis are proved in the case where A is
left noetherian (or two-sided noetherian) and has bounded cohomology.

We further often restrict attention to triangulated subcategories of D(A). The full
triangulated subcategory D−(A) is the derived category of bounded above DG-modules,
composed of all M ∈ D(A) such that Hn(M) = 0 for n ≫ 0. Similarly, D+(A), the
derived category of bounded below DG-modules is the full triangulated subcategory
of M ∈ D(A) such that Hn(M) = 0 for n ≪ 0. Finally, the derived category of
bounded DG-modules is Db(A) = D−(A) ∩ D+(A). In case A is left noetherian, we
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further consider the derived category Df(A) of DG-modules with finitely generated
cohomology, that is, M ∈ Df(A) if for all n ∈ Z it holds that Hn(M) is a finitely
generated left H0(A)-module. One further consider combinations of these finiteness
conditions, setting for instance

Db
f (A) = Df(A) ∩ Db(A).

The majority of this thesis, namely, the papers [P1,P2,P3,P4,P5,P6] studies commutative
DG-rings. These are, by definition, non-positive DG-rings that satisfy the additional
equation b ·a = (−1)deg(a)·deg(b) ·a · b, for any pair of homogeneous elements a, b ∈ A,
and moreover a2 = 0 if a ∈ An with n being odd. Note that the latter assumption
follows from the former if 2 = 1 + 1 is invertible in A. The commutative assumption
implies that we may identify left and right DG-modules, obtaining a single derived
category of DG-modules over D(A). Moreover, this triangulated category has an extra
structure, because if M,N ∈ D(A) then their derived tensor product M ⊗L

A N also
belongs to D(A). This gives D(A) the structure of a tensor triangulated category, in the
sense of [3].

Many methods of commutative algebra can be applied in this setting. For instance,
following [38, Section 4], one can localize a commutative DG-ring at a prime in H0(A):
If p̄ ∈ Spec(H0(A)), letting p be its preimage in A0, one sets Ap̄ = A0

p ⊗A0 A. One
can also form the (derived) ā-adic completion of A with respect to an ideal ā ⊆ H0(A).
We developed the theory of derived adic completion of commutative DG-rings in the
paper [34] which is not part of this thesis.

If A is a commutative noetherian (which is the same as left noetherian) DG-ring such
that the commutative noetherian ring H0(A) is a local ring with maximal ideal m̄, we
say that (A, m̄) is a noetherian local DG-ring. It follows that if A is a commutative
noetherian DG-ring and p̄ ∈ Spec(H0(A)), then (Ap̄, p̄ ·H0(Ap̄)) is a noetherian local
DG-ring.

0.2 Cohen-Macaulay and Regular rings

If V is a finite dimensional vector space over a field K, there are two approaches to
define the dimension of V , a geometric approach, and an algebraic approach. The
geometric approach considers chains of vector subspaces of V . For instance, if K = R,
and V = R3, any proper vector subspace of V is either the point {0}, a line L passing
though the origin, or a plane P passing through the origin. A maximal chain of proper
inclusions of such subspaces is thus of the form 0 ⊊ L ⊊ P ⊊ V . As this chain has
length 3, this geometric approach to dimension suggests that dim(V ) = 3.

Alternatively, an algebraic approach to dimension is also possible. In this approach,
we start with the vector space V , and keep imposing new linearly independent linear
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equations on it, until the only point which satisfies these linear equations is the origin.
The number of such independent linear equations we may impose provides an algebraic
approach to dimension. Basic results in linear algebra show that these two approaches
always yield the same number, the dimension of V .

Importing these ideas to commutative algebra and algebraic geometry leads us to the
notion of a Cohen-Macaulay ring. We work locally, and consider a commutative
noetherian local ring (A,m), which geometrically corresponds to the behavior of a
given algebraic variety V at a point p ∈ V . The geometric approach to dimension in this
context is using the notion of Krull dimension, first defined in [20] by Krull in 1937. This
is defined to be the length n of a maximal chain of prime ideals p0 ⊊ p1 ⊊ · · · ⊊ pn =

m in A. It is denoted by dim(A). The algebraic approach to dimension in this context is
using the notion of depth. An element x ∈ m is called an A-regular element if it is not
a zero-divisor on A. More generally, a sequence of elements x1, . . . , xn ∈ m is called
an A-regular sequence if x1 is A-regular, and the sequence x2, . . . , xn is A/x1-regular.
The maximal length n of an A-regular sequence is called the depth of A, and is denoted
by depth(A). This was first defined by Auslander and Buchsbaum [2] in 1957, where
the authors also proved [2, Proposition 1.3] that the inequality depth(A) ≤ dim(A)

always holds. When this inequality is an equality, so that

depth(A) = dim(A), (CM1)

we are in a situation where the geometric and algebraic approaches to dimension
coincide, and then A is called a Cohen-Macaulay ring. Generalizing this notion from
rings to DG-rings is one of the main topics of this thesis. We shall give 6 different
statements which are equivalent to being a Cohen-Macaulay ring (some of them only
works in specific situations), and generalize all of them to the DG setting, the first of
them being (CM1) above.

Give a commutative ring A, and an ideal I ⊆ A, the I-torsion functor ΓI : Mod(A) →
Mod(A) is give by ΓI(−) := lim−→HomA(A/In,−). It is a left exact additive functor,
and its right exact functor RΓI is called the derived I-torsion functor. Its cohomologies
are the classical derived functor Hn

I (−), commonly known as local cohomology or
cohomology supported at V (I). It was first defined and studied by Grothendieck, see
[14].

Let (A,m) be a commutative noetherian local ring. According to [14, Corollary 3.10],
there is an equality depth(A) = min{n ∈ Z | Hn

m(A) ̸= 0}. On the other hand, by [14,
Proposition 6.4], it holds that dim(A) = max{n ∈ Z | Hn

m(A) ̸= 0}. It follows that
A is Cohen-Macaulay if and only if its local cohomology is concentrated in a single
degree, that is, when

amp(RΓm(A)) := sup{n | Hn(RΓm(A)) ̸= 0} − inf{n | Hn(RΓm(A)) ̸= 0} = 0

(CM2)
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A noetherian local ring (A,m) is called Gorenstein if the A-module A has finite injective
dimension over itself. By [5, Corollary 3.4], any Gorenstein ring is Cohen-Macaulay.
Bass further generalized this observation in [5], and noted noted that if (A,m) is
Cohen-Macaulay, then there exist a non-zero finitely generated A-module of finite
injective dimension. He then stated that the converse is convincible, and the question
whether a local ring ring which admits a non-zero finitely generated module of finite
injective dimension is Cohen-Macaulay became known as the Bass conjecture. This
was settled affirmatively by Peskine and Szpiro in [25, Corollary 4.13], so that (A,m)

is Cohen-Macaulay if and only if

∃M ∈ Mod(A),M ≇ 0,M is finitely generated, inj dimA(M) < ∞. (CM3)

An important property of Cohen-Macaulay rings is that they often enjoy a good duality
theory. Following Grothendieck’s work recorded by Hartshorne in [13], recall that a
dualizing complex R over a commutative noetherian ring A is a bounded complex R

with finitely generated cohomology, such that inj dimA(R) < ∞, and such that the
natural map A → RHomA(R,R) is an isomorphism in the derived category D(A).
Dualizing complexes give rise to duality: if R is a dualizing complex over A, for any
finitely generated A-module M , the natural map

M → RHomA(RHomA(M,R), R)

is an isomorphism in the derived category D(A).

It follows from Grothendieck’s local duality theorem [13, Theorem V.6.2], that if (A,m)

is a noetherian local ring with a dualizing complex R, then

amp(R) := sup{n | Hn(R) ̸= 0} − inf{n | Hn(R) = 0} = dim(A)− depth(A).

We remark that we generalized the local duality theorem to the DG setting in [33,
Theorem 7.26], but the paper [33] is not a part of this thesis.

Not every Cohen-Macaulay local ring admits a dualizing complex. A counterexample is
given in [24, Section 6, Example 1]. However, most noetherian local rings that arise
naturally in commutative algebra and algebraic geometry admit dualizing complexes.
For a noetherian local ring (A,m) with a dualizing complex R, it follows from local
duality that A is Cohen-Macaulay if and only if

amp(R) := sup{n | Hn(R) ̸= 0} − inf{n | Hn(R) = 0} = 0, (CM4)

in other words, if and only if the dualizing complex R is a finitely generated A-module
(up to isomorphism and shifting, two operations which preserve the property of being a
dualizing complex).

The class of Cohen-Macaulay rings contains the particularly important class of regular
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rings. If (A,m) is a noetherian local ring, recall that m/m2 is a finitely generated vector
space over the residue field k = A/m, called the cotangent space of A. The dimension
of the cotangent space satisfies the inequality

dimA/m(m/m2) ≥ dim(A).

In case there is an equality dimA/m(m/m2) = dim(A), the ring A is called a regular
local ring. As shown in [2, 32], there are two other properties of a noetherian local ring
which are equivalent to it being regular. The first is that the maximal ideal m is generated
by an A-regular sequence. This also implies that it is Cohen-Macaulay. The second is
that A has finite global dimension. From the latter it follows that the localization of a
regular local ring at a prime ideal is again regular. In [P4] we generalize the property
of the maximal ideal being generated by a regular sequence to the DG setting, and
moreover show that this property is also stable under localization.

Suppose now that (A,m) is a regular local ring, that (B, n) is a noetherian local ring,
and that there is a finite injective map of local rings A → B. In his unpublished master
thesis, Hironaka showed that in this situation B is Cohen-Macaulay if and only if

B is a free A-module. (CM5)

Next we discuss an important DG-ring that arises in commutative algebra, the Koszul
complex. For an element a ∈ m in a noetherian local ring (A,m), it is given by the
complex

K(A; a) := 0 → A
·a−→→ A → 0.

concentrated in cohomological degrees −1, 0. It is interesting to note that that the
cohomologies of it satisfy that H0(K(A; a)) = A/a and

H−1(K(A; a)) = {x ∈ A | a · x = 0}.

It follows that K(A; a) ∼= A/a if and only if a is an A-regular element. More generally,
one may define the Koszul complex K(A; a1, . . . , an) associated to any finite sequence
of elements a1, . . . , an ∈ m in a noetherian local ring (A,m), and one can show
(see for instance [21, Theorem 16.5]) that K(A; a1, . . . , an) ∼= A/(a1, . . . , an) if
and only if a1, . . . , an is an A-regular sequence. As we explain in [P3], one may
consider K(A; a1, . . . , an) as a non-abelian derived functor of the operation A 7→
A/(a1, . . . , an). In particular, the ordinary quotient A/(a1, . . . , an) is particularly well
behaved in the case where a1, . . . , an is a regular sequence. For example, as shown in
[21, Theorem 17.3], if (A,m) is a Cohen-Macaulay local ring and a1, . . . , an ∈ m is
an A-regular sequence, then A/(a1, . . . , an) is also a Cohen-Macaulay ring. The paper
[P3] contains a far reaching generalization of this fact, which is valid for any finite
sequence of elements in a Cohen-Macaulay ring.
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We discussed above five different characterizations of Cohen-Macaulay rings, [CM1-
CM5]. These will be generalized to the DG setting in [P2,P3]. More specifically, given a
commutative noetherian local DG-ring (A, m̄) with bounded cohomology, we define the
notion of a local-Cohen-Macaulay DG-ring in [P2, Definition 4.2] generalizing (CM2).
In [P2, Corollary 5.5] we show that this is equivalent to a DG version of (CM1). A
version of the Bass conjecture, (CM3) in this setting is established in [P2, Theorem
5.22]. Using the notion of a dualizing DG-module, we obtain a DG-version of (CM4) in
[P2, Theorem 4.1]. Finally, a DG version of Hironaka’s miracle flatness theorem (CM5),
is obtained in [P3, Corollary 5.7]. A sixth characterization of Cohen-Macaulay rings
and its generalization to the DG setting will be discussed in Section 0.5.

0.3 Completion and Hochschild cohomology

Hochschild cohomology is the most prominent cohomology theory for associative alge-
bras, first introduced by Gerhard Hochschild in his paper [15] in 1945. In commutative
algebra, it was shown in [16] that for smooth algebras, one can identify their Hochschild
cohomology with the wedge products of their derivations.

When constructing the Hochschild cohomology of a flat commutative K-algebra A

over a commutative base ring K, as part of the construction, one must consider the
enveloping algebra A⊗K A. The Hochschild cohomology modules of A are then given
by

HHn(A/K) := ExtnA⊗KA
(A,A).

For most flat commutative algebras that one encounters in commutative algebra and
its applications, this is not a problem, because in most situations of interest, the map
K → A is of finite type, or at least essentially of finite type (that is, a localization of
a map of finite type). In that case, if K, A are noetherian and K → A is essentially of
finite type, the enveloping algebra A⊗K A is also noetherian.

There is however one exception to this, namely, algebras that arise from the adic
completion operation. The basic example is where K is a field, and A = K[[x]], the
power series ring over a field, which is the (x)-adic completion of the polynomial
ring K[x]. Such rings also arise naturally in algebraic geometry when one considers
formal schemes instead of ordinary schemes. The problem with developing a theory of
Hochschild cohomology of such algebras is that in this situation the enveloping algebra
A⊗K A is usually non-noetherian. This is the case for example when A = K[[x]] where
K is a field of characteristic 0.

This basic problem is related to the fact that in the category of formal schemes, the fiber
product of is not locally represented by the tensor product, but instead, by the complete
tensor product. If K is a base commutative noetherian ring, we consider K-algebras A
with the property that there exist an ideal a ⊆ A such that A is a-adically complete, and
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such that the quotient A/a is a finite type K-algebra. In that situation, one says that
(A, a) is a formally of finite type adic K-algebra. If (A, a) and (B, b) are two formally
of finite type adic K-algebras, their completed tensor product is the formally of finite
type K-algebra

A⊗̂KB = Λa⊗KB+A⊗Kb(A⊗K B).

Suppose now that K is noetherian and that (A, a) is a formally of finite type flat adic
K-algebra (for example, A = K[[x]], and a = (x)). Then one defines the complete
enveloping algebra of (A, a) over K by A⊗̂KA, and it is possible to show that it is
noetherian. These considerations led Buchweitz and Flenner in [9] to define the complete
Hochschild cohomology of A over K by replacing the ordinary enveloping algebra with
the complete enveloping algebra. Thus, assuming that (A, a) is a flat formally of finite
type adic K-algebra, one may consider

ĤH
n
(A/K) := Extn

A⊗̂KA
(A,A).

Working locally, suppose now that (A,m) and (B, n) are complete noetherian local
rings, and that there is a local homomorphism A → B, with the property that the
induced map A/m → B/n is an isomorphism. In this situation, Buchweitz and Flenner
observed in [9, Section 3] that there is a natural map

ĤH
n
(B/A) → HHn(B/A)

between the complete Hochschild cohomology of B over A to the ordinary Hochschild
cohomology of B over A. They then asked if this map is an isomorphism.

To understand the difficulty in answering this question, observe that in the construction
of ĤH

n
(B/A), when considering the complete enveloping algebra

Λn⊗AB+B⊗An(B ⊗A B),

while in the situation above this algebra is noetherian, it is given as the adic completion
of the ring B ⊗A B which is usually non-noetherian. But the classical theory of adic
completion of commutative algebras only works for noetherian rings. For instance,
while if A is noetherian the completion map A → Â is always flat (see for instance [21,
Theorem 8.8]), when considering the completion of non-noetherian rings this is usually
not the case. For example, if K is a field of characteristic 0 and A = K[[x]], it is shown
in [39, Theorem 7.2] that the completion map A⊗K A → A⊗̂KA is not flat.

To tackle this problem, the notion of a weakly proregular ideal was developed. It was
first implicitly used in [14], and first explicitly mentioned in [1, Correction]. We further
developed it in [26], where it was shown that this is the precise condition needed for
local cohomology and derived completion to behave well as in the noetherian case. In a
noetherian ring, any ideal is weakly proregular, but there are interesting examples also
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in non-noetherian situations.

In the paper [P1] we used this notion to solve the question raised by Buchweitz and
Flenner in [9]. First, we showed in [P1, Theorem 2.6] that if K is noetherian, (A, a) is a
formally of finite type flat adic K-algebra, then the ideal

I := a⊗K A+A⊗K a ⊆ A⊗K A

is weakly proregular. We then used DG-ring techniques, by taking a semi-free DG-
algebra resolution of the completion map A⊗KA → A⊗̂KA to gain better understanding
of such completions, and used this in [P1, Corollary 4.5] to obtain a positive resolution
to the question of Buchweitz and Flenner.

0.4 Localizing and colocalizing subcategories

A guiding problem in the theory of triangulated categories in general, and tensor-
triangulated categories in particular, is to classify all objects in a given triangulated
category. Usually, this problem is too difficult, so instead one studies approximations
of this problem, where one attempts to classify objects up to extensions, retracts and
products or coproducts. This leads to the problem of classifying all thick, localizing
and colocalizing subcategories of a given triangulated category T . Assume that T is a
triangulated category which admits all products and coproducts. The derived category
D(A) where A is a ring or a DG-ring is an example of such a T . Recall that a full
triangulated subcategory of S of T is called a localizing subcategory if it closed under
coproducts. It is called a colocalizing subcategory if it is closed under products. It is
called a thick subcategory if it is closed under direct summands.

Results classifying localizing, colocalizing and thick subcategories first originated in
homotopy theory, where Hopkins and Smith classified in [18] thick subcategories of
compact objects in the stable homotopy category. Later, Hopkins [17] and Neeman
[22, 23] transferred this idea to algebra, and were able to completely classify the
localizing and colocalizing subcategories and thick subcategories of compact objects
in the unbounded derived category D(A) over any commutative noetherian ring A. In
all these cases, the space that governs this classification is the classical prime spectrum
Spec(A).

More specifically, if A is a commutative noetherian ring, Neeman shows in [22, Theorem
2.8] that there is a bijection between localizing subcategories of D(A) and subsets of
Spec(A). This is not just an abstract bijection, but instead it is based on the notion of the
support of a cochain complex. A similar result, building on work of Hopkins, is shown
in [22, Theorem 1.5], where Neeman classified all thick subcategories of Db

f (Proj(A)),
the full triangulated subcategory of D(A) composed of all perfect complexes, which
are exactly the compact objects in D(A). The dual result, classifying all colocalizing
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subcategories of D(A), and showing that it is also in bijection with the subsets of
Spec(A), was shown by Neeman in [23, Theorem 0.2], answering a question of Chorny.

Studying the same question in the DG-setting, in [6, Theorem 8.1] and [7, Theorem
10.3], Benson, Iyengar and Krause were able to prove similar results about the derived
category of a commutative DG-ring A, provided that H(A) is noetherian and that
moreover A is formal. In that case, the space classifying these objects was Spec(H(A)).
Here, being formal means that, up to quasi-isomorphism, the differential of A is equal
to 0.

In our paper [P5] we were able to remove the formal assumption, and to show that
similar classification results holds for any commutative DG-ring A, provided that H0(A)

is noetherian and that A has bounded cohomology. Our result showed that for such
DG-rings A, the localizing and colocalizing subcategories and thick subcategories of
compact objects in D(A) are in bijection with certain subsets of Spec(H0(A)). This
result provided a formal justification to a major principal in derived algebraic geometry,
namely, that the space underlying a derived scheme is its underlying classical scheme.
This implies that the functors

−⊗L
A H0(A),RHomA(H

0(A),−) : D(A) → D(H0(A))

induce bijections between these global structures on D(A) and those on D(H0(A)).

0.5 Finitistic dimensions

As discussed in Section 0.2, associated to a commutative ring A is its Krull dimension
dim(A) which is a numerical invariant that correctly reflects the dimension of the
geometric space associated to A.

In case A is a regular local ring, it was shown in [2, Theorem 4.7] that dim(A) is equal
to the global dimension of A, which is defined by the formula

gl dim(A) = sup
M∈Mod(A)

proj dimA(M).

If a commutative noetherian local ring A is not regular, then its global dimension is
always infinite. This is true even in very simple cases. For instance, if A = K[x]/(x2),
where K is a field, the ring of dual numbers, then as proj dimA(K) = +∞, it follows
that gl dim(A) = +∞, despite the fact that A is a very simple ring, which has Krull
dimension 0.

It turns out that even in such singular cases, there is still a way to approach the dimen-
sion of A using projective dimension. This is via the notions of finitistic dimensions,
first defined by Auslander and Buchsbaum in [2]. If A is any ring (not necessarily
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commutative), the small (left) finitistic dimension of A is defined by the formula

fpd(A) = sup
M∈Modf (A),proj dimA(M)<∞

proj dim(A).

where Modf (A) denotes the category of finitely generated left A-modules. Similarly,
the big finitistic dimension of A is given by

FPD(A) = sup
M∈Mod(A),proj dimA(M)<∞

proj dim(A).

It follows immediately that fpd(A) ≤ FPD(A). If A is a two-sided noetherian ring and
gl dim(A) < ∞ then these three invariants coincide, so that

fpd(A) = FPD(A) = gl dim(A).

In case of the ring of dual numbers A = K[x]/(x2), we saw that gl dim(A) = +∞, but
one can show that fpd(A) = FPD(A) = 0, reflecting the simplicity of Mod(A).

For commutative noetherian rings A, there is a very good understanding of the finitistic
dimensions of A. It follows immediately from the Auslander-Buchsbaum formula
([2, Theorem 3.7]) that if A is a commutative noetherian local ring then fpd(A) =

depth(A).

As for the big finitistic dimension, Bass showed in [4, Corollary 5.5] that if A is a
commutative noetherian ring then FPD(A) ≥ dim(A). He further mentioned that he
does now know a ring which this FPD(A) < dim(A). A decade later, in their deep
and influential work [29], Raynaud and Gruson established the converse inequality
FPD(A) ≤ dim(A), which implies that for any commutative noetherian ring A it
holds that FPD(A) = dim(A). This required them to prove the much more difficult
result which states that if M is any A-module of finite projective dimension then
proj dimA(M) ≤ dim(A).

If A is a commutative noetherian local ring, since its small finitistic dimension coincides
with its depth, and its big finitistic dimension coincides with its Krull dimension, it
follows that A is a Cohen-Macaulay ring if and only if

fpd(A) = FPD(A). (CM6)

In [P6] we generalized the theory of finitistic dimensions to the setting of commutative
noetherian DG-rings A with bounded cohomology. In particular, in [P6, Corollary 6.6]
we give a characterization of local-Cohen-Macaulay DG-rings in term of their small
finitistic dimensions. It is interesting to note however, that unlike the case of rings, the
dimension does not determine uniquely the big finitistic dimension of such an A, and
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instead, as we show in [P6, Theorem 6.2] there is an inequality

dim(H0(A))− amp(A) ≤ FPD(A) ≤ dim(H0(A)).

Moreover, this result is optimal, in the sense that there exist examples which achieve
either bound.

The understanding of finitistic dimensions for noncommutative rings is much more
limited. Let A be a (possibly noncommutative) finite dimensional algebra over a field
K, or more generally, an artin algebra. In that situation, three conjectures regarding the
finitistic dimensions of A arose in the 1960s (though it is not clear by whom and when
exactly):

1. fpd(A) = FPD(A).

2. fpd(A) < ∞.

3. FPD(A) < ∞.

The first conjecture was disproved by Zimmermann-Huisgen in 1992 [41]. The other
two remain wide open, and are known as the small and the big finitistic dimension
conjectures. The paper [42] discusses the history of these problems. One reason these
conjectures are so important is that they are known to imply many other homological
conjectures. The introduction section of the paper [12] contains various important
conjecture that the finitistic dimension conjecture implies.

A few years ago, Rickard developed in [30] a completely new approach for establishing
that a finite dimensional algebra A over a field K satisfies that FPD(A) < ∞. In
general, if A is any ring, we denote by Inj(A) the set of all injective A-modules, and
by Loc(Inj(A)) the smallest localizing subcategory of D(A) that contains Inj(A). One
says that injectives generate D(A) if Loc(Inj(A)) = D(A). In [30, Theorem 4.3],
Rickard shows that if A is a finite dimensional algebra over a field, for which injectives
generate, then FPD(A) < ∞. He also noted in [30, Theorem 3.3], that the Hopkins-
Neeman theory, explained in Section 0.4 above, implies that injectives generate D(A) if
A is a commutative noetherian ring.

Our papers [P7, P8] used DG-ring methods to obtain far reaching generalizations of
the work of Rickard, and to obtain better understanding of the full scope of these ideas.
A key concept used in these developments is the notion of a dualizing complex over a
noncommutative ring. Over commutative rings, dualizing complexes were introduced
by Grothendieck and discussed in Section 0.2 above. In the noncommutative case, this
notion was first introduced by Yekutieli in [37]. For the purpose of this thesis, we use
a slightly modified version of the definition of Yekutieli, following Iyengar-Krause
[19]. If A is a two-sided noetherian ring, a dualizing complex over A, is a bounded
complex of A-A-bimodules R, such that considered as a complex of either left or right
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A-modules, it is made entirely of injective modules, such that its cohomologies are
finitely generated both on the left and on the right, and such that the natural maps

A → HomA(R,R), A → HomAop(R,R)

are both quasi-isomorphisms. The definition implies that if M is a finitely generated
left A-module, then the natural map

M → RHomAop(RHomA(M,R), R)

is an isomorphism in D(A).

The class of rings that possess dualizing complexes contains all finite dimensional
algebras over a field and all artin algebras. It is however much larger. For instance, in
commutative algebra, virtually all commutative noetherian rings that arise in algebraic
geometry possess dualizing complexes, but commutative artin algebras are all of Krull
dimension 0. Thus, in some sense, generalizing results from artin algebras to two-sided
noetherian rings with a dualizing complex is sort of generalizing from dimension 0 to
an arbitrary positive dimension.

In [P7, Corollary 5.3] we use DG-ring methods to generalize Rickard’s theorem, and
prove that if A is a two-sided noetherian ring with a dualizing complex, for which
injectives generate D(A), then FPD(A) < ∞. We further observe that this result is
optimal, because there exist noetherian rings for which injectives generate D(A) such
that FPD(A) = +∞. These rings of course do not possess dualizing complexes.

Our later paper [P8] went further. We observed that the implication

Injectives generate D(A) =⇒ FPD(A) < ∞

for two-sided noetherian rings with a dualizing complex can be refined to

Injectives generate D(A) =⇒ K+
ac(Proj(A)) = 0 ⇐⇒ FPD(A) < ∞.

To explain the condition
K+
ac(Proj(A)) = 0,

let us recall that one of the most basic facts in homological algebra is the uniqueness,
up to homotopy equivalence, of projective resolutions of a given module. Since the
zero module is projective, and since any bounded above acyclic complex of projective
modules can be considered as a projective resolution of the zero module, it follows that
any bounded above acyclic complex of projective modules is contractible.

Considering the homotopy category of complexes of projective modules K(Proj(A)),
one may consider its full triangulated subcategory Kac(Proj(A)) which consists of all
acyclic cochain complexes of projective modules. It follows from [19, Theorem 5.3]
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that one may view Kac(Proj(A)) as a kind of singularity category. In particular, if A is
a two-sided noetherian ring and gl dim(A) < ∞, then Kac(Proj(A)) = 0.

The basic homological fact that over any ring any bounded above acyclic complex of
projective modules is contractible can then be stated as

K−
ac(Proj(A)) = 0,

since K−(Proj(A)) consists of all bounded above complexes of projectives. This also
explains the meaning of the condition

K+
ac(Proj(A)) = 0,

which says that any bounded below acyclic complex of projective modules is con-
tractible. It turns out that for two-sided noetherian rings A with a dualizing complex,
this condition is equivalent to FPD(A) < ∞. Many implications of this fact are
discussed in [P8, Section 5].

As far as we know, the paper [P8] was the first to explicitly discuss this question, but it is
interesting to note that since then several other development occurred. In an appendix to
[P8] written by Nakamura and Thompson, it is shown that this contractibility condition
holds over any commutative noetherian ring. In particular, there exist noetherian rings for
which this condition holds, but they have infinite finitistic dimension. Necessarily, they
do not have dualizing complexes. Recently, in [27], Positelski gave several examples of
rings over which there exist a bounded below acyclic complex of projectives which is
not contractible. All his examples are over rings which are noncommutative and non-
noetherian. Even more recently, in [10], Haesemeyer showed that over any commutative
ring, any bounded below acyclic complex of finitely generated projective modules is
contractible. Canonaco, Neeman and Stellari then used this result to deduce some
basic structural results about derived categories of quasi-coherent sheaves over any
quasi-compact, quasi-separated scheme.

Thus, it seems that the condition

K+
ac(Proj(A)) = 0,

which, as explained, is equivalent to the finitistic dimension conjecture, is intimately
related to many exciting and deep questions in homological algebra.
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0.6 Summary of contributions

We finish this introduction with a very brief summary of the main contributions of this
thesis.

1. We resolved a basic question about Hochschild cohomology of adic algebras raised
by Buchweitz and Flenner, and more generally, proved that in nice situations,
Hochschild cohomology commutes with adic completion.

2. We developed the theory of Cohen-Macaulay DG-rings, generalized six different
characterizations of Cohen-Macaulay rings to the differential graded setting, and
proved that any derived quotient of a Cohen-Macaulay ring by a finite sequence
of elements is a Cohen-Macaulay DG-ring.

3. We developed the notion of a sequence-regular commutative DG-ring, showed
that this is the generic situation for derived algebraic varieties, and generalized
the Auslander-Buchsbaum-Serre theorem about localization of regular local rings
to the DG setting.

4. We have lifted the Hopkins-Neeman classification of localizing and colocalizing
subcategories of the derived category from commutative noetherian rings to
commutative noetherian DG-rings with bounded cohomology.

5. We developed the theory of finitistic dimension over commutative DG-rings,
generalizing foundational results of Bass and Raynaud-Gruson from commutative
noetherian rings to commutative noetherian DG-rings with bounded cohomology.

6. We generalized Rickard’s theorem about generation of injectives implying finite
finitistic dimension from finite dimensional algebras over a field to the class of all
two-sided noetherian rings with a dualizing complex.

7. We introduced the condition that any bounded below acyclic cochain complex of
projective modules is contractible, and proved that for two-sided noetherian rings
with a dualizing complex, it is equivalent to having finite finitistic dimension.
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