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1 Preface

The present thesis focuses on the investigation of boundedness properties of vari-
ous operators of harmonic analysis, including Fourier multiplier operators, singular
integral operators and their multilinear variants. A special emphasis is put on the
role that function spaces play in these results. Part of our work involving function
spaces is also motivated by possible applications in partial differential equations.
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In the next section, we summarize the historical background that motivated our
research and we explain how our contribution fits into that context. Section 3 then
provides a more detailed summary of the attached papers.
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2 Introduction

2.1 Fractional Sobolev spaces and their generalizations

In the modern theory of partial differential equations, a function does not need to
satisfy a given equation in a pointwise sense to be called its solution. Instead, a
certain weaker equality involving integration against a suitable family of test func-
tions is required. The solutions of these equations are then naturally found in the
family of Sobolev-type spaces, and a good understanding of various properties of
these function spaces is therefore indispensable in the study of partial differential
equations.

Let n ∈ N. Given a positive integer m and p ∈ [1,∞], we define the Sobolev
space Wm,p(Rn) as the space of all m-times weakly differentiable functions u on Rn

such that u belongs to Lp(Rn) together with all its weak derivatives up to order m.
The space Wm,p(Rn) is equipped with the norm

∥u∥Wm,p(Rn) =
m∑
k=0

∥|∇ku|∥Lp(Rn),

where ∇ku stands for the vector of all k-th order weak derivatives of u, with the
convention that ∇0u = u.

The fact that the weak derivatives of a given function belong to Lp(Rn) does
not imply that the function itself belongs to Lp(Rn) as well. In order to understand
how integrability properties of the weak derivatives affect integrability properties of
the function, it is therefore useful to consider the homogeneous variant of the space
Wm,p(Rn), denoted V m,p(Rn) and consisting of all m-times weakly differentiable
functions whose m-th order weak derivatives belong to Lp(Rn), with a seminorm
given by

|u|m,p,Rn = ∥|∇mu|∥Lp(Rn).

The functional | · |m,p,Rn vanishes at all polynomials of order at most m − 1, and
it is thus not a norm. It becomes, however, a norm when restricted to the subset
V m,p
d (Rn) of V m,p(Rn) containing those u ∈ V m,p(Rn) which vanish near infinity, in

the sense that

|{x ∈ Rn : |∇ku(x)| > λ}| <∞ for k ∈ {0, . . . ,m− 1} and λ > 0. (2.1)

We illustrate the relationship betweenWm,p(Rn) and V m,p
d (Rn) on the particular case

when 1 ≤ p < n/m. By the classical Sobolev embedding theorem, any u ∈ V m,p
d (Rn)

then belongs to Lnp/(n−mp)(Rn), and thus also to Lp
loc(Rn). Nevertheless, u does not

need to belong to Lp(Rn) globally. This is in contrast with the space Wm,p(Rn),
which is contained in Lp(Rn) by its very definition.

In various applications, an extension of the above-mentioned function spaces
to the setting involving derivatives of non-integer order comes into play. Notably,
these applications include nonlocal problems in partial differential equations, see,
e.g., the introduction of the expository paper [23] for references. Nevertheless, the
focus of this thesis will be on a different type of applications, namely those involving
boundedness properties of Fourier multiplier operators. These applications will be
discussed in the next subsection.
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Somewhat surprisingly, there are several natural ways how fractional Sobolev
spaces can be defined, and these different notions are not equivalent to each other
except in the particular case of an L2-based Sobolev space. Let s ∈ (0, 1) and
1 ≤ p < ∞. One possible way of introducing an Lp-based fractional Sobolev space
of order s involves the seminorm

|u|s,p,Rn =

(∫
Rn

∫
Rn

(
|u(x) − u(y)|

|x− y|s

)p
dxdy

|x− y|n

) 1
p

. (2.2)

This seminorm gives rise to the homogeneous fractional Sobolev space V s,p(Rn),
which consists of all measurable functions u for which the functional (2.2) is finite.
Subsequently, the higher-order fractional Sobolev space V s,p(Rn) associated with
the smoothness parameter s ∈ (1,∞) \ N is defined to be the set of all functions u

in W
⌊s⌋,1
loc (Rn) for which

|u|s,p,Rn = |∇⌊s⌋u|{s},p,Rn <∞.

Here and in what follows, ⌊s⌋ denotes the integer part of s and {s} = s− ⌊s⌋ is the
fractional part of s. In both situations, the inhomogeneous counterpart W s,p(Rn) of
V s,p(Rn) equals the intersection of V s,p(Rn) with W ⌊s⌋,p(Rn), with the convention
that W 0,p(Rn) = Lp(Rn).

Alternatively, fractional Sobolev spaces can be introduced by using the notion of
the fractional Laplace operator. Given s > 0, this operator is denoted by (I − ∆)

s
2

and it is defined via multiplication by (1 + 4π2|ξ|2) s
2 on the frequency side, namely

̂(I − ∆)
s
2u(ξ) = (1 + 4π2|ξ|2)

s
2 û(ξ), (2.3)

where û stands for the Fourier transform of u. Given also 1 ≤ p ≤ ∞, the associated
fractional Sobolev space Lp

s(Rn) consists of all tempered distributions u satisfying

∥u∥Lp
s(Rn) = ∥(I − ∆)

s
2u∥Lp(Rn) <∞.

We note that the homogeneous variant of the space Lp
s(Rn) can be defined similarly

by employing the homogeneous fractional Laplace operator

̂(−∆)
s
2u(ξ) = (2π|ξ|)sû(ξ)

in place of (2.3).
It is of interest to understand the different relations between the Sobolev spaces

defined above. To start with, if s is an integer then the space Lp
s(Rn) coincides with

W s,p(Rn) as long as 1 < p <∞. If s is not an integer then Lp
s(Rn) = W s,p(Rn) is only

true when p = 2. For p ∈ (1, 2), we have the strict inclusion W s,p(Rn) ⊂ Lp
s(Rn),

while for p ∈ (2,∞) the reverse inclusion Lp
s(Rn) ⊂ W s,p(Rn) holds. For more

information on the different types of Sobolev spaces described above, see, e.g., [65,
Chapter V].

In the recent years, the study of nonlocal problems featuring functionals of non-
standard growth has attracted a lot of attention [6, 10, 11, 29, 31, 58]. In this
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connection, a variant of the spaces V s,p(Rn) in which the p-th power in (2.2) is re-
placed by a more general convex function came into play. These spaces are associated
with functionals of the form∫

Rn

∫
Rn

A

(
|u(x) − u(y)|

|x− y|s

)
dxdy

|x− y|n
,

where s ∈ (0, 1) and A is a Young function, namely a nonnegative convex function
on [0,∞) vanishing at 0. The corresponding fractional Orlicz-Sobolev seminorm is
then defined in analogy with the definition of the Luxemburg norm in Orlicz spaces
by

|u|s,A,Rn = inf

{
λ > 0 :

∫
Rn

∫
Rn

A

(
|u(x) − u(y)|
λ|x− y|s

)
dxdy

|x− y|n
≤ 1

}
, (2.4)

and the space of all measurable functions u for which the functional (2.4) is finite
is the fractional Orlicz-Sobolev space V s,A(Rn). The space V s,A(Rn) also has its
higher-order variant, defined via the seminorm

|u|s,A,Rn = |∇⌊s⌋u|{s},A,Rn ,

where s ∈ (1,∞) \ N. Basic properties of fractional Orlicz-Sobolev spaces were
established in [21, 32] under certain technical assumptions on the Young function
A.

Similarly to the constructions from the previous paragraph, the spaces Lp
s(Rn)

can be extended to a more general setting as well. Let X(Rn) be a rearrangement-
invariant space, that is, roughly speaking, a Banach space of functions whose norm
depends only on the measure of level sets of the absolute value of a given function;
for a precise definition of rearrangement-invariant spaces, see [2, Chapter 2]. Given
s > 0, one can then consider the Sobolev-type space consisting of all tempered
distributions u satisfying

∥(I − ∆)
s
2u∥X(Rn) <∞. (2.5)

A case of particular interest is the one when X(Rn) is the Lorentz space Lp,q(Rn),
defined as

∥u∥Lp,q(Rn) = ∥t
1
p
− 1

qu∗(t)∥Lq(0,∞).

Here, 1 ≤ p, q ≤ ∞ and u∗ stands for the non-increasing rearrangament of the
function u, namely, the unique non-increasing right-continuous function on (0,∞)
equimeasurable with u, in the sense that

|{x ∈ Rn : |u(x)| > λ}| = |{t ∈ (0,∞) : u∗(t) > λ}| for λ > 0.

The s-th order Lorentz-Sobolev space associated with the Lorentz space Lp,q(Rn) via
equation (2.5) is then denoted by Lp,q

s (Rn). Lorentz-Sobolev spaces arise naturally
as optimal domain spaces for the embedding into the space L∞(Rn) of essentially
bounded functions, see [17, 64]. Various other embeddings between Lorentz-Sobolev
spaces, as well as their generalizations into the context of Besov and Triebel-Lizorkin
spaces, were studied in [63].
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The purpose of the first two articles of this thesis [A, B] is to provide a complete
description of embeddings of the spaces V s,A(Rn) into Orlicz spaces and, more gen-
erally, into rearrangement-invariant spaces. On the other hand, the papers [C], [D]
and [E] are centered around the spaces Lp,q

s (Rn), and they establish sharp variants
of classical theorems in Fourier analysis by making use of these function spaces. In
the next subsection, we briefly summarize the Fourier-analytical background for the
papers [C–E].

2.2 Fourier multiplier operators

With any bounded function m in Rn we associate the Fourier multiplier operator
Tm, which alters the Fourier transform of a given Schwartz function f by multiplying
it by m, namely

T̂mf = mf̂.

As a consequence of the Plancherel theorem, each operator Tm admits a bounded
extension from L2(Rn) into itself. In fact, Fourier multiplier operators are exactly
those translation-invariant operators that are bounded on L2(Rn), and they include
many standard operators of harmonic analysis, such as the Hilbert transform and
the Riesz transforms, as special cases.

While the L2-boundedness of Tm is straightforward, the operator Tm may in gen-
eral not be bounded on Lp(Rn) if p ̸= 2. A well known example of this phenomenon
is the Fourier multiplier operator associated with the characteristic function of a
ball in dimension 2 or higher, which is Lp-bounded only for p = 2, see [30]. The
problem of characterizing those bounded functions m for which the operator Tm
extends to a bounded operator from Lp(Rn) into itself is difficult and still far from
being resolved, and therefore various sufficient conditions for the Lp-boundedness
have been established as a substitute. These conditions are often called multiplier
theorems.

The classical Mikhlin multiplier theorem [55] implies that if the symbol m satisfies

|∂αm(ξ)| ≤ Cα|ξ|−|α|, ξ ̸= 0 (2.6)

for all multiindices α up to order ⌊n/2⌋ + 1, then the operator Tm is bounded from
Lp(Rn) into itself for any p ∈ (1,∞). We next discuss improvements of this result
that make use of fractional Sobolev spaces. We start with the classical Hörmander
multiplier theorem [44], which says, roughly speaking, that one does not need the
bound (2.6) to be true in a pointwise sense, but only in the L2-mean uniformly
with respect to all dyadic annuli. To state the theorem precisely, we introduce an
auxiliary function ϕ that is smooth, supported in the unit annulus on Rn and satisfies∑

k∈Z

ϕ(2kξ) = 1 for ξ ̸= 0.

A fractional variant of Hörmander’s theorem asserts that if the symbol m fulfills the
condition

sup
k∈Z

∥ϕ(ξ)m(2kξ)∥L2
s(Rn) <∞ (2.7)

for some s > n/2 then Tm is Lp-bounded for all p ∈ (1,∞). In addition, it turns
out that relaxing the lower bound on the smoothness parameter s still yields the

8



Lp-boundedness of Tm, though in a limited range of parameters p. This result was
proved by Calderón and Torchinski [8] and it asserts that if

s

n
>

∣∣∣∣1p − 1

2

∣∣∣∣ =
1

r
(2.8)

and condition
sup
k∈Z

∥ϕ(ξ)m(2kξ)∥Lr
s(Rn) <∞ (2.9)

is satisfied, then Tm admits a bounded extension from Lp(Rn) into itself. A further
slight improvement of the Calderón-Torchinski result was established in [36], and a
certain limiting variant involving a Besov space appeared in [62].

We note that, unlike in the Hörmander original formulation, it is no longer
possible to use an L2-based Sobolev space in assumption (2.9) if s ≤ n/2. This is
due to the fact that the symbol of the Fourier multiplier operator necessarily needs
to be bounded, but the membership of a function into the Sobolev space L2

s(Rn)
with s ≤ n/2 does not guarantee its boundedness.

The discussion above suggests that the topic of Fourier multiplier theorems has
close connections to the theory of Sobolev embeddings (in particular when Sobolev
embeddings into the space L∞(Rn) are concerned). The papers [C], [D] and [E] of
the present thesis further strengthen this connection by investigating sharp variants
of classical multiplier theorems, including the above-mentioned multiplier theorem
by Hörmander and also its multiparameter variant due to Marcinkiewicz [53]. The
form of these theorems is inspired by optimal Sobolev embeddings involving Lorentz
spaces [17, 64].

2.3 Singular integral operators: from linear to multilinear
theory

Another important class of operators in harmonic analysis, closely related to the
class of Fourier multiplier operators, is that of singular integral operators. We will
first focus on singular integral operators of convolution type, having the form

Tf(x) = p. v.

∫
Rn

f(x− y)K(y) dy, (2.10)

where f is a Schwartz function on Rn and K is a function on Rn which is homoge-
neous of degree −n. The values of K away from the origin are uniquely determined
by its restriction to the unit sphere Sn−1 in Rn. We denote this restriction by Ω
and we will assume throughout that Ω has vanishing integral over Sn−1. We observe
that the choice Ω(y) = yj for j = 1, . . . , n recovers the well-known family of Riesz
transforms (and, in particular, the Hilbert transform if n = 1). In addition, it is
worth pointing out that any Fourier multiplier operator associated with a symbol
that is homogeneous of degree 0 and smooth on the unit sphere can be realized as a
singular integral operator of the type discussed above, up to a multiple of the iden-
tity operator. Such an operator is Lp-bounded for any p ∈ (1,∞) by the Hörmander
multiplier theorem.

In general, however, the operator T is not well-behaved, and it may even fail
to be bounded on L2(Rn). On the other hand, if Ω either has good cancellation
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properties, in the sense that it is odd, or if it enjoys good integrability properties,
in the sense that it belongs to the Orlicz space L logL(Sn−1), then the operator T
is in fact Lp-bounded for any p ∈ (1,∞). We recall that L logL(Sn−1) is the Orlicz
space consisting of all functions u satisfying∫

Sn−1

|u(θ)| log+ |u(θ)|dσ(θ) <∞,

where dσ denotes the surface measure on the unit sphere. In particular, by a simple
embedding, the Lp-boundedness holds if Ω ∈ Lq(Sn−1) for some q > 1.

In the 1960s, Calderón introduced objects that are nowadays called Calderón’s
commutators as a part of his programme in the study of partial differential equations.
Calderón’s commutators are singular integral operators which are more complicated
than those discussed above as they are no longer of convolution type. Classical
methods turned to be ineffective in dealing with these objects and a radically new
approach was necessary for establishing their boundedness. Such an approach was
developed by Coifman and Meyer [18, 19], who were the first ones to realize the
benefits of interpreting Calderón’s commutators as multilinear operators.

Following the pioneering work of Coifman and Meyer, multilinear aspects of
singular integral operators became a heavily studied branch of harmonic analysis.
The Coifman-Meyer multilinear operators have the form

T (f1, . . . , fm)(x) = p. v.

∫
Rmn

f1(x− y1) . . . fm(x− ym)K(y1, . . . , ym) dy1 . . . dym,

(2.11)
where f1, . . . , fm are n-dimensional Schwartz functions and K is an mn-dimensional
singular integral kernel. Typically, we will assume that K is homogeneous of degree
−mn and its restriction Ω to the unit sphere Smn−1 has vanishing integral over
Smn−1. Alternatively, one can also consider the closely related notion of multilinear
Fourier multiplier operators and require K to be the inverse Fourier transform of a
symbol that satisfies one of the standard assumptions of Fourier multiplier theorems,
such as (2.6). In particular, taking K to be the Dirac delta measure at the origin,
we see that (2.11) reduces to the pointwise product of the functions f1, . . . , fm. This
operator is bounded from the product of Lebesgue spaces Lp1(Rn) × · · · × Lpm(Rn)
into another Lebesgue space Lp(Rn) if and only if the exponents satisfy the Hölder
scaling condition

1

p
=

1

p1
+ · · · +

1

pm
. (2.12)

We will assume that equation (2.12) is in place in what follows.
The situation when K is a homogeneous kernel that is smooth on the unit sphere

falls within the scope of the classical Coifman-Meyer theory [18, 19], as long as
1 < p1, . . . , pm ≤ ∞ and p ≥ 1. We note that, however, unlike in the linear setting,
the assumption 1 < p1, . . . , pm ≤ ∞ and the Hölder scaling (2.12) do not imply that
p has to fall into the Banach space regime p ≥ 1. The corresponding boundedness
results in the quasi-Banach setting when p < 1 were obtained by Grafakos and Tor-
res [41] and Kenig and Stein [47]. At the present moment, boundedness properties of
multilinear singular integral operators of the form (2.11), associated with a function
Ω which does not possess any smoothness but merely belongs to Lq(Smn−1) for some

10



q > 1, are also well understood. The first paper systematically dealing with this
problem was [38], which discussed the bilinear situation under the assumption that
q ≥ 2 and established bounds for the corresponding operator in a certain range of
exponents by making use of a novel technique involving wavelet decomposition of
the symbol. Further partial results include paper [F] of the present thesis, as well
as [39, 42]. The paper [G] then proved boundedness for any q > 1, in the optimal
open range of exponents.

2.4 Bilinear Hilbert transform and beyond

Going back in history, we next recall an approach that Calderón suggested in order
to tackle the question of the boundedness of his first commutator. Even though
Calderón himself managed to prove boundedness of the commutator by using a
different strategy [7], his idea is still of interest as it initiated the development of
new techniques in Fourier analysis.

Calderón observed that his first commutator can be obtained as a superposition
of directional bilinear Hilbert transforms, namely operators of the form

Hβ(f1, f2)(x) = p. v.

∫
R
f1(x+ y)f2(x+ βy)

dy

y
, (2.13)

where f1 and f2 are one-dimensional Schwartz functions and β ∈ (0, 1). Bounds for
Calderón’s first commutator can thus be recovered from bounds for the operatorsHβ,
as long as these bounds are uniform with respect to the parameter β. Nevertheless,
it was not until the late 1990s when boundedness of the bilinear Hilbert transform
was finally established by Lacey and Thiele [50, 51], who realized that the analysis
of this operator is closely related to the problem of pointwise almost everywhere
convergence of Fourier series. The desired uniform bounds for the bilinear Hilbert
transform in a certain range of exponents sufficient to complete Calderón’s original
programme were later obtained by Grafakos and Li [40, 52]. This being said, we
point out that unlike in the case of the Coifman-Meyer operators (2.11), the full
range of exponents in which the bilinear Hilbert transform is bounded has not yet
been established.

A two-dimensional variant of the operator Hβ having the form

TB(f1, f2)(x) = p. v.

∫
R2

f1(x+ y)f2(x+B(y))K(y) dy (2.14)

was investigated in [22]. In equation (2.14), f1 and f2 are two-dimensional Schwartz
functions, K is a two-dimensional singular integral kernel, in the sense that its
Fourier transform satisfies (2.6), and B : R2 → R2 is a linear mapping. Similarly to
the fact that the operator Hβ becomes degenerate when β equals either 0 or 1, the
properties of the operator TB are dictated by the spectrum of B, and in particular
by the fact which of the numbers 0 and 1 belongs to it. A case that is of particular
interest to us is the one when the spectrum of B consists of both 0 and 1. This is
the only case which could not be handled by the time-frequency analysis methods
of [22], and bounds for this operator were established later by Kovač [48] by making
use of a certain symmetrization procedure based on repeated applications of the
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Cauchy-Schwarz inequality and telescoping identities. After a suitable change of
variables, the operator considered in [48] can be written as

T (f1, f2)(x, y) = p. v.

∫
R2

f1(x, y
′)f2(x

′, y)K(x− x′, y − y′) dx′dy′ (2.15)

and is sometimes called the twisted paraproduct.
We next discuss the quadrilinear form

Λ(f1, f2, f3, f4)

= p. v.

∫
R4

f1(x, y
′)f2(x

′, y)f3(x, y)f4(x
′, y′)K(x− x′, y − y′) dxdydx′dy′, (2.16)

where f1, f2 and K are as above and f3, f4 are two-dimensional Schwartz func-
tions. Setting formally f4 ≡ 1 reduces (2.16) to a trilinear form dual to the twisted
paraproduct (2.15). Boundedness properties of the form (2.16) in a certain range of
exponents were established in [24, 25]. In connection with ergodic-theoretic appli-
cations, which will be discussed in more detail in the next subsection, the following
variant of (2.16) also came into play [26]:

p. v.

∫
R4

f1(x, y
′)f2(x

′, y)f3(x, y)f4(x
′, y′)K(y−x−x′, y′−x−x′) dxdydx′dy′. (2.17)

To be able to deal with the above-mentioned multilinear forms in a more systematic
way, it is useful to consider a common generalization of both (2.16) and (2.17) of
the type

p. v.

∫
R4

f1(x, y
′)f2(x

′, y)f3(x, y)f4(x
′, y′)K(Π(x, y, x′, y′)) dxdydx′dy′, (2.18)

where Π : R4 → R2 is a linear surjection. A complete characterization of those
projections Π for which (2.18) is bounded (up to a constant) by the product of
the L4-norms of the input functions f1, f2, f3, f4 was established in [27]. In fact,
the paper [27] dealt with a higher-dimensional generalization of such an estimate,
featuring 2m input functions on Rm and one 2m-dimensional singular integral kernel,
and it proved bounds involving the L2m-norms of the input functions. While the
optimal range of Lebesgue space estimates for such a form remains unknown, the
paper [H] of the present thesis established boundedness properties of this form in
an extended range of exponents, which is optimal at least in a certain weaker sense.

We finish this subsection by noting that the estimates above can be understood
within the broader context of singular Brascamp-Lieb inequalities. We recall that the
standard Brascamp-Lieb inequalities are estimates for multilinear forms consisting
of integrating the tensor product of the input functions over a subspace of the
direct sum of the domain spaces. Their validity was completely characterized in the
work of Bennett, Carbery, Christ and Tao [3]. Singular Brascamp-Lieb inequalities
are obtained by replacing some of the (originally integrable) input functions by
singular integral kernels. The current level of understanding of singular Brascamp-
Lieb inequalities is however very far from being able to establish a general theory
mirroring the one from [3]; see also [28] for a survey on this topic.
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2.5 Ergodic-theoretic applications

We next describe how bounds for the multilinear forms discussed above can be used
to establish the convergence of certain ergodic averages. Let (X,F , µ) be a σ-finite
measure space and let T : X → X be a measure preserving transformation. The
single ergodic averages are defined as

ANf(x) =
1

N

N−1∑
i=0

f(T ix). (2.19)

The classical von Neumann mean ergodic theorem [61] asserts that these averages
converge in the L2 norm, and Birkhoff’s pointwise ergodic theorem [4] yields their
convergence almost everywhere.

Multiple ergodic averages arose from the work of Fürstenberg and his coau-
thors [33, 34, 35], which connected ergodic theory with arithmetic combinatorics.
These averages are associated withmmutually commuting measure-preserving trans-
formations T1, . . . , Tm and have the form

MN(f1, . . . , fm) =
1

N

N−1∑
i=0

f1(T
i
1x) . . . fm(T i

mx). (2.20)

Their L2-convergence in the case m = 2 was established by Conze and Lesigne [20]
using techniques of ergodic theory and an analogous result for a general m was
obtained by Tao [66] using combinatorial arguments. Ergodic-theoretic proofs of
the results from [66] were established shortly afterwards in [1, 45].

The norm-convergence results mentioned above have a purely qualitative nature,
in the sense that they do not provide any information on the rate of convergence. A
quantitative norm-convergence estimate for the single ergodic averages was estab-
lished in [46], showing that there is a positive constant C such that

J∑
j=1

∥Anj
f − Anj−1

f∥2L2(X) ≤ C∥f∥2L2(X)

holds for all sequences n0 < n1 < · · · < nJ of positive integers. Its analogue for the
case of two commuting transformations was discussed in [26], where it was proved
that

J∑
j=1

∥Mnj
(f, g) −Mnj−1

(f, g)∥2L2(X) ≤ C∥f∥2L4(X)∥g∥2L4(X). (2.21)

The proofs in [26] relied on harmonic analysis techniques, in particular on bound-
edness properties of the form (2.17) associated with a singular integral kernel K
that does not satisfy standard symbol estimates (such as (2.6)) but instead features
a certain multiparameter structure. It seems natural to conjecture that a result
similar to (2.21) holds for any number of commuting transformations, namely that

J∑
j=1

∥Mnj
(f1, . . . , fm) −Mnj−1

(f1, . . . , fm)∥2L2(X) ≤ C

m∏
ℓ=1

∥fℓ∥2L2m(X). (2.22)
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The validity of (2.22) is an open problem for any m ≥ 3. The techniques of [26] do
not apply when m ≥ 3 as the transference to a harmonic-analytic problem would
lead to a multilinear form that is not well understood at the moment, not even
in the case of standard kernels. The paper [I] of the present thesis establishes a
weaker variant of the estimate (2.22) for m = 3, which nevertheless still yields good
quantitative bounds for the L2-convergence of the associated triple ergodic averages.

We finish this introduction by pointing out that the pointwise a.e. convergence
of the multiple ergodic averages (2.20) is a long-standing open problem, even in
the case of two commuting transformations. Recent results involving the almost-
everywhere convergence of different types of multiple ergodic averages include the
papers [5, 12, 49].
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3 Summary of the attached papers

3.1 [A] Fractional Orlicz-Sobolev embeddings

In this paper, we provide a complete characterization of embeddings of fractional
Orlicz-Sobolev spaces V s,A

d (Rn), consisting of those functions from V s,A(Rn) that
decay near infinity, into Orlicz spaces and, more generally, into rearrangement-
invariant spaces. Our results work under the assumption that the Young function
A has a subcritical growth, namely that s ∈ (0, n) \ N and∫ ∞ (

t

A(t)

) s
n−s

dt = ∞. (3.1)

The assumption (3.1) corresponds to the condition p ≤ n/s when A(t) = tp near
infinity. Remarkably, the results obtained in this paper are the exact analogues of
the known results for Sobolev embeddings of integer order [13, 14, 15, 16], even
though the methods of the proofs are substantially different. In particular, a crucial
ingredient of our approach is an extension of the fractional Hardy inequality by
Mazy’a and Shaposhnikova [54] into the Orlicz framework.

3.2 [B] Boundedness of functions in fractional Orlicz-Sobolev
spaces

This paper complements the paper [A] by dealing with the missing case of em-
beddings of fractional Orlicz-Sobolev spaces V s,A

d (Rn) into rearrangement-invariant
spaces in the supercritical growth regime, namely when the Young function A grows
so fast near infinity that ∫ ∞ (

t

A(t)

) s
n−s

dt <∞. (3.2)

The assumption s ∈ (0, n) \N is still imposed throughout, and it is shown that such
an assumption is in fact necessary, in the sense that the fractional Orlicz-Sobolev
space V s,A

d (Rn) is not embedded into any rearrangement-invariant space if s > n.
The main contribution of the paper is the proof that condition (3.2) is necessary
and sufficient for the space V s,A

d (Rn) to be embedded into L∞(Rn) and, in turn, also
to the space of continuous functions. Nevertheless, the space L∞(Rn) only captures
the local properties of functions from V s,A

d (Rn). In order to describe also the global
behavior of these functions, we improve the above-mentioned result by determining
the best possible Orlicz target spaces as well as the best possible rearrangement-
invariant target spaces for the embeddings of the spaces V s,A

d (Rn). In this way, we
again obtain the expected fractional analogues of the known integer-order results.
Our proofs are based on a reduction to the subcritical growth regime, discussed in the
paper [A], deriving thus the optimal supercritical embeddings from the subcritical
ones.
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3.3 [C] A sharp version of the Hörmander multiplier theo-
rem

In this paper, we establish a variant of the multiplier theorem by Calderón and
Torchinski [8] (see condition (2.9)) in which the fractional Sobolev space Lr

s(Rn) is

replaced by the fractional Lorentz-Sobolev space L
n
s
,1

s (Rn). This is the best pos-
sible result one can expect within the framework of the fractional Sobolev spaces
of the form (2.5). Namely, the symbol of each Fourier multiplier operator neces-
sarily needs to be bounded, and the Lorentz space L

n
s
,1(Rn) is locally the largest

rearrangement-invariant space for which the associated s-th order Sobolev space,
defined as in (2.5), is embedded into L∞(Rn), see [17, 64]. Our proofs rely cru-

cially on the above-mentioned sharp Sobolev embedding L
n
s
,1

s (Rn) ↪→ L∞(Rn) but
also require a refinement of other classical tools of Fourier analysis into the Lorentz
framework.

Connecting the result of the article [C] to the research conducted in [A] and [B],
it would be of interest to investigate whether analogous multiplier theorems can
be formulated by making use of Sobolev spaces from the V -scale. One principle
obstacle towards achieving this goal is that it is not entirely clear what the correct
definition of the fractional Lorentz-Sobolev space should be in this setting.

3.4 [D] On the failure of the Hörmander multiplier theorem
in a limiting case

This paper deals with the question whether the version of the Hörmander multiplier
theorem obtained by Calderón and Torchinski [8] holds in the limiting case

s

n
=

∣∣∣∣1p − 1

2

∣∣∣∣ . (3.3)

We answer this question negatively, and our counterexample in fact works not only
for the multiplier theorem formulated via the condition (2.9), but also for its variant
involving the Lorentz-Sobolev space Lr,q

s (Rn) with arbitrary parameters r ∈ (1,∞)
and q ∈ [1,∞]. Our proof uses the randomization technique in the spirit of [68,
Chapter 4], which was further developed in [36] and [F].

It is worth recalling that condition (2.9) is well known not to be sufficient for
the Lp-boundedness of the associated Fourier multiplier operator if s/n is strictly
smaller than |1/p−1/2|, see [36, 43, 56, 57, 67]. However, the validity of the theorem
in the limiting case (3.3) remained unknown and the corresponding Lorentz-Sobolev
variant of this question was mentioned as an open problem in [63]. At the same
time, a number of questions regarding the limiting behavior of Fourier multiplier
operators still remains unresolved, see the discussion in [63, Appendix A].

3.5 [E] A sharp variant of the Marcinkiewicz theorem with
multipliers in Sobolev spaces of Lorentz type

In this paper, we establish a multiparameter variant of the result from [C], which
can also be understood as a sharp version of the classical Marcinkiewicz multiplier
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theorem [53]. We first recall the fractional variant of the Marcinkiewicz theorem
established by Carbery and Seeger [9], which asserts that the condition

sup
(k1,...,kn)∈Zn

∥(I − ∂21)
s
2 . . . (I − ∂2n)

s
2 [ψ(ξ1) . . . ψ(ξn)m(2k1ξ1, . . . , 2

knξn)]∥Lr(Rn) <∞

(3.4)
guarantees the Lp-boundedness of the associated Fourier multiplier operator Tm as
long as 1 < p <∞ and

s >

∣∣∣∣1p − 1

2

∣∣∣∣ =
1

r
.

Here, (I − ∂2i )
s
2 stands for the fractional Laplace operator in the i-th variable, given

by multiplication by (1 + 4π2ξ2i )
s
2 on the Fourier transform side. Further, ψ is a

smooth function on R supported in the union of the intervals [−2,−1/2] and [1/2, 2].
In analogy with the paper [C], we provide an improvement of the Marcinkiewicz
multiplier theorem in which the Lebesgue space Lr(Rn) in condition (3.4) is replaced
by a suitable Lorentz space. Notably, the variant of (3.4) with Lr(Rn) replaced by

L
1
s
,1(Rn) fails to be sufficient for the Lp-boundedness of Tm due to the failure of the

corresponding multiparameter Sobolev embedding into L∞(Rn). Nevertheless, we
establish a positive result by making use of a slightly smaller Lorentz-type space
whose norm is equivalent to the functional∫ ∞

0

f ∗(t)ts logβ

(
e+

1

t

)
dt

t
,

where s ∈ (0, 1/2] and β > (1−s)n. We note that the function space that should be
expected to come into play in view of a sharp multiparameter Sobolev embedding
into L∞(Rn) has the form as above with β = (1 − s)n. It remains an open problem
whether the corresponding multiplier theorem holds in this limiting case.

3.6 [F] L2 × L2 → L1 boundedness criteria

In this paper, we establish a sharp criterion for the L2 × L2 → L1 boundedness of
bilinear Fourier multiplier operators of the form (2.11) with m = 2, associated with a
kernel K whose Fourier transform has bounded partial derivatives of all orders. Our
condition requires the symbol K̂ to belong to the Lebesgue space Lr(Rn) for some
r < 4, the L4-integrability being no longer sufficient. This optimal range should be
compared with r = ∞ in the well-known Plancherel criterion for the L2-boundedness
of linear Fourier multipliers. As an application, we establish the L2 × L2 → L1

boundedness of bilinear singular integral operators associated with homogeneous
kernels whose restriction to the unit sphere belongs to Lq(S2n−1) for q > 4/3. The
sufficiency part of our proofs is based on a refinement of the wavelet decomposition
technique introduced in [38] while the constructions showing the sharpness of the
results are inspired by those from [37].

3.7 [G] Multilinear singular integrals with homogeneous ker-
nels near L1

In this paper, we obtain the optimal open range of Lp1(Rn)×· · ·×Lpm(Rn) → Lp(Rn)
bounds for m-linear singular integral operators of the form (2.11) associated with ho-
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mogeneous kernels whose restriction Ω to the unit sphere Smn−1 belongs to Lq(Smn−1)
for some q > 1. This improves various earlier results, which required the lower bound
q > 4/3 in the bilinear setting [F], [42], or q ≥ 2 in the multilinear setting [39]. Our
proofs build on the earlier estimates from [39, 42] and combine them, via complex
interpolation, with a new estimate obtained by making use of boundedness proper-
ties of shifted maximal and square functions. Bounds for the latter two operators
have been applied before in connection with similar problems; see, e.g., Muscalu’s
alternative proof of the boundedness of Calderón’s commutators [59, 60].

While the paper [G] largely settles the question of the strong-type boundedness
of the operators (2.11) under the assumptions discussed above, some questions still
remain open regarding weak endpoint bounds. In addition, the situation when Ω
does not belong to any Lebesgue space Lq(Smn−1) for q > 1, but merely to some
Orlicz space close to L1(Smn−1), such as L logL(Smn−1), is not yet well understood.

3.8 [H] Local bounds for singular Brascamp-Lieb forms with
cubical structure

In this paper, we study boundedness properties of the 2m-linear form

p. v.

∫
R2m

∏
j∈C

Fj(Πjx)K(Πx) dx. (3.5)

Here, C is the set of functions j : {1, . . . ,m} → {0, 1}, Πj is the projection from
R2m to Rm given by

Πj(x
0
1, . . . , x

0
m, x

1
1, . . . , x

1
m)T = (x

j(1)
1 , . . . , xj(m)

m )T

and Π : R2m → Rm is a generic surjection. We note that the form (3.5) reduces
to (2.18) when m = 2. We also point out that each function j ∈ C can be identified
with a corner of the m-dimensional unit cube [0, 1]m, explaining thus the name
cubical structure.

As the main result, we establish the bound∣∣∣∣∣p. v.
∫
R2m

∏
j∈C

Fj(Πjx)K(Πx) dx

∣∣∣∣∣ ≤ C
∏
j∈C

∥Fj∥Lpj (Rm), (3.6)

where pj > 2m−1 for each j ∈ C and
∑

j∈C 1/pj = 1. This result is obtained as a con-
sequence of suitable local bounds involving a new type of a strong maximal function.
This operator is a hybrid case between the strong maximal function and the stan-
dard Hardy-Littlewood maximal function, featuring the multiparameter structure
of the former while preserving the endpoint boundedness properties of the latter.

We note that the lower bound pj > 2m−1 is optimal, in the sense that the
same condition with 2m−1 replaced by any lower number is no longer sufficient
for the validity of the estimate (3.6). However, the optimal range of exponents
for which (3.6) holds remains unknown, as it may be possible to lower some of
the exponents pj at the expense of adding additional constraints on the remaining
exponents.
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3.9 [I] Norm-variation of triple ergodic averages for com-
muting transformations

In this paper, we establish the following norm-variation estimate for triple ergodic
averages with respect to three commuting transformations:

J∑
j=1

∥Mnj
(f, g, h) −Mnj−1

(f, g, h)∥rL2(X) ≤ C∥f∥rL6(X)∥g∥rL6(X)∥h∥rL6(X). (3.7)

Here, n0 < n1 < · · · < nJ is a sequence of positive integers and r > 4. By a standard
transference, this result reduces to estimating the six-linear singular Brascamp-Lieb
form

p. v.

∫
R5

f1(x
0
3, x1, x2)f2(x

1
3, x1, x2)f3(x0, x

0
3, x2)f4(x0, x

1
3, x2)f5(x0, x1, x

0
3)f6(x0, x1, x

1
3)

(3.8)
×K(x03 − x0 − x1 − x2, x

1
3 − x0 − x1 − x2) dx0dx1dx2dx

0
3dx

1
3.

Unlike its quadrilinear variant (2.17), this form no longer has a cubical structure
and any bounds for it appear to be out of reach of current techniques. This fact
prevents us from proving the estimate (3.7) with r = 2, the conjectured optimal
bound. However, when the kernel K consists of only finitely many scales then we
are able to estimate the form (3.8), up to a certain controlled loss in the number of
scales, by the eight-linear form as in (3.5) with m = 3, leading to the bound (3.7)
with r > 4. We also note that it is still an open problem whether any r-variation
estimates with r <∞ hold for four or more commuting transformations.
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convergence of certain continuous-time double ergodic averages”. In: Ergodic
Theory Dynam. Systems 42.7 (2022), pp. 2270–2280. issn: 0143-3857,1469-
4417. doi: 10.1017/etds.2021.45.

[13] Andrea Cianchi. “A sharp embedding theorem for Orlicz-Sobolev spaces”. In:
Indiana Univ. Math. J. 45.1 (1996), pp. 39–65. issn: 0022-2518,1943-5258.
doi: 10.1512/iumj.1996.45.1958.

20



[14] Andrea Cianchi. “Boundedness of solutions to variational problems under gen-
eral growth conditions”. In: Comm. Partial Differential Equations 22.9-10
(1997), pp. 1629–1646. issn: 0360-5302,1532-4133. doi: 10.1080/03605309708821313.

[15] Andrea Cianchi. “Optimal Orlicz-Sobolev embeddings”. In: Rev. Mat. Iberoamer-
icana 20.2 (2004), pp. 427–474. issn: 0213-2230. doi: 10.4171/RMI/396.

[16] Andrea Cianchi. “Higher-order Sobolev and Poincaré inequalities in Orlicz
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