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Chapter 1

Introduction

What is a critical phenomenon in quantum mechanics, and what are its signatures?
How does the criticality affect quantum states, their energies and average density of
energy levels, their dynamics when the system’s control parameters are varied, and
the quantum thermodynamics? What is the connection between quantum criticality
and quantum chaos? What are the ways to study quantum chaos in interacting
nonintegrable systems that depend nontrivially on tunable parameters, such as the
strength of an external field or intensity of internal coupling? And, finally, what shall
we learn if we extend the control parameters or other inherently real quantities into the
complex domain, making the quantum Hamiltonian non-Hermitian and the energy
spectrum complex? I have been working on finding answers to these questions and
elaborating the relevant theory during the last decade and this thesis is intended as a
concise introduction to the research areas I have contributed to and as a summary of
obtained results.

The thesis consists of two parts. The first part is divided into three main chapters
(excluding the current introductory chapter and the Summary). Chapter 2 is focused
on the critical phenomena in quantum systems, namely on the concept of the Excite-
State Quantum Phase Transitions (abbreviated in the text as ESQPTs) as a natural
extension of the Quantum Phase Transitions (QPTs). The presence of an ESQPT in
the system leads to nonanalytic behaviour in the bulk spectral properties, especially
in the smooth level density. The nonanalyticities are related to the stationary points
in the classical limit of the quantum Hamiltonian and we expose a general theory of
this connection. Besides static consequences imprinted in the spectral singularities,
there are also dynamic consequences manifested, for instance, in quantum quench
dynamics and parametric driving. Finally, Chapter 2 introduces miscellaneous models
to demonstrate the theoretical conclusions and their consequences; the models are
also used in later chapters.

Another broad branch of our research is quantum chaos, especially classical-
quantum correspondence in chaos theory and the relation between the chaos theory
and the presence of ESQPTs in systems whose chaoticity strongly depends both on en-
ergy and tunable parameters. This story is told in Chapter 3, the focus being laid on the
recent results of the short-time and asymptotic behaviour of the Out-of-Time-Ordered
Correlators (OTOCs) and their use as chaos indicators.

The third topic, discussed in Chapter 4, is related to various ways of extending
quantum mechanics by introducing non-Hermitian interactions and by complexifying
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CHAPTER 1. INTRODUCTION

some primarily real quantities. We connect the properties of complex degeneracies in
the spectra of non-Hermitically extended Hamiltonians—the exceptional points—to
the QPTs, both in bound systems with a discrete spectrum and in systems where the
non-Hermiticity models an opening of decay channels into the continuum. We also
extend the concept of the ESQPTs into unbound scattering systems, which brings
along a nontrivial complex extension of the continuum level density, tightly related
with complex phase shift and complex tunnelling time with a surprising classical
interpretation.

The second part of this thesis contains 13 appendices that, for better reader comfort,
reprint the most relevant publications written by the author. The appendices are
referred to in appropriate places throughout the main chapters. All the papers that
appear in the apendices have been published in international peer-reviewed journals,
primarily in Physical Review journals (19 papers), Journal of Physics A: Mathematical
and Theoretical (4 papers), Annals of Physics (3 papers), Physica Scripta (3 papers) and
Physics Letters A (2 papers). Note that the Appendices contain selected original papers
and do not provide an exhaustive list of publications that the author wrote during
the period that the thesis covers; all the author’s publications [1–55] (in chronological
order) are listed in the List of Author’s Publications.

The aim of the main text is not to explain the theory and all its consequences in
detail. More likely, it intends to give a comprehensible overview of the research topics,
supplemented by facts and bits of information and analyses that have not appeared in
the published works. On one hand, it is complementary to the original papers given
in the Appendices. On the other hand, it provides enough information and a taster
of the author’s research interests for those who only have access to the version of the
thesis without embedded full versions of the articles in the Appendices.

The work presented here was performed within several working groups and in
tight collaboration with other scientists ranging from students and junior researchers
to senior researchers and recognised professors. A significant part of the results is
a product of my long collaboration with the Instituto de Ciencias Nucleares in the
Universidad Nacional Autónoma de México, where I spent two years as a postdoctoral
fellow and later another year in a tenure-track position as an academic researcher,
working tightly with the groups of Prof. Alejandro Frank and Prof. Jorge Hirsch.
Another institution where I spent thirteen months as a postdoc and to which I am
grateful for the generous support is the European Centre for Theoretical Studies in
Nuclear Physics and Related Areas (ECT*), Trento, Italy. The rest of the work has
been done in my alma mater, the Institute of Particle and Nuclear Physics at the
Faculty of Mathematics and Physics, Charles University, Prague, in a working group
centred around Prof. Pavel Cejnar. I have been working there full-time as an academic
researcher since 2014.

Generally, the research summarised in this thesis can be described as purely theoret-
ical, accompanied by extensive numerical demonstrations of the theoretical concepts
and numerical analyses of phenomena unavailable to the analytical study. The systems
and models employed in our studies are often simple toy models with a few degrees
of freedom, whose initial purpose was to describe the essence of collective motion in
many-body systems ranging from atomic nuclei and molecules to interacting optical
systems, and we have often used them outside the range of their original physical
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CHAPTER 1. INTRODUCTION

validity. It needs to be emphasised, however, that this research has become more and
more experimentally relevant with the current boom of quantum technologies and
quantum simulators (aptly dubbed quantum inspirators [56]) that allow for artificially
constructing and measuring systems that behave according to pre-described, and usu-
ally simple, Hamiltonians. Possible or actual experimental realisation of the described
phenomena will be given at corresponding places in the text.
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Chapter 2

Excited-State Quantum Phase
Transitions

Listen up y’all, I got a story to tell
’Bout a quantum phenomenon, that’s straight outta hell
Excited-state quantum phase transition, that’s the name
A change so sudden, it’s driving physics insane

ChatGPT, hip-hop style text on ESQPTs

An Excited-State Quantum Phase Transition (ESPQTs) extends the concept of a
quantum critical phenomenon called a Quantum Phase Transition (QPT). The QPT is
related to an abrupt, nonanalytic change in the ground-state properties of an isolated
bound quantum system at zero temperature, under a change of the nonthermal control
parameters 𝝀 = (𝜆1, . . . , 𝜆𝑛), 𝑛 = 1, . . . , 𝑁p (𝑁p denotes the total number of external
tunable parameters) in the infinite-size limit N → ∞ [57, 58] (the size parameter N
will be introduced in Section 2.1.3). The parameters 𝝀 can describe the strength of
external fields or variations of internal coupling constants. We shall focus on systems
whose Hamiltonians depend linearly on the control parameters,1

Ĥ(𝝀) = Ĥ0 +
𝑁p∑︁
𝑛=1

𝜆𝑛V̂𝑛, (2.1)

where Ĥ0 is considered a free (non-interacting) Hamiltonian and operators V̂𝑛 charac-
tersise perturbations, interactions between the constituents of the system, or interac-
tions with external fields, and does not commute with the free Hamiltonian,[

Ĥ0, V̂𝑛
]
= 0. (2.2)

Often, the main essence of the critical phenomena can be demonstrated in systems
with just one control parameter,2

Ĥ(𝜆) = Ĥ0 + 𝜆V̂, 𝜆 ∈ R. (2.3)
1There will be some exceptions, for example, parameter 𝜒 in the Lipkin model (2.37).
2Multiparameter Hamiltonians have been a subject of our recent studies on an optimal quantum

driving [51, 54].
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CHAPTER 2. ESQPTS

Another possible and frequently used parametrisation is

Ĥ(𝜆) = 𝜆Ĥ1 + (1 − 𝜆) Ĥ2, 𝜆 ∈ [0, 1], (2.4)

which describes a transition between two different system configurations, each be-
longing to a different symmetry. The two parametrisations (2.3) and (2.4) are equiv-
alent and can be mapped one onto the other by the simple transformation Ĥ2 ≡ Ĥ0,
Ĥ1 − Ĥ2 ≡ V̂.

The QPT occurs at a particular critical value of 𝜆 ≡ 𝜆𝑐 and, following the standard
Ehrenfest classification of the thermal phase transitions [59] based on the behaviour of
the thermodynamic free energy, one can speak about a first-order QPT and a second-
order (or continuous) QPT, if the ground-state function 𝐸gs(𝜆), in the infinite-size
and zero-temperature limit of the system, exhibits a singularity in the first or second
derivative, respectively [7, 57]. One can also study the behaviour of an order parameter
𝑜 associated with the expectation value of an operator Ô in the ground state; the order
parameter is discontinuous at the first-order QPT and has a discontinuous derivative
at the second-order QPT. An example of an order parameter is the magnetisation
in the ferromagnetic-paramagnetic phase transition, or the quadrupole deformation
parameter in the nuclear shape transitions, given as an example later.

Another prominent feature of the QPTs is a tight gap between the ground state
and the first excited state. The gap gets narrower rapidly as the system size grows
and closes at N → ∞, diminishing exponentially in the case of a first-order QPT, and
algebraically in a second-order QPT. A quantum level dynamics in a finite system
is shown in Figures 2.2 and 2.3 as an illustration of the precursors of the first-order
and second-order QPTs, respectively, where the closing gap is obvious. Note that the
tight proximity of the states is a significant obstacle to the preparation of a desired
quantum state via adiabatic driving, which consists of initiating the system in an
eigenstate of the “free” Hamiltonian Ĥ0 (usually in the ground state), followed by a
slow change of the parameters 𝝀 into the desired configuration Ĥ. The driving must
be sufficiently slow to avoid transitions into excited states, and, roughly, the driving
time is proportional to the square of the minimum spectral gap, 𝑇 ∝ (𝐸1 − 𝐸gs)−2, as
the adiabatic theorem requires. This procedure of state preparation is the essence of
the so-called adiabatic quantum computer [60].

In order to illustrate the phenomenon of the QPTs in an easily conceivable phys-
ical system, consider the shape phase transition in the ground-state deformation of
atomic nuclei. A nucleus with a sufficiently high number of nucleons can be ap-
proximately described by collective coordinates, in which it is spherical near nuclear
magic numbers and becomes deformed when the number of valence nucleons (or
holes) is high enough. Hence, the number of valence nucleons can serve as the control
parameter, whereas the (quadrupole) deformation parameter plays the role of the
order parameter.

There are several pieces of experimental evidence for the nuclear ground-shape
transition, two of which are presented in Figure 2.1. Panel (a) shows the two-neutron
separation energies

𝑆2n(𝑍, 𝑁) = 𝑀 (𝑍, 𝑁 − 2)𝑐2 − 𝑀 (𝑍, 𝑁)𝑐2 + 2𝑀n𝑐
2, (2.5)

relating masses 𝑀 of second-neighbouring isotopes with proton number 𝑍 and neu-
tron number 𝑁 and 𝑁 − 2 (𝑀n denotes the mass of the neutron and 𝑐 is the speed
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Figure 2.1: (a) Two-neutron separation energies for selected isotopic chains, calculated
from the most recent Atomic Mass Evaluation AME 2020 [61, 62]. Regions of well-
deformed nuclei are marked by a grey background. The inset indicates the region of the
isotopes in the context of the whole nuclear chart. Adapted from [35]. (b) Deformation
parameter for lanthanide and actinide nuclei. Adapted from [23]. The nuclear magic
numbers are shown in green dashed lines.

of light). The general decreasing trend is explained by the symmetry term of the
Bethe-Weizsäcker formula [63] and the sudden drops at magic numbers by shell ef-
fects. However, there are obvious irregularities where the spherical-deformed shape
transitions for individual isotopic chains occur (the well-deformed nuclei are high-
lighted by the grey background) that have been explained by the presence of the shape
transition [64].

Panel (b) shows the order parameter—the quadrupole deformation parameter 𝛽𝑄—
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CHAPTER 2. ESQPTS

calculated from the experimental electric quadrupole moments 𝑄 [65]. One observes
an obvious transition from the spherical shapes at the neutron magic number 𝑁 = 82
to the deformed shapes for 𝑁 ⪆ 85. This spherical-deformed phase transition is often
modelled as the second-order QPT, whereas the prolate-oblate shape transition is of
the first order with a discontinuous jump in the order parameter; see, for instance,
the gold or iridium isotopic chains near 𝑁 ≈ 110. Why there are in general much
fewer oblate nuclei than prolate, is another important and not yet fully-answered
question [23].

A curious reader will find more information in the vast literature on various aspects
of the QPTs in nuclei. For reviews and a rich source of original references, see [66] or
Chapter 27 of [58]. Note, however, that due to the small number of valence nucleons,
only smooth QPT precursors are observed instead of QPT nonanalyticities.

Let us turn now to the excited part of the quantum spectrum. As already mentioned,
the ESQPT is an extension of the QPT critical phenomena to the excited domain,
usually high above the system’s ground state. Since the adequately rescaled energy
spectrum in the infinite-size limit N → ∞ becomes infinitely dense, it is virtually
impossible to study the properties of an individual excited state. Instead, it turns
out that convenient quantities to study the ESQPT phenomenon are the density of
quantum levels 𝜌(𝜆; 𝐸), or more precisely, its smooth part �̄�(𝜆; 𝐸), and the related
smooth flow of the spectrum 𝜙(𝜆; 𝐸), both properly introduced later in Sections 2.1.1
and 2.1.2. The ESQPT occurs on the critical borderline 𝐸c(𝝀) in the 𝜆 × 𝐸 plane. The
borderlines often, but not necessarily always, originate in the QPT of the system,3

see Figures 2.2—2.5, and can be explained by the presence of stationary points in the
classical Hamiltonian function (Section 2.1) or by the compactness of the classical
phase space (Section C).

As for the history of the ESQPTs, their presence was described for the first time in
the Interacting Boson Model [67] (IBM)—a model of collective nuclear motions based
on the dynamical algebra u(6)—and later revealed in other algebraic models with 𝑓 = 1
effective number of degrees of freedom [68], where also a firmer theoretical ground of
the ESQPTs was established. The first contribution of the author of this thesis was the
case study of simple 𝑓 = 1 and 𝑓 = 2 systems [7], which was elaborated, extended and
systematised later [29] (reprinted in Appendix A), still for systems with a small number
of degrees of freedom. The finite-size effects, manifesting when the characteristic
frequencies of motion in individual degrees of freedom are strongly imbalanced,
and the relation between the ESQPTs and chaos theory was studied in the follow-up
paper [30] (reprinted in Appendix B). A key paper [34] (reprinted in Appendix D and
summarised in Section 2.1) offers a rigorous classification of the ESQPT singularities
based on the type of stationary points in the system’s classical limit and the number of
degrees of freedom. Canonical and microcanonical thermodynamics in the presence
of the ESQPTs was analysed in [36] (reprinted in Appendix E).

The study of the ESQPTs was later extended to the optical Rabi model and Dicke
model of atom-field interaction [37, 38, 50], which have been experimentally realised
and extensively tested [69–73]. Within these models, we analysed the quantum quench
dynamics [40, 48] and discovered a robust stabilising effect of particular ESQPTs on the
quench dynamics [50]. The phase space border in compact systems as another source of

3Counterexamples are given in this thesis in Section 2.2.4 or in Reference [50].
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CHAPTER 2. ESQPTS 2.1. THEORY

the ESQPT singularities was revealed and discussed in [42] (reprinted in Appendix C).
The ESQPT concept was also applied to quantum tunnelling through multibarrier
one-dimensional potentials, and the singularities in the complex continuum level
density were connected to the singularities in the complex time shift [46, 49] (reprinted
in Appendices J and K). Recently, a review has been published by our group [47],
which contains updated and the most comprehensive information on ESQPTs and an
exhaustive list of references. The latest result in this field is an attempt to find common
ground for the ESQPT and the Dynamical Quantum Phase Transitions (DQPTs) [74]
by analysing the distribution of zeros of the quantum survival amplitude for times
extended into the complex domain [52].

This chapter introduces and summarises the theory of the ESQPTs (Section 2.1),
especially their static properties, and demonstrates the manifestations of the ESQPT
phenomenon on various systems with 𝑓 = 1 and 𝑓 = 2 degrees of freedom (Section 2.2).

2.1 Theory

Let us consider a bound quantum system with 𝑓 degrees of freedom described by a
time-independent Hamiltonian Ĥ(𝜆) that depends on a single control parameter 𝜆.
The discrete eigenenergies 𝐸𝑛 (𝜆), 𝑛 = 0, 1, 2, . . . of the Hamiltonian are given by the
solution of the stationary Schrödinger equation

Ĥ(𝜆) |𝐸𝑛 (𝜆)⟩ = 𝐸𝑛 (𝜆) |𝐸𝑛 (𝜆)⟩ , (2.6)

where |𝐸𝑛 (𝜆)⟩ are eigenstates corresponding to 𝐸𝑛. The eigenenergies are ordered:
𝐸𝑛 ≤ 𝐸𝑚 for 𝑛 < 𝑚. The ground state 𝐸0 will be usually denoted as 𝐸gs.

2.1.1 Level density

The level density of the system is generally given by the formula

𝜌(𝜆; 𝐸) =
∑︁
𝑛

𝛿(𝐸 − 𝐸𝑛 (𝝀)), (2.7)

where 𝐸𝑛 are the discrete eigenenergies of the system (2.6) and 𝛿 is the Dirac function.
The level density can be written as a sum of a smooth and an oscillatory component [75]

𝜌(𝜆; 𝐸) = �̄�(𝜆; 𝐸) + �̃�(𝜆; 𝐸). (2.8)

The smooth part of the level density �̄�(𝜆; 𝐸) is given by an energy derivative of the
Liouville measure of the classical phase space (volume function), attributed as the
Thomas-Fermi formula or Weyl formula [76],

�̄�(𝜆; 𝐸) =
(
N
2𝜋

) 𝑓
𝜕

𝜕𝐸

∫
𝐻 (𝜆;𝒙)<𝐸

d2 𝑓 𝒙, (2.9)

where 𝐻 (𝜆; 𝒙) is the classical limit of the quantum Hamiltonian, 𝒙 = (𝒒, 𝒑) specifies
a point in the 2 𝑓 -dimensional phase space of canonically conjugated positions 𝒒
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2.1. THEORY CHAPTER 2. ESQPTS

and momenta 𝒑, and N is a size parameter of the system (more on that later in
Section 2.1.3). In practice, the approximation of the smooth level density can be
obtained from the quantum energy spectrum by blurring the 𝛿 functions in (2.7), for
example, by replacing them with Gaussians of width larger than the local mean level
spacing, see Appendices A and B.

The oscillatory level density is given by the trace formulae [77] and is crucial in the
semiclassical theory of quantum chaos. Although the oscillations can be pretty wild
and become faster with increasing system size, they have a zero mean and hence can
be neglected in the N → ∞ limit.

The smooth component of the level density can develop singularities even if the
classical Hamiltonian 𝐻 (𝒙) is an analytic function on the phase-space manifold M.
It turns out that the singularities are caused by the presence of stationary points4

𝒔( 𝑗) , 𝑗 = 1, . . . , 𝑁s, where 𝑁s is the number of isolated stationary points. In the following
text, we shall assume that 𝑁s is finite.5,6

The stationary points are given by a set of 2 𝑓 algebraic equations

𝜕𝐻 (𝒙)
𝜕𝑥𝑘

����
𝒙=𝒔 ( 𝑗 )

= 0, 𝑘 = 1, . . . , 2 𝑓 . (2.11)

The stationary point at 𝒔( 𝑗) is called nondegenerate if

det h(𝒔( 𝑗)) ≠ 0, (2.12)

where

h𝑘𝑙 (𝒙) ≡
𝜕2𝐻 (𝒙)
𝜕𝑥𝑘𝜕𝑥𝑙

(2.13)

are the components of the Hessian matrix. Then, according to the Morse theory [78–
81], the Hamiltonian function 𝐻 (𝒙) can be expressed as a quadratic form in a new set
of orthogonal coordinates constructed in the vicinity of the stationary point,

𝐻𝒔 ( 𝑗 ) (𝒚) = 𝐻 (𝒔( 𝑗)) − 𝑦2
1 − · · · − 𝑦2

𝑟 + 𝑦2
𝑟+1 + · · · + 𝑦2

2 𝑓 . (2.14)

The integer number 𝑟 ∈ {0, 1, . . . , 2 𝑓 }, called index of the nondegenerate stationary
point, counts the number of the negative eigenvalues of the Hessian matrix.

For a Hamiltonian in the standard form,

𝐻 (𝒙) = 𝒑2

2𝑀
+ V(𝒙), (2.15)

4These points are also called critical points in the literature. To avoid confusion, we shall reserve the
attribute critical for situations when the system exhibits a critical behaviour at the QPTs or ESQPTs.

5Note that in the case of degenerate stationary points, there can even be a continuum of stationary
points. An example is the standard-form Hamiltonian with the so-called Mexican hat (champagne
bottle) potential

V(𝑥, 𝑦) =
(
𝑥2 + 𝑦2

)2
− 2

(
𝑥2 + 𝑦2

)
, (2.10)

where the whole unit circle 𝑥2 + 𝑦2 = 1 is a minimum of the potential. Still, due to the separability, this
kind of stationary point can be counted as one.

6The dependence of the Hamiltonian on the external parameter(s) 𝜆 is not important here, and hence,
for the sake of simplicity, it will not be explicitly written from now on.
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quadratic in the momenta and with a potential depending on positions only, it is obvi-
ous that 𝑟 ≤ 𝑓 . On the other hand, as we shall see later, in the case of algebraic models
constructed from operators of some Lie algebra, the classical Hamiltonian function
can be much more complicated, the positions and momenta cannot be separated into
kinetic and potential terms, and the index 𝑟 can range up to 𝑟 = 2 𝑓 ; for an immediate
example of such Hamiltonians see Subsections 2.2.3 and 2.2.4 or Reference [50].

Let us now sketch the derivation of the level density singularities connected with a
nondegenerate stationary point 𝒔 of the classical Hamiltonian function 𝐻 (𝒙). In the
vicinity of energy of the stationary point, 𝐸𝒔 ≡ 𝐻 (𝒔), the smooth level density can
further be split into a sum of regular and irregular parts,

�̄�𝒔 (Δ) = �̄�
reg
𝒔 (Δ) + �̄�irr

𝒔 (Δ), (2.16)

where Δ ≡ 𝐸 − 𝐸𝒔 is small. The irregular part �̄�irr is calculated by integration over a
small phase-space neighbourhood around the stationary point, whereas the regular
part captures the smooth contribution to the level density given by the integration (2.9)
over the rest of the phase space. Therefore, the nonanalytic properties of the smooth
level density are entirely captured in the irregular part of the level density. Note that
there may be several isolated stationary points of different types with the same energy,
𝐸𝒔 ( 𝑗 ) = 𝐸𝒔 (𝑘 ) with 𝒔( 𝑗) ≠ 𝒔(𝑘) . However, let us not be bothered by this conspiracy, which
will, in the end, lead only to more than one irregular part in the sum (2.16).

The integration of (2.14) can be performed explicitly (see Appendix D), yielding

�̄�irr
𝒔 (Δ) =

(
N
2𝜋

) 𝑓 𝜎2 𝑓

2
√︁

det h(𝒔)
Θ(Δ)Δ 𝑓−1, 𝑟 = 0 (2.17a)

�̄�irr
𝒔 (Δ) =

(
N
2𝜋

) 𝑓 𝜎𝑟𝜎2 𝑓−𝑟

𝑟 (2 𝑓 − 𝑟)
√︁

det h(𝒔)

× 𝜕

𝜕Δ

{
Δ

2 𝑓 −𝑟
2 2𝐹1

(
𝑟

2
,−2 𝑓 − 𝑟

2
, 1 + 𝑟

2
;− 𝑦

2
−
Δ

)����𝑦−=√𝑒
𝑦−=Θ(−Δ)

√
|Δ|

}
, 𝑟 ≠ 0, (2.17b)

where 𝜎𝑑 = 2𝜋
𝑑
2 /Γ 𝑑2 is the surface area of a 𝑑-dimensional unit ball, Γ is the Euler

gamma function, Θ is the Heaviside step function, 2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) is the Gaussian
hypergeometric function and 𝑒 is a sufficiently small energy cutoff. The formulae (2.17)
can be further elaborated for 𝑟 even and odd,

�̄�irr
𝒔 (Δ) = 𝑔𝒔 (Δ) + 𝐶𝒔

N 𝑓√︁
det h(𝒔)

{
(−1)

𝑟
2 Θ(Δ)Δ 𝑓−1, 𝑟 even,

(−1)
𝑟+1

2 Δ 𝑓−1 ln |Δ| , 𝑟 odd,
(2.18)

where 𝑔𝒔 is a smooth function and 𝐶𝒔 is a positive constant. From the last expression, it
can be concluded that the lowest 𝑓 −2 derivatives of the smooth level density (2.16) are
continuous, but the ( 𝑓 −1)-th derivative is singular with either an upward (downward)
jump for 𝑟 even and 𝑟/2 even (odd), or an upward-pointing (downward-pointing)
logarithmic divergence for 𝑟 even and (𝑟 − 1)/2 even (odd),

d 𝑓−1 �̄�𝒔

d𝐸 𝑓−1
∝
{
(−1)

𝑟
2 Θ(Δ), 𝑟 even,

(−1)
𝑟+1

2 ln |Δ| , 𝑟 odd.
(2.19)
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If the system has just one degree of freedom, 𝑓 = 1, the corresponding singularity
induced by the nondegenerate stationary point appears in the level density itself and
be either an upward jump, a downward jump or an upward-pointing logarithmic
divergence.

Note that in some cases, for example in dispersion relations of lattice systems, 𝑓
can formally attain a half-integer value [34, 82, 83]. Still, Formula (2.17) remains valid
and leads to an algebraic divergence at the ⌈ 𝑓 − 1⌉-th derivative of the smooth level
density, where ⌈•⌉ indicates the ceiling function.

The analysis of degenerate stationary points is far more involved and must be
treated case by case. A classification can be developed for a particular class of separable
stationary points (see Appendix D); unfortunately, they form only a small subset of
all degenerate stationary points. The degenerate stationary points are often ignored
as being structurally unstable, which means that almost any perturbation of the
Hamiltonian transforms them into nondegenerate ones [82]. On top of that, functions
with degenerate stationary points make a subset of measure zero in a set of all possible
functions.

If a degenerate stationary point does appear in the model, its impact is usually
stronger than in the case of the nondegenerate points and can bring the singularities
to lower than ( 𝑓 − 1)-st derivatives of the level density. An example of a degenerate
stationary point is the quartic global minimum, often connected with the second-
order QPT, see, for instance, the CUSP model discussed in Section 2.2.1 and shown in
Figure 2.3.

2.1.2 Level flow

Instead of analysing the ESQPTs as singularities along the energy axis, we can take
advantage of the fact that our system is controlled by the parameter 𝜆 and turn from
the level density to the properties of the level dynamics 𝐸𝑛 (𝜆)—the dependence of the
quantum spectral lines on 𝜆 (see, for example Figures 2.2 and 2.3).

Besides the smooth level density �̄�(𝜆; 𝐸) we introduce the smooth flow rate 𝜙(𝜆; 𝐸)
as an average slope of the energy levels at a given point in the 𝜆 × 𝐸 plane. Both
quantities are related via the continuity equation

𝜕

𝜕𝜆
�̄�(𝜆; 𝐸) + 𝜕

𝜕𝐸
[ �̄�(𝜆; 𝐸)𝜙(𝜆; 𝐸)] = 0, (2.20)

which guarantees that ∫
�̄�(𝜆; 𝐸)d𝐸 = 0, (2.21)

reflecting the fact that the total number of energy levels is conserved as 𝜆 changes (the
levels do not appear, split or disappear).

At the critical borderline 𝐸c(𝝀) (𝜆) connected with an ESQPT, the flow rate exhibits
also a specific type of singularity. Its type can be derived from the continuity equa-
tion (2.20), see Appendix D. It turns out that, apart from some conspiratory cases
when either �̄� = 0 or the flow-rate direction is parallel with the critical borderline, the
singularity of both quantities at point (𝜆, 𝐸) is of the same type.

12
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If the system is described by the Hamiltonian linear in the control parameter (2.3),
then the smooth flow rate is, due to the Hellman-Feynman theorem, related to the
average expectation value of the interaction V̂,

𝜙(𝜆; 𝐸) =
〈
𝐸𝑛 (𝜆)

���V̂���𝐸𝑛 (𝜆)〉����
𝐸≃𝐸𝑛 (𝜆)

, (2.22)

see Appendix A and Reference [44].

2.1.3 System size

The system size and the appropriate size parameter N are essential to properly ap-
proach the infinite-size limit in which critical phenomena occur. In simple algebraic
models, represented, for instance, by the Lipkin u(2) model (Section 2.2.3) and the
vibron u(3) model (Section 2.2.4), the system size is naturally quantified by the total
number 𝑁 of excitations, which mathematically corresponds to the label of the fully
symmetric irreducible representation of the corresponding dynamical group U(2) and
U(3), respectively. In a system obtained by the canonical quantisation of a classical
Hamiltonian in the form (2.15), the size parameter is reciprocal to the Planck constant,

N ∝ 1
ℏ
. (2.23)

More specifically, a dimensionless quantity is obtained by including the characteristic
size and characteristic momentum of the system7 into the formula:

N =
𝑝ch𝑞ch

ℏ
. (2.25)

A more careful approach is necessary if the studied system consists of several
coupled subsystems with dramatically different sizes (an extremal case can be the Rabi
model, in which a single spin is coupled to an electromagnetic field and the classical
limit is performed in the field component only [50], or if the masses or frequencies in
individual degrees of freedom are several orders of magnitude from each other, as is
discussed in Appendix B.

2.2 Models

This section will present some simple low-dimensional models exhibiting the QPTs
and ESQPTs. The list of models archetypal for the ESQPT theory is not exhaustive;
the author of this thesis was also involved in studying the quantum criticality in the
Dicke model of superradiance [37, 38, 40, 41, 45, 48], in the Rabi model of atom-field
interaction [50] or the Interacting Boson Model (IBM) [42] of atomic nuclei, and there

7Or equivalently by considering the characteristic mass and energy

N =

√
𝑀𝐸ch𝑞ch

ℏ
. (2.24)
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are various other models properly introduced and exhaustively discussed elsewhere,
see the reviews on ESQPTs [47, 68]. The main aim of this chapter is to summarise the
basic properties of the models used in the papers reprinted in Appendices A—F and L
and to demonstrate the most prominent static aspects of the ESQPTs.

2.2.1 CUSP

The CUSP is a 𝑓 = 1 integrable system, whose name originates in the catastrophe
theory [84]. It has a standard Hamiltonian in the form (2.15). Its potential reads

V(𝑞) = 𝑞4 − 2𝐵𝑞2 + 𝐴𝑞, (2.26)

where two tunable parameters are 𝝀 = (𝐴, 𝐵) and the size parameter can be identified
with

N =

√
𝑀

ℏ
, (2.27)

where 𝑀 is the mass parameter of the kinetic term and ℏ the Planck constant. As
probably the simplest toy model to demonstrate the theoretical concepts of the ESQPTs,
it was used firstly in Reference [7] and later in the paper reprinted in Appendix A.
A separable multidimensional extension of this model was introduced in the papers
reprinted in Appendices D and E.

First-order QPT

If we fix 𝐵 > 0 and vary 𝐴, the system exhibits a first-order QPT at 𝐴 = 0. The level
dynamics—a set of curves 𝐸𝑛 (𝐴) connecting individual eigenlevels in the studied range
of 𝐴 values—is shown, for this regime of the CUSP system, in the lower panel of
Figure 2.2 by black and grey curves.

First, let us look at the ground state 𝐸gs(𝐴), highlighted by a thicker black line.
One immediately observes a change of direction (derivative) of 𝐸gs(𝐴) at 𝐴 = 0; the
derivative 𝐸′

gs(𝐴) = 𝜕𝐸gs/𝜕𝐴 is shown in the inset. This sudden change is a smooth
precursor of the first-order QPT; the nonanalyticity—the discontinuous jump in 𝐸′

gs—
will appear only in the infinite-size limit N → ∞.

Focusing on the excited part of the spectrum, we see that the energy levels flow
smoothly far to the left, right and top in the graph of the level dynamics. However,
they start to wiggle dramatically as they enter a well-defined approximate triangle in
the middle of the graph. One can deduce from the figure that the average level flow
and level density suddenly change when the edges of the triangle are crossed.

The edges of the triangle indicate the ESQPTs. Their exact location can be calculated
by finding the stationary points of the potential (2.26) and their energies, as described
in Section 2.1. The critical triangle is spanned between the spinodal and antispinodal
points

𝐴s = ±
√︂

64𝐵3

27
, (2.28)

marked in the graph by the red inverse-triangular points. At these points, the potential
undergoes a structural change. Outside the critical triangle, it has one minimum only.
However, inside the triangle, a pair of a local minimum and a local maximum appears,
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Figure 2.2: Lower panel: Level dynamics 𝐸𝑛 (𝜆) for the CUSP system (2.26) with 𝐵 = 1
and control parameter 𝜆 ≡ 𝐴. The ground state 𝐸gs(𝐴) is highlighted by the thick
black line; its derivative 𝐸′

gs ≡ 𝜕𝐸gs/𝜕𝐴 is displayed in the inset. The red dashed
curves indicate the positions of all the local extremes of the classical Hamiltonian
function. The red solid curve corresponds with the Hamiltonian global minimum.
The first-order QPT is shown by the red bullet. The spinodal points are marked by
the red inverse triangles. There are no real crossings of energy levels; all the apparent
crossings observed inside the critical triangle are avoided, which is demonstrated by
the evolution of the 6th excited state (yellow line). Upper panels: Classical potential
(orange colour) and smooth level density (blue colour) for three particular values of
the control parameter: 𝐴 ∈ {−2, 0, 0.5}. System size is N = 20.
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see the potential plotted by the orange curves in the upper panels of Figure 2.2. The
third vertex, highlighted by the red circle, is the QPT point (𝐴c, 𝐸c(𝝀)) = (0,−𝐵2), in
which both of the potential minima coincide.

The ESQPT critical borderlines are plotted by the dashed red curves in the main
panel of Figure 2.2. In the spinodal region |𝐴| < 𝐴s, the potential has a double-well
structure with a global minimum and a local one separated with a local maximum at
𝑞 ≈ 0, 𝐸 ≈ 0. When |𝐴| ≥ |𝐴𝑠 |, however, there is only one minimum and the ESQPT
structure is not present.

Due to finite-size quantum effects, the system’s ground state is situated slightly
above the critical borderlines. However, as the size of the quantum system grows,
the ground-state line approaches the critical borderline, and both lines coincide when
N → ∞.8

The levels inside the critical triangle form a mesh of seemingly intersecting lines.
However, there are no real crossings; all crossings are avoided [7] with tight gaps
between consecutive levels. The avoided crossings are demonstrated by the yellow
curve in the level dynamics of Figure 2.2 indicating the dynamics of the sixth excited
state: its evolution is monotonous outside the critical triangle, whereas inside the
triangle, it exhibits up-and-down motion from one avoided crossing to another [7].
Note that the avoided crossings can be easily locally modelled by a two-level system
with Hamiltonian ĥ = 𝛿�̂�3 + 𝜆�̂�1, where �̂�𝑘 , 𝑘 = 1, 2, 3 are Pauli matrices, 𝛿 ≠ 0 is
the width of the minimal gap and 𝜆 the tunable parameter. The width of the gap
exponentially diminishes with the height of the barrier separating both wells or
with the increase of the system size, as can be explained by the semiclassical Wetzel-
Kramers-Brillouin (WKB) approximation of the tunnelling from between the wells,
see Appendix F.

All the stationary points of this model are nondegenerate. The minima have index
𝑟 = 0, inducing jumps in the smooth level density, whereas the local maximum, if
present, has index 𝑟 = 1, leading to the logarithmic divergence. The smooth level
density, calculated by the Thomas-Fermi formula (2.9), is shown by the blue curves for
three values of the control parameter 𝐴 ∈ {−2, 0, 0.5} in the upper panels of Figure 2.2;
one can also easily compare the positions of the nonanalyticities on the level dynamics
with the positions of the potential stationary points.

The global minimum of the potential is indicated by the solid red curve. As was
mentioned earlier, the global minimum corresponds to the ground state in the N → ∞
limit and its position can hence serve as the QPT order parameter. At the QPT, where
both wells are equally deep (see the middle upper panel of Figure 2.2), the order
parameter discontinuously changes from 𝑞 > 0 for 𝐴 < 0 to 𝑞 < 0 for 𝐴 > 0, which is
consistent with the order of the QPT.

Second-order QPT

If, on the other hand, we fix 𝐴 = 0 and vary parameter 𝐵, a second-order QPT is
induced at 𝐵 = 0. The level dynamics and the potentials at three values of 𝐵 ∈
{−0.5, 0, 1} are depicted in Figure 2.3. In this case, the potential is an even function,

8The same effect is observed in other systems; however, in some systems, the ground state can
appear even below the critical borderline, as observed, for instance, in Figure 2.5 for the Lipkin model.
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𝑉 (𝑞) = 𝑉 (−𝑞), so the parity is conserved; the even parity levels are drawn in a darker
colour than the odd ones.
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Figure 2.3: Middle panel: Level dynamics 𝐸𝑛 (𝜆) for the CUSP system (2.26) with
𝐴 = 0 and control parameter 𝜆 ≡ 𝐵. The ground state 𝐸gs(𝐵) is highlighted by the thick
black line. The red dashed curves indicate the positions of all the stationary points
of the classical Hamiltonian function. The second-order QPT is shown by the red
bullet. States with even (odd) parity are plotted in black (grey). Top panels: Classical
potential for three particular values of the control parameter: 𝐵 ∈ {−0.5, 0, 1}. System
size is N = 20. Bottom panels: The first and the second derivative of the ground-state
function 𝐸gs(𝐵) for two system sizes.

The second-order QPT is often related to the transition from a single-well potential
with the global minimum at 𝑞 = 0 (usually called the normal or non-deformed phase) to a
symmetric double-well potential with two equally deep minima at |𝑞 | > 0 (the deformed
phase), separated by a local maximum at 𝑞 = 0, 𝑉 = 0. At the critical point 𝐵c = 0,
the stationary point of the global minimum is degenerate (quartic); see the middle
upper panel in Figure 2.3. The ground-state curve 𝐸gs(𝐵) and its first derivative
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𝐸′
gs(𝐵) = 𝜕𝐸gs/𝜕𝐵 seem rather smooth; however, the second derivative 𝐸′′

gs exhibit
a precursor of a jump at 𝐵 = 0. The jump becomes more prominent towards the
infinite-size limit, see the bottom panels in Figure 2.3.

There is an ESQPT at 𝐸 = 0 in the deformed phase, 𝐵 > 0, connected with the local
maximum between the two wells, inducing the logarithmic divergence in the smooth
level density (see the upper middle panel in Figure 2.2 that corresponds to the same
configuration as the upper right panel in Figure 2.3). This ESQPT separates a region of
quasi-degenerate parity dublets for 𝐸 < 0, which become fully degenerate in the limit
N → ∞, from a positive-energy region with parity states well separated in energy.

2.2.2 Creagh-Whelan model

This model is a 𝑓 = 2 nonintegrable extension of the simple CUSP model (2.26). It
is obtained by introducing a simple harmonic oscillator degree of freedom coupled
nonlinearly with the CUSP double-well system. The standard Hamiltonian (2.15) is
furnished with potential

V(𝑞1, 𝑞2) =
(
𝑞2

1 − 1
) 𝜅

− 1 + 𝐴𝑞1 +
(
𝐵𝑞1 + 𝐶𝑞2

1 + 𝐷
)
𝑞2

2, (2.29)

where 𝝀 = (𝐴, 𝐵, 𝐶, 𝐷) are external tunnable parameters and 𝜅 = 2, 4. The model was
originally introduced for 𝜅 = 4, 𝐴 = 𝐵 = 𝐷 = 0, 𝐶 = 1 only, to describe semiclassically
the quantum tunnelling in chaotic potentials [85].

The size parameter of the Creagh-Whelan model is given by the same formula as
for the CUSP, see (2.27). The critical triangle connected with the first-order QPT is
entirely governed by the control parameter 𝐴 and is also the same as for the CUSP
system, provided 𝜅 = 2 (compare the red dashed lines in Figures 2.2 and 2.4). The
Creagh-Whelan model in the parametrisation (2.29) is not capable of simulating a
second-order QPT.

As for the rest of the parameters in the Creagh-Whelan model, they do not affect
the critical behaviour. Parameter 𝐵 governs the 𝐴 ↔ −𝐴 asymmetry of the system,
parameter 𝐶 induces higher localization along the 𝑞2 axis, and 𝐷 localises the system
along the 𝑞1 axis.

The key difference between the CUSP and Creagh-Whelan model is the nonintegra-
bility, thus chaoticity, of the latter one.9 The amount of chaos quantified by the classical
fraction of regularity 𝑓reg is shown in Figure 2.4 by the shades of green; the more in-
tense the colour, the lower 𝑓reg and the higher the fraction of the phase-space energy
hypersurface filled by chaotic trajectories. Note that despite there appeared some
hints that there could be a tight connection between the ESQPT and a regularity-chaos
transition in the dynamics, this hypothesis has been disproved [30, 31].

Another important point studied in the Creagh-Whelan model is the approximate
separation of individual degrees of freedom, manifesting itself as multiple replicas
of the “CUSP-like critical triangles” with increasing excitation energy, see Figure 2.4.
These replicas induce oscillations observable in appropriately smoothed finite-size
level density. This effect, always present in highly detuned separable integrable
systems, i.e. systems with a significantly different frequency in each of the degrees of

9More on chaos is given in Chapter 3, where the fraction of regularity 𝑓reg is properly defined.
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Figure 2.4: Bottom panel: Level dynamics 𝐸𝑛 (𝜆) for the Creagh-Whelan system (2.29)
with 𝐵 = 20, 𝐶 = 𝐷 = 30 and control parameter 𝜆 ≡ 𝐴. The ground state is highlighted
by the thicker line. The first-order QPT is shown by the red bullet. Note that there are
no real crossings of energy levels due to the nonseparability of the Hamiltonian; all
the apparent crossings are avoided, including the crossings between various excited
critical triangles. Positions of all the stationary points of the classical Hamiltonian
function are indicated by the red dashed curves. The classical fraction of regularity
𝑓reg is shown in shades of green. Top panels: Classical potential for five particular
values of the control parameter 𝐴 (blue colour of the density plot corresponds to lower
values of the potential). System size is N = 12.5. The
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freedom, is rather persistent even when the separability is broken. For more details on
the approximate separability see Appendix B. Note also that an ultimate illustration
of the model properties is given by a vast amount of numerical results for immense
combinations of the control parameters in the author’s website [86].

2.2.3 Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick model [87–89], often simply called the Lipkin model, is an
algebraic model based on the dynamical u(2) algebra. It was originally introduced as
a system of 𝑁 fermions sitting on two energy levels. Still, it can also describe a bosonic
system of two interacting boson excitations or a fully connected set of 𝑁 interacting
two-level subsystems (spins, two-level atoms, etc.), all coupled to the maximum value
of the total angular momentum 𝑗 = 𝑁/2 [39, 47].

In the boson formalism, the Hamiltonian is constructed from four operators �̂�𝑘𝑙 ≡
b̂†
𝑘
b̂𝑙 , 𝑘, 𝑙 = 0, 1 that are bilinear products of two independent boson creation and

annihilation operators satisfying bosonic commutation relations[
b̂†
𝑗
, b̂𝑘

]
= 𝛿 𝑗 𝑘 , (2.30a)[

b̂†
𝑗
, b̂†

𝑘

]
= 0, (2.30b)[

b̂ 𝑗 , b̂𝑘
]
= 0. (2.30c)

The operators �̂�𝑘𝑙 form the u(2) algebra and generate the corresponding U(2)
group [90].

The Hamiltonian with one-body terms (describing, for example, an interaction
with an external field) and two-body terms (modelling the interaction between the
individual excitation in the system) reads

Ĥ =
∑︁
𝑘𝑙

𝑐𝑘𝑙 b̂†
𝑘
b̂𝑙 +

1
𝑁 − 1

∑︁
𝑘𝑙 𝑝𝑠

𝑑𝑘𝑙 𝑝𝑠b̂†
𝑘
b̂†
𝑙
b̂𝑝b̂𝑠, (2.31)

where 𝑐𝑘𝑙 and 𝑑𝑘𝑙 𝑝𝑠 are free parameters; note that they are not completely independent
due to the necessary hermiticity condition. The Hamiltonian commutes with the
operator

N̂ =
∑︁
𝑘

b̂†
𝑘
b̂𝑘 , (2.32)

of the total number of both types of boson excitations 𝑘 = 0, 1. This helps the theoretical
and numerical treatment of the model, as one can fix 𝑁 (the eigenvalue of N̂) and
relate it with the size parameter of the system,

N = 𝑁. (2.33)

The model has thus just 𝑓 = 1 degree of freedom.10

10Another possible interpretation is that the Lipkin model has 𝑓 = 2 degrees of freedom since there
are two independent boson excitations. Still, thanks to conserving N̂, one can restrict the analysis to one
particular subspace of the energy spectrum—a particular representation of the U(2) group.
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It is often more convenient to treat this model in the angular momentum formalism.
Both the angular momentum formalism and the boson formalism can be related via
the Jordan-Schwinger mapping

Ĵ1 =
1
2

(
b̂†

1b̂0 + b̂†
0b̂1

)
, (2.34a)

Ĵ2 =
i
2

(
b̂†

1b̂0 − b̂†
0b̂1

)
, (2.34b)

Ĵ3 =
1
2

(
b̂†

0b̂0 − b̂†
1b̂1

)
, (2.34c)

where Ĵ𝑘 , 𝑘 = 1, 2, 3 are Hermitian generators of the SU(2) group that satisfy the
standard commutation relations for the angular momentum,[

Ĵ𝑘 , Ĵ𝑙
]
= i𝜖𝑘𝑙𝑚Ĵ𝑚 . (2.35)

The corresponding Hilbert space is spanned over 2 𝑗 + 1 = 𝑁 + 1 states | 𝑗 , 𝑚⟩, 𝑚 =

− 𝑗 , . . . , 𝑗 that are eigenstates of

𝐽3 | 𝑗 , 𝑚⟩ = 𝑚 | 𝑗 , 𝑚⟩ , (2.36a)

𝐽2 | 𝑗 , 𝑚⟩ = 𝑗 ( 𝑗 + 1) | 𝑗 , 𝑚⟩ . (2.36b)

A particular version of the general Lipkin Hamiltonian (2.31) is the so-called 𝑄 −𝑄
consistent Hamiltonian, inspired by more sophisticated nuclear algebraic Hamiltoni-
ans [91]. It reads

Ĥ = E
{
(1 − 𝜆)

(
Ĵ3 +

𝑁

2

)
− 𝜆

𝑁

[
2Ĵ1 + 𝜒

(
Ĵ3 +

𝑁

2

)]2
}
, (2.37)

where E is an energy scale, in the theoretical studies usually taken as E ≡ 1 or
E ≡ 1/𝑁 , and 𝜆 ∈ [0, 1] and 𝜒 are tunable parameters.11 When 𝜒 = 0, the model can be
considered as an infinite-range-interaction limit of a spin chain in a magnetic field,

Ĥ = 𝐴

𝑁∑︁
𝑛=1

�̂�
(𝑛)
3

2
− 𝐵

𝑁

∑︁
𝑛<𝑚

1
|𝑚 − 𝑛|𝛾

�̂�
(𝑛)
1

2
�̂�

(𝑚)
1

2
, (2.38)

where �̂� (𝑛)
𝑘

, 𝑘 = 1, 2, 3 are the Pauli matrices corresponding to the spin at the 𝑛-th
site, 𝐴 quantifies the interaction of the spins with the external field in the 𝑧 direction,
𝐵 is the strength of a two-body interaction between the individual spins, and 𝛾 is the
range of the interaction: the limit 𝛾 → ∞ corresponds to the 1D Ising model with
nearest-neighbour interaction [92], whereas 𝛾 → 0 leads to the Lipkin model if one
identifies

Ĵ𝑘 =
1
2

𝑁∑︁
𝑛=1

�̂�
(𝑛)
𝑘
, 𝑘 = 1, 2, 3. (2.39)

11Note that this Hamiltonian depends quadratically on the control parameter 𝜒, so one has to be
careful when studying its properties when 𝜒 is varied since some part of the theory has been developed
under the linearity condition (2.3).
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The class of systems with an infinite-range interaction is often called fully-connected
systems. Note that the dimensionality of the Hilbert space of the fully-connected
Lipkin model12 grows linearly with the size of the system,

dimHLipkin = 𝑁 + 1, (2.40)

in contrast to the exponential dependence of the size in the Ising model

dimHIsing = 2𝑁 . (2.41)

Therefore, one can reach much bigger effective sizes in the collective dynamics of the
Lipkin model than in the Ising model with a local interaction.

The most general Hamiltonian with up to two-body interactions was analysed
in [93]. The Lipkin model in a slightly different parametrisation is employed in
papers [51, 54].

The classical limit of the Lipkin model (and of any boson models based on a higher
u(𝑛) algebra) is achieved by introducing the canonically conjugated coordinates and
momenta,

{
q̂ 𝑗 , p̂ 𝑗

}
, 𝑗 = 0, 1 ( 𝑗 = 0, 1, . . . , 𝑛 − 1 for a u(𝑛) model),

b̂ 𝑗 =

√︂
𝑁

2
(
q̂ 𝑗 − ip̂ 𝑗

)
, (2.42)

satisfying the commutation relations[
q̂ 𝑗 , p̂𝑘

]
=

i
𝑁
𝛿 𝑗 𝑘 . (2.43)

Hence, the reciprocal value of the system size 𝑁 can be identified with an effective
Planck constant of the system,

ℏeff ∼
1
𝑁
, (2.44)

and the infinite-size limit N = 𝑁 → ∞ coincides with the classical limit ℏ → 0. The
next step is to use the conservation of the number of excitations 𝑁 to eliminate boson
b̂0 by a procedure generalising the Holstein-Primakoff transformation [42, 94]. It leads
to an effective mapping

b̂†
0, b̂0

𝑁→∞↦−−−−→
√︃

2 −
(
𝑝2 + 𝑞2

)
, (2.45)

where the indices are omitted for simplicity, 𝑝 ≡ 𝑝1, 𝑞 ≡ 𝑞1. In the infinite-size limit
the operators p̂1, q̂1 commute, see (2.43), and they can be replaced by continuous
variables.

In terms of the quasispin operators Ĵ𝑘 , the mapping is

Ĵ1 ↦→ 𝑁

2
𝑞

√︃
2 −

(
𝑝2 + 𝑞2

)
, Ĵ2 ↦→ 𝑁

2
𝑝

√︃
2 −

(
𝑝2 + 𝑞2

)
, Ĵ3 ↦→ 𝑁

2

(
𝑝2 + 𝑞2 − 1

)
, (2.46a)

12One has to restrict oneself to the fully symmetric representation of the U(2) group corresponding
to 𝑗 = 𝑁/2. This condition must be imposed by hand on the Hamiltonian formulated in terms of
the operators Ĵ𝑘 , but it appears naturally if the boson operators are used due to the commutation
relation (2.30).
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so that the classical limit of the Lipkin Hamiltonian (2.37) reads

𝐻 (𝑝, 𝑞) = 1 − 𝜆
2

(
𝑝2 + 𝑞2

)
− 𝜆

[
𝑞

√︃
2 −

(
𝑝2 + 𝑞2

)
+ 𝜒

2

(
𝑝2 + 𝑞2

)]2

(2.47)

under the scaling E = 1/𝑁 . This way of performing the classical limit leaves us with a
compact phase space with the shape of a circle with radius 2,

𝑝2 + 𝑞2 ≤ 2. (2.48)

The compactness of the phase space is a consequence of the finiteness of the quantum
Hilbert space HLipkin. Note, however, that the proper topology of the space is more
complicated than a simple circle and is a subject of a current investigation [95].
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Figure 2.5: Level dynamics 𝐸𝑛 (𝜆) of the the Lipkin u(2) model (2.37) with E = 1/𝑁
scaling and system size 𝑁 = 16. Left panel: First-order QPT (shown by the red bullet)
for fixed 𝜆 = 3/5 and 𝜒 varied are shown in the main panel, whereas the equienergy
contours of the system’s classical limit (2.47) for two values of 𝜒 are given in the two
top contour plots. Right panel: Second-order QPT (shown by the red bullet) for fixed
𝜒 = 0 and 𝜆 varied. Levels with even (odd) parity are plotted by the black (grey) lines.
The red curves show the positions of the stationary points of the classical limit; the
solid curves correspond to the global maximum and minimum, and the dashed curves
indicate the positions of the local extremes, where also ESQPTs are situated. The inset
demonstrates the scaling with system size, 𝑁inset = 40 and only even states are shown.

The Lipkin model describes both first- and second-order QPTs and related ESQPTs,
as shown in Figure 2.5. The left panel of the figure displays the first-order QPT, which
appears at 𝜒 = 0 if 𝜆 > 1/5 (in this example, 𝜆 = 3/5 is chosen). The solid red curves
correspond to the minimum and maximum of the Hamiltonian. The dashed red curves
indicate the stationary points of the classical Hamiltonian, leading the ESQPTs in the
infinite-size limit. Note that the spinodal and antispinodal points are at 𝜒 → ±∞,
in contrast to the CUSP system shown in Figure 2.2. The upper edge of the critical
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ESQPT “triangle” is at 𝐸 = 0 and corresponds to the nondegenerate stationary point
(𝑝, 𝑞) = (0, 0) with index 𝑟 = 1, exhibiting a logarithmic divergence in the smooth level
density. The other stationary points are also nondegenerate with 𝑟 = 0 and induce an
upward jump in �̄�(𝐸). Their positions and corresponding energies must be calculated
numerically. The classical Hamiltonian (2.47) is shown in the upper subpanels for two
values of parameter 𝜒. Note that the phase space is indeed limited to a circle by the
condition (2.48).

The right panel of Figure 2.5 shows the second-order QPT, which is obtained for
fixed 𝜒 = 0 and varying 𝜆 ∈ [0, 1]. The QPT is occurs for 𝜆𝑐 = 1/5. The ground state in
the infinite-size limit is at (𝑝, 𝑞) = (0, 0) and 𝐸gs = 0 in the normal phase, 𝜆 < 𝜆𝑐, and
decreases with 𝜆 as

𝐸gs = −1
4

(
1
𝜆
− 1
𝜆𝑐

)2

(2.49)

in the deformed phase, sitting at (𝑝, 𝑞) = (0,−1/2
√︁

5 − 1/𝜆). The highest-excited state
approaches energy 𝐸max = 1−𝜆 in 𝑁 → ∞ limit. The ESQPT is present in the deformed
phase and is connected with the stationary point at (𝑝, 𝑞) = (0, 0) of the classical
Hamiltonian (2.47), which has index 𝑟 = 1. The inset demonstrates the level bunching
at the ESQPT, which becomes visible when the system size is increased.

Note that the level dynamics and the phase structure of the Lipkin model are very
similar to those of the CUSP system, cf. Figures 2.2 and 2.3, even though the Hilbert
space of the Lipkin model is finite, whereas the CUSP’s Hilbert space is infinite.

2.2.4 Molecular vibron model

Another model from the class of boson-interacting systems is based on the u(3)
dynamical algebra. It has been introduced to describe the bending modes of linear
polyatomic molecules [96, 97] and since then, it has served both to fit the spectra of
simple molecules such as H2O, D2O, H2S, HCN and others [98] and as a toy model to
test purely theoretical concepts including the quantum critical phenomena [99, 100].
Recently, the model has also been applied to study the three-state spinor Bose-Einstein
condensates [101, 102], experimentally realised by a condensate of cold rubidium
atoms [103]. The main advantages of the u(3) vibron model are (i) the finiteness of its
Hilbert space (similarly to the Lipkin model), (ii) the existence of the classical limit,
and (iii) nonintegrability and the possibility of tuning its chaoticity by varying its
parameters. Therefore, it is a suitable model to study the ESQPTs, quantum chaos and
the relation of these two concepts.

The u(3) algebra contains nine operators �̂�𝑘𝑙 = b̂†
𝑘
b̂𝑙 , 𝑗 , 𝑘 = 0, 1, 2 that generate

corresponding U(3) symmetry group. The individual boson operators are often called
the scalar boson operator ŝ ≡ b̂0 and the circular boson operators 𝜏± ≡

(
b̂1 ± ib̂2

)
/
√

2 [97].
Similarly to the Lipkin model, the Hamiltonian (and any other operator constructed
from the generators �̂�𝑘𝑙) commutes with the operator of the total number of boson
excitations

N̂ = ŝ†ŝ + 𝜏†+𝜏+ + 𝜏†−𝜏−. (2.50)
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The eigenvalue 𝑁 of N̂ specifies the dimensionality of the Hilbert space,

dimHvibron =
1
2
(𝑁 + 1) (𝑁 + 2) . (2.51)

Instead of constructing the Hamiltonian directly from the generators �̂�𝑘𝑙 , it is more
convenient to use the independent Camisir operators of all the subgroups of the u(3)
dynamical algebra. At the end of the subgroup chains is the symmetry algebra reflecting
the physical symmetry of the system; the u(3) model often, but not always, conserves
the o(2) symmetry.13 There are three algebra chains in the u(3) model,

I :u(3) ⊃ u(2) ⊃ o(2), (2.52a)
II :u(3) ⊃ o(3) ⊃ o(2), (2.52b)

II :u(3) ⊃ o(3) ⊃ o(2). (2.52c)

The chains II and II are equivalent, related via a unitary transformation [105].
Similarly to the 𝑄 −𝑄 consistent Lipkin model (2.37) we shall consider a Hamilto-

nian constructed only from two Casimir operators,

Ĥ0 = E
{
(1 − 𝜆) Ĉ1 [u(2)] −

𝜆

𝑁 + 1
Ĉ2 [o(3)]

}
, (2.53)

where

Ĉ1 [u(2)] = n̂𝜏 = 𝜏†+𝜏 + 𝜏†−𝜏−, (2.54a)

Ĉ2 [o(3)] = D̂
2
=

1
2

(
D̂+D̂− + D̂−D̂+

)
+ l̂2, (2.54b)

D̂± = ±
√

2
(
𝜏
†
±ŝ − ŝ†𝜏∓

)
, (2.54c)

l̂ = 𝜏†+𝜏+ − 𝜏†−𝜏−, (2.54d)

are the linear Casimir operator of the u(2) algebra and quadratic Casimir operator
of the o(3) algebra, respectively, and E is an energy scale. The Hamiltonian is in the
form (2.4), covering naturally the transition between the u(2) phase (usually called
the symmetric phase) for 𝜆 = 0 and the o(3) phase (the deformed phase or displaced phase)
for 𝜆 = 1. The quantum phase transition occurs at 𝜆 = 1/5 in the infinite-size limit [99].
The normalising factor 𝑁 + 1 in the denominator of the second term, instead of 𝑁 − 1
of the general two-body Hamiltonian (2.31) or instead of 𝑁 in the Lipkin model (2.37),
is used to fit the o(3) spectrum into the interval [0, 1].

The system described by the Hamiltonian Ĥ0 has 𝑓 = 2 degrees of freedom and is
integrable; the set of independent integrals of motion consists of the energy and the
axial angular momentum l̂2 given by the o(2) Casimir operator. The integrability can
be broken by an additional term violating the o(2) symmetry,

Ĥ = Ĥ0 − 𝜖𝐷𝑥 , (2.55)

13Models based on higher algebras, such as the u(4) vibron model [104] or the u(6) interacting boson
model [91], are invariant with respect to the space rotations reflected in the o(3) algebra.
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where D̂𝑥 =

(
D̂+ + D̂−

)
/2 is the dipole operator. Ĥ still has a discrete 𝑍2 symmetry,

which must be adequately treated when studying quantum chaos, see Section 3.
The classical limit can be performed by following the same steps as in the Lipkin

model. The ŝ boson is eliminated via the generalised Holstein-Primakoff transforma-
tion, and two pairs of conjugate coordinates and momenta connected with the circular
bosons 𝜏1,2 are introduced. Then, the limit 𝑁 → ∞ leads to the Hamiltonian

𝐻 (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (1 − 𝜆) 𝑠
2

2
− 𝜆

[(
𝑝2

1 + 𝑝
2
2

) (
2 − 𝑠2

)
+ (𝑝1𝑞2 − 𝑞1𝑝2)2

]
− 𝜖 𝑝2

√︁
2 − 𝑠2,

(2.56)
where

𝑠2 ≡ 𝑝2
1 + 𝑝

2
2 + 𝑞

2
1 + 𝑞

2
2 ≤ 2. (2.57)

The level dynamics and level densities for various values of the nonintegrability pa-
rameter 𝜖 are displayed in Figure 2.6. Panel (a) shows the integrable, hence nonchaotic
case 𝜖 = 0, with the second-order QPT at 𝜆 = 𝜆𝑐. The o(2) symmetry is conserved, so
there exists an additional integral of motion given by the Casimir operator of the o(2)
algebra l̂2, [

Ĥ, l̂2
]
= 0. (2.58)

If restricted to a subspace with a particular eigenvalue of this conserved quantity, usu-
ally l̂2 = 0, one obtains a system with effectively 𝑓 = 1 degree of freedom highlighted
with the thick black lines in Figure 2.6 (a). This subset of the energy levels is very
similar to the Lipkin model with the characteristic bunching of eigenstates along the
𝐸 = 0 ESQPT; see the right panel of Figure 2.5. Only the l̂2 = 0 subset of states is often
studied in the literature; see, for example, References [99, 100].

If, on the other hand, one takes all states with all available values of l̂2, the ESQPT
structure of the system gets richer. First of all, another ESQPT at 𝐸2 = 1 − 2𝜆 appears.
Secondly, since the full system has 𝑓 = 2 degrees of freedom, the singularities appear
in the first derivative of the smooth level density instead of the level density itself;
see the group of four panels below the level dynamics in Figure 2.6 (a) where the
smooth level density and its derivative are shown for two values of parameter 𝜆; the
𝜆 values for the level density are also indicated by the vertical solid blue lines in the
level dynamics panel. Thirdly, the ESQPT at 𝐸1 = 0 is not of the logarithmic type but
has a shape of the downward jump connected with a nondegenerate stationary point
with index 𝑟 = 2. The logarithmic divergence still appears at the ground state in the
deformed phase 𝜆 > 𝜆𝑐; however, the corresponding stationary point is degenerate.
The new ESQPT at 𝐸2 also manifests as a downward jump in �̄�′ and is related to
another nondegenerate stationary point with index 𝑟 = 2. Note that the smooth level
density is constant between the ESQPTs 𝐸1 and 𝐸2 after they cross each other, i.e., for
𝜆 > 1/2. Similar behaviour—constant level density for a set of parameter values—is
also observed in the algebraic u(6) IBM model, see Appendix C.

When the integrability is broken by setting 𝜖 > 0, the QPT vanishes, but the
ESQPT structure remains and even becomes richer. Two other ESQPT lines appear,
one separating from the deformed ground state line and one staying at 𝐸3 = 1 − 𝜆
where originally, for 𝜖 = 0, the global maximum was, see Figure 2.6 (b). The first
new ESQPT manifests as an upward logarithmic divergence in �̄�′ connected with a
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Figure 2.6: Level dynamics 𝐸𝑛 (𝜆) and the smooth part of the level density �̄�(𝐸) and its
derivative �̄�′(𝐸) ≡ 𝜕�̄�/𝜕𝐸 for the algebraic u(3) model (2.55). Blue and yellow lines
correspond to the independent subsets of levels due to the 𝑍2 symmetry. The size of
the nonintegrable perturbation 𝜖 is indicated in the panels. For each value of 𝜖 , two
level densities are plotted. The dashed red lines show the position of the ESQPTs.
System size is 𝑁 = 16.
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nondegenerate stationary point with 𝑟 = 1. The second new ESQPT—a downward
logarithmic divergence in the derivative of the smooth level density—comes from a
nondegenerate stationary point with 𝑟 = 3. A detailed analysis of the ESQPTs in the
u(3) model is a subject of a current study [95].

Besides qualitatively changing the structure of ESQPT borderlines, the noninte-
grable perturbation also introduces chaos in the system, which can be observed in
panels (b)—(d) of Figure 2.6. Similarly to the Creagh-Whelan model, the chaoticity is
measured by the fraction of regularity 𝑓reg and displayed by the shades of green in the
background of the graphs. The darker the green colour, the more the system is chaotic.
More on chaos, its measures in general and an application of the chaos theory to the
vibron u(3) model are given in Section 3 and in Appendix L.

2.3 Dynamic consequences

So far, we have discussed the static manifestations of the ESQPTs. However, the
presence of the ESQPTs has also consequences in the dynamics induced by non-
thermal excitations of the system, which can be achieved by temporal change of the
control parameters in the Hamiltonian. The driving can be very fast, approximated
by a sudden change in the parameter value and called the quantum quench, or slow,
nearly adiabatic. We shall focus mainly on the quench dynamics.

Let us suppose we have a system prepared in a state |𝜓i⟩, which is an eigenstate
(often the ground state) of a parameter-dependent Hamiltonian (2.3) at 𝜆i, and then
we switch the parameter to another value 𝜆f. Providing

[
Ĥ(𝜆i), Ĥ(𝜆f)

]
≠ 0, the state

|𝜓i⟩ is not an eigenstate of Ĥ(𝜆f), so that it begins to evolve with time 𝑡. The most
straightforward quantity to study is the survival amplitude, which is an overlap of the
evolved state with the initial one,

𝐴(𝑡) =
〈
𝜓i

���e− i
ℏ Ĥ(𝜆f)𝑡

���𝜓i

〉
, (2.59)

and the survival probability
𝑃(𝑡) = |𝐴(𝑡) |2 . (2.60)

The survival amplitude is a Fourier transform of the strength function

𝑊 (𝐸) =
∑︁
𝑗

��〈𝐸 𝑗 (𝜆f)
��𝜓i

〉��2 𝛿(𝐸 − 𝐸 𝑗 (𝜆f)), (2.61)

𝐴(𝑡) =
∫
𝑊 (𝐸) e−

i
ℏ𝐸𝑡 d𝐸, (2.62)

see Reference [47].
The time evolution of 𝑃(𝑡) is rather complicated and can be divided into several

regimes [40]: an initial Gaussian decay often followed by an almost periodic series
of revivals with algebraically diminishing amplitudes, into an asymptotic regime
after the Heisenberg time 𝑡H characterised by stationary oscillations with no further
qualitative change.
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The ESQPTs can affect each of the evolution stages and can have either a stabilising
or a destabilising effect based on the particular quench. The effect can be understood
by projecting the eigenstates into some kind of wave packets and using semiclassical
description, for example by employing the Wigner quasiprobability distribution [106,
107] and its semiclassical approximation called the truncated Wigner approximation [108].
The evolution of the initial wave packet is strongly influenced by the stationary points
of the classical Hamiltonian 𝐻 (𝜆; 𝒙). If a stationary point of the final Hamiltonian is
situated exactly where the initial-state wave packet sits at time 𝑡 = 0, the stationary
point has a strong stabilising effect. It prevents a part of the packet from leaving the
stationary point, so the decay observed in the survival probability is slower and 𝑃(𝑡)
never reaches values close to zero before the saturation is achieved. If, on the other
hand, the after-quench wave packet sits at the energy of the ESQPT stationary point,
but the stationary point is located at a different position in the phase space 𝒙, there is
an abnormal gap between 𝑡 = 0 and the first revival, the revivals are suppressed and
the transition to the asymptotic regime is faster.

The effect of ESQPTs on various post-quench dynamics has been demonstrated in
the Dicke model and its integrable version called the Tavis-Cummings model [40, 48].
It has also been shown that by increasing the quench distance in the parameter 𝜆we can
reach a different ESQPT connected with a stationary point of even stabler dynamics,
so that longer quenches can surprisingly lead to higher survival probability [50].

Note that the survival probability is a key quantity for the Dynamical Quantum
Phase Transitions (DQPTs), which occurs when the 𝑃(𝑡) → 0 for 𝑡 > 0 and N → ∞. A
possible connection between the ESQPTs and DQPTs has been analysed using 𝑃(𝑡)
extended to complex times [52] and is a subject of current research.

Non-quench driving protocols in systems with ESPQTs are introduced and dis-
cussed in review [47].

2.4 Thermodynamic consequences

Due to the existence of the straightforward between the quantum level density, shown
to be strongly affected by the ESQPTs, and statistical mechanics, one can expect that
a system with ESQPTs will have, to some extent, anomalous thermodynamics. The
prominent thermodynamical quantity is the canonical heat capacity

𝐶 (𝛽) = 𝛽2 𝜕
2ln 𝑍
𝜕𝛽2 , (2.63)

where 𝛽 is the inverse temperature and

𝑍 (𝛽) = Tr e−𝛽Ĥ =

∫
𝜌(𝐸) e−𝛽𝐸 d𝐸 (2.64)

is the canonical partition function, which can be, due to the Thomas-Fermi for-
mula (2.9) semiclassically represented as

𝑍 (𝛽) = 1
2𝜋ℏ

𝑓 ∫
e−𝛽𝐻 (𝒙) d𝒙. (2.65)
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On the other hand, the microcanonical heat capacity is built on the microcanonical
inverse temperature

𝛽m(𝐸) = 𝜕ln 𝜌
𝜕𝐸

. (2.66)

This equation, for a given value 𝛽m(𝐸) = 𝛽, represents a condition for a vanishing
derivative of the canonical thermal energy distribution

𝑤𝛽 (𝐸) =
e−𝛽𝐸

𝑍 (𝛽) 𝜌(𝐸). (2.67)

This distribution typically has a single maximum, hence the equation (2.66) provides
a unique solution 𝐸 (𝛽) and leads to the microcanonical heat capacity

𝑐(𝛽) = −𝛽2 𝜕𝐸 (𝛽)
𝜕𝛽

= −𝛽2
[
𝜕2ln 𝜌
𝜕𝐸2

]−1

𝐸=𝐸 (𝛽)
. (2.68)

Canonical (2.63) and microcanonical (2.68) heat capacities are similar, but in the canon-
ical one, there stands the average thermal energy ⟨𝐸⟩𝛽, whereas in the microcanonical
one the most probable energy 𝐸 (𝛽). In the standard thermodynamics, both ⟨𝐸⟩𝛽/𝑁
and 𝐸 (𝛽)/𝑁 converge to the same value and the heat capacities 𝐶 (𝛽) and 𝑐(𝛽) coincide
in the infinite-size (thermodynamic) limit N → ∞, 𝑓 → ∞ [109].

However, a question arises: What happens in the case of collective dynamics when
the limit is performed in N only, but 𝑓 remains fixed (and small)? And, on top of
that, What if the system counts with ESQPTs? It turns out that the microcanonical
thermodynamics cannot be properly defined if 𝑓 ≤ 3 due to the second derivative
in (2.68) because a generic ESQPT connected with a nondegenerate stationary point
has a singularity in 𝜕2𝜌(𝐸)/𝜕𝐸2, recall formula (2.19). If the number of the collective
degrees of freedom 𝑓 is higher, 𝑐(𝛽) becomes smoother and smoother and approaches
the canonical heat capacity 𝐶 (𝛽), but there are still significant differences between the
two, even for a rather high 𝑓 ∼ 10. The ESQPTs induce non-monotonous behaviour
with temperature in both heat capacities. Illustrative figures and a more detailed
discussion are presented in Appendix E.

It has just been shown that The ESQPTs strongly affect microcanonical thermody-
namics, but what about a possible connection between the ESQPTs and the Thermal
Phase Transitions (TPTs)? Although there is a relation between these two types of
criticality [37, 110, 111], they represent distinct phenomena applicable in different
contexts.
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Chapter 3

Classical and Quantum Chaos

Quantum’s chaos dances, defying all bounds,
Uncertainty’s frenzy, out-of-time-order resounds,
Dimensions entangle, their order ablaze,
Chaos and entanglement, in quantum’s cosmic maze.

ChatGPT, chaotic single-verse poem on quantum chaos

This chapter introduces the essential theoretical background of classical and quan-
tum chaos in physics. Since the topic of chaos in physics and the classical-quantum
correspondence was a subject of the author’s PhD thesis [112], whose main results
were published in two papers [10, 11], the focus here will be mainly on recently de-
veloped ideas, which are related to the Out-of-Time-Ordered Correlator (OTOC)—an
expectation value of a squared commutator of two quantum observables taken at
different times—and its short-time and long-time behaviour. Both of them can serve
as quantum chaos indicators, but they are associated with different classical concepts:
the short-time evolution is connected with the classical Lyapunov exponent measuring
local stability, whereas the OTOC asymptotic value quantifies the overall chaoticity
and its classical counterpart would be the relative measure of the chaotic domain in
the classical phase space.

The theoretical results will be numerically demonstrated mainly in the vibron u(3)
model introduced in Section 2.2.4, and partly also in the nonintegrable Creagh-Whelan
model introduced in Section 2.2.2. We shall take advantage of the existence of the
classical limit in both models and compare the quantum results with classical measures
of chaos.

This chapter begins with a brief introduction to classical and quantum chaos
(Sections 3.1 and 3.2), but the emphasis will be laid on the OTOCs (Section 3.3) and a
short discussion on the connection between the ESQPTs and chaos (Section 3.4). If the
reader wants to learn more about chaos theory, plenty of excellent monographs are
available on the market [75, 77, 113, 114].
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3.1 Classical chaos

Before we dive into the area of chaos in quantum mechanics, let us summarise the
basic concepts of a much more firmly and rigorously established discipline of classical
chaos.

Classical mechanics is deterministic: the future (and also the past) of a closed
macroscopic system is given by a solution of deterministic differential equations of
motion, either the Hamilton equations in nonrelativistic mechanics or the Einstein field
equations in general relativity. This means that, in principle, it is possible to calculate
the exact state 𝒙(𝑡) of the system at any time 𝑡, provided we know the exact positions
𝑞𝑖 and canonically conjugated momenta 𝑝𝑖, 𝑖 = 1, . . . , 𝑓 of all its 𝑓 constituents at any
other time 𝑡0; 𝑓 is the number of degrees of freedom and

𝒙 ≡
(
𝑞1, . . . , 𝑞 𝑓 , 𝑝1 . . . , 𝑝 𝑓

)
(3.1)

specifies a point in the phase space. However, in practice, this task turns out to be
unfeasible. The devil working against our god-like capabilities is hidden in the word
“exact”. In the real world, there is always a finite precision of every measurement, and,
on top of that, the numerical differential-equation solvers offer only limited accuracy.
All errors caused by the imprecision of our methods and measurements grow, as a
rule, exponentially with time, which prevents us from making predictions for long
into the future.

3.1.1 Lyapunov exponent

The prerequisites for the presence of classical chaos in the system are three [77]:

1. Topological transitivity (mixing), which says that each trajectory in the phase space
passes, at some time, through an arbitrary open neighbourhood of a given point.

2. A dense set of periodic orbits, which means that an open neighbourhood of each
point 𝒙 in the phase space is visited by a periodic trajectory, i.e., a trajectory
satisfying 𝒙p(𝑡) = 𝒙p(𝑡0), 𝑡 ≠ 𝑡0.

3. The sensitivity to initial conditions, which states that any, however tiny, deviation
𝛿𝒙 from the initial vector 𝒙0 ≡ 𝒙(𝑡0) grows so fast that in a relatively short time,
the deviation exceeeds the charactertic dimensions of the phase space. More
specifically, the divergence is exponential,

𝛿𝒙(𝑡) ∼ 𝛿𝒙0 e𝜆cl (𝑡−𝑡0) , (3.2)

and the divergence rate is quantified by the Lyapunov exponent 𝜆cl, rigorously
defined as

𝜆cl(𝒙) = lim
𝑡→∞

lim
|𝛿𝒙0 |→0

1
𝑡

log
|𝛿𝒙(𝑡) |
|𝛿𝒙0 |

, (3.3)

where |•| is a norm in the phase space. The inverse value of the Lyapunov
exponent, the Lyapunov time

𝑡L ≡ 1
𝜆cl
, (3.4)
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which estimates the time (or the time order) up to which the solution of the
equations of motion makes sense.1,2

It is the sensitivity to the initial conditions quantified by the Lyapunov exponent
that has become the prominent signature of classical chaos and has been poetically
dubbed the butterfly effect [118], reflecting the fact that some minor perturbation as
tiny as a flap of butterfly wings can, at later times, have a major effect and produce
extreme conditions, such as a tornado.

The stability of a trajectory is a local property, meaning that it can vary with the
initial conditions, even if their energies are the same. The energy hypersurface of
the phase space is covered, in general, by a chaotic sea of exponentially unstable
trajectories (an infinite countable subset of them are periodic as a consequence of
point 2 given above), from which islands of regular (stable) dynamics rise.3 The
neighbouring regular trajectories diverge at most polynomially and their Lyapunov
exponent vanishes (𝜆cl = 0). Due to topological reasons, in compact systems with 𝑓 ≥ 3
degrees of freedom and no additional constant of motion besides the energy, there is
only one connected chaotic “ocean” in the phase space in which all the trajectories have
the same Lyapunov exponent [122]. Note that the coastal region of the regular islands
can have a fractal structure with intermittently stable and unstable dynamics (called
the stickiness effect [123]), which can result in the nonexistence of the limit (3.3).4 For
numerical studies, however, it is not a big obstacle because due to the finite precision
and due to the time cutoff 𝑡max in which the Lyapunov exponent (3.3) is computed, the
trajectory will always be classified as either regular or chaotic based on an arbitrary
suitable numerical threshold, and the calculated value of the exponent will always be
determined with some statistical error.

3.1.2 Fraction of regularity

Apart from the Lyapunov exponent 𝜆cl, which describes a local property of the phase
space, one can study the chaoticity of the whole energy hypersurface Σ𝐸 of the phase
space (global property). If Γreg(𝐸) is the volume of all the regular regions in Σ𝐸 , i.e.,
regions with 𝜆cl = 0, and

Γ(𝐸) =
∫

d2 𝑓 𝒙𝛿(𝐸 − 𝐻 (𝒙)) (3.5)

is the entire volume of Σ𝐸 , then the fraction of regularity [10]

𝑓reg(𝐸) =
Γreg(𝐸)
Γ(𝐸) ∈ [0, 1], (3.6)

reflects the overall chaoticity of the system with energy 𝐸 , ranging from 𝑓reg = 0 for a
completely chaotic case to 𝑓reg = 1 for energies with fully stable dynamics.

1This statement follows from the fact that we never know the initial state with a precision higher
than several digits.

2As an example, the upper limit for the Lyapunov time of the Solar system has been numerically
determined as 𝑡L ≈ 2 Myr [115–117].

3The exact topology is given by the Kolmogorov-Arnol’d-Moser (KAM) theorem [119–121].
4Although a completely different effect, natural coastlines also have a fractal structure and even led

to the definition of the notion fractal [124] and is still a subject of active research [125].
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The fraction of regularity generally depends on the energy. A system is usually
regular close to its ground state because a global minimum of a generic Hamiltonian
with 𝑓 degrees of freedom can be expanded into a quadratic form of 2 𝑓 independent
(separable) harmonic oscillators (recall the Morse lemma in Section 2.1). When the
energy increases and the system gets further from the domain of validity of the
harmonic approximation, nonlinear coupling between individual degrees of freedom
causes the regularity to be broken. However, the decrease of regularity may not be
final: in asymptotically bound systems whose Hamiltonians satisfy the condition

lim
𝑥 𝑗→±∞

𝐻 (𝒙) → ∞ ∀ 𝑗 = 1, . . . , 2 𝑓 (3.7)

there can exist a term in the Hamiltonian that becomes dominant at high energies, and
that leads again to regular dynamics [10].

3.1.3 Classical integrability

Even though a generic system is chaotic, there are exceptions with fully regular dy-
namics called integrable systems. These systems have enough functionally independent
integrals of motions 𝐼 𝑗 (𝒙) that are functions of phase space coordinates and remain
constant along a trajectory 𝒙(𝑡). Their Poisson brackets with the Hamiltonian 𝐻 (𝒙)
vanish, as well as their mutual Poisson brackets,{

𝐼 𝑗 , 𝐻
}
= 0, (3.8a){

𝐼 𝑗 , 𝐼𝑘
}
= 0; (3.8b)

it is said that the integrals of motion are in involution. If there are 𝑓 integrals of motion
in involution (the Hamiltonian can be one of them), then the system is integrable. It
can be canonically transformed5 into the action-angle coordinates (𝐽 𝑗 , 𝜃 𝑗 ), 𝑗 = 1, . . . , 𝑓 ,
in which the Hamiltonian depends solely on the actions, 𝐻 = 𝐻 (𝐽1, . . . , 𝐽 𝑓 ). The
corresponding Hamilton equations and motion are trivial, as well as their solution

𝜃 𝑗 (𝑡) = 𝜔 𝑗 (𝑡) + 𝜃 𝑗 (0), (3.9a)
𝐽 𝑗 (𝑡) = 𝐽 𝑗 (0), (3.9b)

where

𝜔 𝑗 (𝑡) ≡
𝜕𝐻

𝜕𝐽 𝑗
(3.10)

are 𝑓 frequencies associated with the motion in individual degrees of freedom. There-
fore, the motion occurs on a manifold with the topology on an 𝑓 -torus, it is solvable
and stable.

The integrals of motion are always connected with an additional symmetry of the
system. Note that there can be even more integrals of motion than the number of
degrees of freedom. Such systems are called superintegrable [127].

5Note that there can be situations where the transformation does not exist related to the phenomenon
called monodromy [126].
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3.2 Quantum chaos

The notion of quantum chaos was initially related to particular correlations in the
energy spectrum [75]. It was conjectured [128] that bound systems whose classical
counterparts are regular have uncorrelated quantum energies, whereas subsets of
eigenenergies of quantised fully chaotic classical systems have correlations described
by spectra of the Gaussian random matrices [129]; the states in each subset must have
the same values of additional conserved quantities, such as the angular momentum
or parity. The correlations manifest as the repulsion of quantum levels (if one stud-
ies the nearest-neighbour correlations [128]), the spectral rigidity (in the long-range
correlations [130]), antipersistence (in 1/ 𝑓 studies of time series constructed from
the quantum spectrum [131]), or a particular distribution of the eigenstates compo-
nents [132]. The presence of spectral correlations has even served as a (somewhat
controversial) definition of quantum chaos [133] useful especially in situations when
the quantum system does not have a classical counterpart.

3.2.1 Quantum integrability

In accord with the classical integrability, a quantum system with 𝑓 degrees of free-
dom is called integrable when there exist 𝑓 independent operators Î𝐽 including the
Hamiltonian Ĥ that satisfy [

Î 𝑗 , Ĥ
]
= 0, (3.11a)[

Î 𝑗 , Î𝑘
]
= 0. (3.11b)

Operators
{
Î1, . . . , Î 𝑓

}
form a complete set of commuting operators and the basis of the

corresponding Hilbert space H can be formed from mutual eigenstates
��𝑛1, . . . , 𝑛 𝑓

〉
of

all these operators,
Î 𝑗
��𝑛1, . . . , 𝑛 𝑓

〉
= 𝑛 𝑓

��𝑛1, . . . , 𝑛 𝑓
〉
, (3.12)

where 𝑛 𝑗 is an eigenvalue of Î 𝑗 . Therefore, there is no correlation between states
belonging to different eigenvalues of any of the constant of motion Î 𝑗 . On the other
hand, if there are not enough integrals of motion, the Hamiltonian consists of blocks
that must be diagonalised, and the diagonalisation induces eigenlevel correlations.

Let us remark that the definition of quantum integrability, in contrast to the def-
inition of integrability in classical mechanics, is not flawless. The functional inde-
pendence of the constants of motion is meaningless in quantum mechanics, which
makes it impossible to separate quantum systems into two disjoint sets with different
properties (integrable and non-integrable) and to define chaos in quantum mechan-
ics axiomatically [134]. Indeed, there are examples of systems that are classically
integrable, but chaotic in quantum mechanics, and vice versa [135, 136].

3.2.2 Spectral correlations

The field of quantum chaos started developing with the work of Eugene Wigner in
the 1950s. He noticed a lack of close nuclear resonances in the high-lying part of
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measured spectra and he dared to explain it not as a consequence of an imperfection
in the measuring techniques, but by an application of the Random Matrix Theory
(RMT) [137–139]. He formulated a hypothesis today known as the Wigner surmise:

Suppose we have a complicated and complex system with an (often high)
unknown number of degrees of freedom (such as a highly excited atomic
nucleus and we do not know anything about the interaction among the
constituents. The only thing we know about the Hamiltonian is the sym-
metry it satisfies (rotational invariance, time-reversal invariance etc.). Then
a sequence of consecutive energy levels with the same spin and parity will
have the same statistical properties as the spectrum of a random matrix
whose elements are independent numbers taken from the Gaussian normal
distribution. Levels of different spin and parity are not correlated.

He also derived the probability distribution of the distances between adjacent eigen-
levels 𝑠 𝑗 = 𝐸 𝑗+1 − 𝐸 𝑗 , called the Nearest-Neighbour Spacing Distribution (NNSD),

𝑝W(𝑠) = 𝜋

2
𝑠 e−

𝜋
4 𝑠

2
. (3.13)

The spectrum is normalised in such a way that the mean level spacing is one,

⟨𝑠⟩ =
∫

𝑠𝑝W(𝑠)d𝑠 = 1. (3.14)

The transformation that achieves such normalisation by removing the smooth part of
the level density �̄�, keeping just the oscillating part �̃� (see also Section 2.1.1), is called
the unfolding [129].

The Wigner distribution (3.13) predicts zero probability of finding very close levels
with 𝑠 ≈ 0, in contrast with the distribution of uncorrelated independent energies
given by the Poisson formula

𝑝P(𝑠) = e−𝑠 . (3.15)

This was in accord with the observed level repulsion between the nuclear resonances.
Finally, the connection between the spectral correlations and chaos was established

in the already mentioned Bohigas-Giannoni-Schmit conjecture [128]:

All quantum systems whose classical analogues are chaotic exhibit the
same spectral fluctuation properties as predicted by the theory of random
matrices. On the contrary, quantum systems with stable classical analogues
(not necessarily integrable) have uncorrelated energy levels.

Note that the unfolding procedure is delicate and, to a great extent, arbitrary,
usually based on a polynomial fitting. Performed carelessly can lead to erroneous
conclusions [140]. Therefore, there has been a lot of effort to improve the unfolding and
get rid of the arbitrariness, see for instance [18, 141]. There have also been proposed
spectral correlations that do not require unfolded spectrum, for instance, the one based
on the ratio of consecutive level spacings [142, 143].
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3.2.3 Out-of-time-ordered correlators

One of the disadvantages of the spectral statistics as quantum chaos indicators is
their need for a large and complete set of consecutive states with no gaps or spurious
intruders. The appropriate train of states can be obtained as a result of extensive calcu-
lations based on theoretical models but is seldom available experimentally. Therefore,
the attention has turned elsewhere. One of the quantities that have received a lot
of attention recently is the OTOC, which is a four-point correlation function of two
quantum operators V̂, Ŵ taken at different times, most often taken in the form of an
expectation value of the operators’ commutator

𝐶 (𝑡) =
〈[

V̂(𝑡), Ŵ(0)
]2
〉
, (3.16)

where
V̂(𝑡) = e

i
ℏ Ĥ𝑡 V̂ e−

i
ℏ Ĥ𝑡 (3.17)

is the Heisenberg picture of operator V̂ at time 𝑡 and ⟨•⟩ can be a thermal average in
the canonical ensemble at a finite [144, 145] or infinite [146] inverse temperature 𝛽, an
expectation value in a particular superposition of quantum states, such as a coherent
state [71], or an expectation value in energy eigenstates |𝐸𝑛⟩,

𝐶𝑛 (𝑡) =
〈
𝐸𝑛

���� [V̂(𝑡), Ŵ(0)
]2
����𝐸𝑛〉 . (3.18)

We shall employ the last option, usually called the microcanonical OTOC in the litera-
ture [45, 147].

Since its introduction as a semiclassical tool to study superconductivity [148], it has
proved to be a robust tool in various areas of physics, ranging from black-hole physics
and the AdS/CFT duality [144, 149] through the spread of quantum information
and information scrambling [150, 151] to many-body physics [152–154] and quantum
circuits [155]. The many-body properties can hint emergence of thermal physics [156,
157]. The common denominator of all these works is a relation to chaos, stability and
exponential divergence. In quantum systems with the classical limit, the short-time
OTOC evolution is related to the exponential spreading of neighbouring classical
trajectories

𝐶 (𝑡) ∝ e2𝜆q𝑡 (3.19)

and the rate 𝜆q is often dubbed the quantum Lyapunov exponent [158]. The OTOCs have
also been related to spectral statistics via a special operator called Lyapunovian [159].

The long-time behaviour, on the other hand, is captured in the mean value and
variance,

�̄�𝑛 = lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝐶𝑛 (𝑡)d𝑡, (3.20a)

𝜎2
𝑛 = lim

𝑇→∞

1
𝑇

∫ 𝑇

0
𝐶2
𝑛 (𝑡)d𝑡 − �̄�2

𝑛 , (3.20b)
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and by higher moments of 𝐶𝑛 (𝑡) in general. It will be shown that crucial is the ratio of
the asymptotic mean value and the square root of the variance,

𝜈𝑛 ≡
𝜎𝑛

�̄�𝑛
, (3.21)

called wiggliness for simplicity.

3.3 Classical-quantum correspondence

The classical fraction of regularity 𝑓reg in nonintegrable models have already been
shown in Section 2.2, recall Figures 2.4 (Creagh-Whelan model) and 2.6 (algebraic
u(3) vibron model). We shall focus here on the latter model described by Hamilto-
nian (2.55) and compare classical and quantum chaos quantities, namely the classical
and quantum Lyapunov exponents and the 𝑓reg with the wiggliness 𝜈.

The u(3) model is integrable for 𝜖 = 0; the additional integral of motion to the
Hamiltonian itself is the o(2) Casimir operator reflecting the conservation of the
angular momentum around one axis.6 When 𝜖 grows, the unstable dynamics appears
firstly near 𝜆 = 1/5 where the second-order QPT in the integrable regime sits, and
along and above the ESQPT line 𝐸 = 0.7 The system is the most chaotic at around
𝜖 ≈ 0.5. Higher values of 𝜖 do not increase chaoticity anymore; the reason is that the
system turns, after a proper rescaling, into integrable in the limit 𝜖 → ∞.

The classical chaos of the u(3) model is demonstrated in detail in Figure 3.1 for
a nonintegrable configuration with 𝜖 = 0.4. The left panel shows the fraction of
regularity (3.6) encoded in colours; the white colour corresponds to fully regular
dynamics, whereas the black colour indicates regions with phase space covered with
unstable trajectories only. The right panel shows the classical Lyapunov exponent (3.3),
which ranges, for the selected values of the model parameters, from 𝜆cl = 0 to 𝜆cl ≈ 0.2.

The system is regular both near the minimum energy and the maximum energy of
the system, in accord with the general discussion given in Section 3.1, and the chaotic
region is roughly demarcated by lines 𝜆 ⪆ 0.2 and 0 ⪅ 𝐸 ⪅ 1 − 𝜆. A useful visual tool
for classical chaos in systems with 𝑓 = 2 degrees of freedom is the Poincaré sections,
obtained by cutting the classical phase space by a plane and showing each passage
of a trajectory as a point with coordinates given by two independent coordinates
of the original phase space; for the Poincaré sections in Figure 3.1 plane 𝑞1 = 0 and
coordinates (𝑞2, 𝑝2) are selected. Since trajectories do not cross in the phase space,
each point of the Poincaré section corresponds to an individual trajectory provided
the equienergy hypersurfaces do not have too complicated topology..8 This allows us
to visually distinguish regular regions from chaotic ones: individual trajectories in
regular regions display as lines or even isolated points (if the trajectory is periodic)
because they are localised to the remaining unbroken tori, whereas a chaotic trajectory
covers a surface in the Poincaré section, see black regular regions versus wine chaotic

6The model is also integrable for any 𝜖 and for 𝜆 = 0, 1, see Appendix [55].
7This behaviour is common to other models with QPTs, cf. the chaos analysis in the Dicke model [37]

and Appendices H and [160].
8A complicated topology is not a huge obstacle in 𝑓 = 2 systems—one can select a subset of

trajectory-section crossings that will determine phase space trajectories uniquely [161].
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Figure 3.1: Classical fraction of regularity 𝑓reg (top left panel) and classical Lyapunov
exponent 𝜆cl (top right panel) for the algebraic u(3) model for 𝜖 = 0.4 calculated for
the Hamiltonian (2.56) on the mesh 100 × 220 points in the 𝜆 × 𝐸 plane. The bottom
panels show selected Poincaré sections by plane 𝑞1 = 0 at (𝜆, 𝐸) values indicated by
green stars in the main panels; stable and chaotic trajectories are represented by black
and wine colours, respectively.

regions in the Figure. The phase space topology of the vibron model is intricate with
holes, which is evident in Figure 3.1 (e).

A final remark to the classical chaos is related to the fact that as observed, the
fraction of regularity is not correlated with the value of the Lyapunov exponent
(besides the trivial fact that a nonzero value of 𝜆cl induces 𝑓reg < 1). This demonstrates
that each of the quantities is related to a different property: the Lyapunov exponent
gives the rate of divergence of neighbouring trajectories, whereas 𝑓reg measures the
chaotic part of the phase space no matter how big the Lyapunov exponent is.

Let us turn now to the quantum calculation. As mentioned above, the time depen-
dence of the OTOCs can be divided into short-time and long-time regimes, which can
be limited by the Ehrenfest time

𝑡E ∝ N𝛼 (3.22a)

for integrable systems, where 𝛼 > 0 is a characteristic exponent and depends on the
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Figure 3.2: Short-time and long-time OTOC evolution for the choice V̂ = Ŵ = l̂ of
OTOC operators in the vibron u(3) model with 𝜆 = 0.4 and 𝜖 = 0.4 and system size
𝑁 = 50. Two states are shown: a regular state 𝑛 = 7 (blue curve) and a chaotic state
𝑛 = 621 (red curve). For better comparison, the OTOCs are normalised by their mean
value �̄� (𝐸5 = 0.48) ≈ 4 · 103, �̄� (𝐸621 = 0.21) ≈ 6 · 105. The vertical dashed green line
indicates the estimated Ehrenfest time 𝑡 for the chaotic state.

specific class of the system, and

𝑡E ∝ 1
𝜆cl

lnN (3.22b)

for chaotic systems; N is the size parameter. Its meaning can be understood in the
following way: Imagine a localised quantum wave packet, for instance, a coherent
state, at time 𝑡 = 0. Then the Ehrenfest theorem predicts that the expectation values
of quantum operators for such a localised state correspond to the classical dynamics.
However, quantum dynamics makes the packet spread and at a moment given by the
𝑡𝐸 , its characteristic size reaches the characteristic size of the whole system and the
Ehrenfest theorem ceases to be applicable. If the system is chaotic, the wave-packet
spreading is exponential, hence the qualitative difference between 𝑡E(N) for regular
and chaotic systems. An example of the OTOC time evolutions for a state from a low-
lying regular energy domain (blue curve) and an excited state from the middle chaotic
part of the spectrum (red curve) of the vibron u(3) model are shown in Figure 3.2.
Both curves are normalised to asymptotically oscillate around 1. The regular OTOC
has a regular quasiperiodic shape (its Fourier transform has only a few significant
frequencies) with strong “recurrences” in which 𝐶 (𝑡) falls back almost to its initial
value 𝐶 (0) = 0. On the other hand, the chaotic OTOC quickly explodes following the
exponential law (3.19) and erratically oscillates in the asymptotic times (its Fourier
transform would resemble the white noise); the oscillations, however, have a smaller
variance than in the case of the regular OTOC.

The quantum Lyapunov exponent calculated from the short-time OTOC behaviour
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Figure 3.3: Classical and quantum Lyapunov exponents 𝜆cl, 𝜆q for the microcanonical
OTOC in the vibron u(3) model (2.55) with 𝜆 = 0.4 and 𝜖 = 0.4 and system size
N ≡ 𝑁 = 50. Various choices of OTOC operators are indicated in the legend. (a) Dots
correspond to 𝜆q, 𝑗 for individual eigenstates

��𝐸 𝑗 〉 fitted from (3.19) up to the estimated
Ehrenfest time; the solid lines are smoothed values by a moving average over several
neighbouring OTOC values 𝐶 𝑗 . Note that for the sake of visual clarity, error bars are
not shown. The states shown in Figure 3.2 are highlighted by the same colours. (b)
Smoothed values of the wiggliness for two other choices of the OTOC operators, and
comparison with the classical Lyapunov exponent. Adapted from [55].

for the vibron model in a chaotic regime and various choices of the OTOC operators
V̂, Ŵ is shown in Figure 3.3 (beware the collision in notation; the vertical axes in the
figure display the Lyapunov exponents 𝜆cl, 𝜆q, not the model’s control parameter 𝜆).
Panel (a) shows by the black dots the quantum Lyapunov exponent fitted from (3.19)
for each quantum state and OTOC with V̂ = Ŵ = l̂,

𝐶𝑛 (𝑡) = −
〈
𝐸𝑛

���� [l̂(𝑡), l̂(0)]2
����𝐸𝑛〉 , (3.23)

where l̂ is the o(2) Casimir operator (2.54); the fit is up to the approximate Ehrenfest
time estimated as the time when the OTOC for the first time reaches the value. The
Ehrenfest time for each state is estimated from the asymptotic OTOC values as the
smallest time 𝑡 satisfying

𝐶𝑛 (𝑡𝑛) = �̄�𝑛 − 𝜎𝑛, (3.24)
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see also the vertical dashed green line in Figure 3.2; more details on estimating the
Ehrenfest time are given in Appendix L. The regular and chaotic states from Figure 3.2
are highlighted by the same colours, and the values of their quantum Lyapunov
exponent reflect their stability.
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Figure 3.4: The asymptotic relative oscillations (wiggliness) for OTOC operators
V̂ = Ŵ = l̂ of the u(3) algebraic model (2.55) with 𝜖 = 0.4, 𝜉 = 0.4 and 𝑁 = 50. The dots
denote the individual wiggliness values 𝜈𝑛 and the thick yellow lines the smoothed
values �̄�(𝐸) by the moving window average. The smooth value compares to the
classical fraction of regularity 𝑓reg, shown by the solid red line. The blue and red
points indicate the states shown in Figure 3.2.

The numerical quantum Lyapunov exponent 𝜆q,𝑛 differs from state to state, since
some of them capture more of the remnants of regularity in the system while the
behaviour of others is dominated by the presence of chaos. However, after performing
a simple smoothing procedure by a moving average over 𝜆q,𝑛 of several neighbouring
eigenstates |𝐸𝑛⟩, the resulting curves �̄�q(𝐸) for various choices of the OTOC operators
can be compared, within the error margins of about Δ𝜆q ≈ 0.05, with the classical
𝜆cl, see panel (b). This correspondence is confirmed in several other systems, see
also Appendix H, where the Dicke model of atom-field interaction is employed and
the OTOC operators correspond to the field-oscillator operators of coordinate and
momentum. The short-time OTOC behaviour thus, indeed, testifies to the local
stability of the system quantified by an average Lyapunov exponent.

A specific counterexample to this correspondence is related to the existence of
isolated points of unstable equilibrium in the system. These points of measure zero in
the whole phase space do not affect the classical dynamics. In the quantum case, on
the other hand, due to the uncertainty relations, there is a subset of quantum states
that can feel their presence and behave accordingly with an initial exponentially fast
OTOC evolution inducing high quantum Lyapunov exponent, even in integrable
systems, such as the Lipkin model. This behaviour is demonstrated and thoroughly
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discussed in Appendix I, as well as in References [71, 162]
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Figure 3.5: The asymptotic relative oscillations (wiggliness) for three different choices
of the OTOC operators (arranged in rows) and three different regimes of the u(3)
algebraic model (2.55) with 𝜖 = 0.4 and 𝜉 = {0.2, 0.4, 0.8} (arranged in columns).
The dots denote the individual wiggliness values 𝜈𝑛 and the thick yellow lines the
smoothed values �̄�(𝐸) by the moving window average. The smooth value compares
to the classical fraction of regularity 𝑓reg, shown by the solid red line. Adapted from [55].

Since the neighbouring points in the classical chaotic dynamics diverge expo-
nentially, the Ehrenfest time is relatively small, especially for modestly big systems
available experimentally, and may not be long enough to distinguish the stable dy-
namics from the chaotic dynamics with certainty. That is where the long-time relative
OTOC oscillations, quantified by the wiggliness 𝜈, come into play. Figures 3.4 and 3.5
show the wiggliness for several model configurations and choices of the OTOC op-
erators and for two different sizes 𝑁 . The smooth wiggliness �̄�(𝐸) is qualitatively
comparable with the classical fraction of regularity 𝑓reg; the most prominent example
is given in the middle column of Figure 3.5, where the 𝑓reg(𝐸) evolution has the most
untrivial behaviour with several local extremes, all of them captured by �̄�(𝐸) for
all distinct choices of the OTOC operators. Higher values of 𝑁 bring better energy
resolution.

In conclusion, the wiggliness (or, more precisely, its smoothed value) testifies to the
overall chaoticity of the quantum system and can serve as a chaos indicator, especially
in small systems and systems with large Lyapunov exponent.

Note that 𝜈𝑛 → 0 for chaotic states follows an algebraic power law,

𝜈𝑛 ∝ 𝑁𝛼 (3.25)
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as can be observed by comparing Figures 3.4 and 3.5, whereas it remains constant
for states from the regular part of the quantum spectrum. The rate 𝛼 can be also
considered as a chaos measure. This scaling and other subtleties of the wiggliness as a
tool for quantifying quantum chaoticity are exposed in detail in Appendix L.

3.4 Relation to the ESQPTs

It was hinted [163] that an ESQPT existence, especially the one connected with a
stationary point of a saddle type (for instance, index 𝑟 = 1 in systems with 𝑓 = 2), could
induce chaos in the system. The reasoning was based on the fact that the stationary
points of the Hamiltonian with 𝑟 > 0 are usually points of unstable equilibria, hence
unstable dynamics and that the equicontours of the Hamiltonian are often convex
(focusing) below the stationary point and concave (dispersing) above.9

Even though this conjecture works in many systems, it has been disproved in
general by finding several counterexamples, usually in systems where the chaos
breaks out well below the unstable stationary point, see the fraction of regularity in the
Creagh-Whelan model in Figure 2.4 or in the algebraic u(3) vibron model in Figure 2.6.

Other aspects come into play, such as integrability (though the unstable points
induce chaotic properties in the quantum dynamics even in integrable systems, see
Appendix I), or the fact that not all stationary points with 𝑟 > 0 are dynamically unsta-
ble, especially in algebraic systems with intricate Hamiltonians. A simple illustrative
example is the strongly detuned Rabi model, which has effectively 𝑓 = 1 degree of free-
dom. It contains a stationary point that evolves with increasing strength of interaction
from a (global) minimum with 𝑟 = 0 to an 𝑟 = 1 saddle point with unstable quantum
dynamics to 𝑟 = 2 maximum, which, surprisingly, exhibits stabilised dynamics. Note,
however, that the stability we are talking about is related to individual points affecting
individual classical trajectories, not the global dynamics.

To conclude this short section, so far, there is no theoretical connection between
the ESQPTs and the chaoticity of the system.

9A connection between (i) the shape of equipotential contours, (ii) the curvature of the geometric
embedding of the Hamiltonian motion and (iii) classical chaos was analysed in papers [31, 32].
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Chapter 4

Complex and non-Hermitian extensions

Non-Hermitian notions negotiate notable nebulousness,
nurturing novel narratives. Nonsensically non-normal,
non-conservative, and non-unitary, they necessitate
navigating numerous non-realms.

ChatGPT, A short explanation of non-Hermiticity with all
words starting with the letter n.

So far, we have considered systems that are described by a Hermitian Hamiltonian
Ĥ(𝝀) whose control parameters 𝝀 =

(
𝜆1, . . . , 𝜆𝑁p

)
are real (2.1). We have seen that the

individual energy levels tangle nontrivially with the change of 𝝀, recall Figures 2.2—2.6.
If we assume there is no symmetry in the system, i.e., there is no operator commuting
with Ĥ(𝝀), then there are almost no real energy level crossings in the system due to
the no-crossing theorem [164]; it is said that the crossings are avoided. However, true
eigenlevel degeneracies 𝐸𝑛 = 𝐸𝑚, 𝑛 ≠ 𝑚 called exceptional points (EPs) appear when the
control parameters are extended into the complex plane,

𝝀 ↦→ 𝚲 = 𝝀 + i𝝁, (4.1)

leading to a non-Hermitian Hamiltonian [165]. An EP generally represents the square-
root type of branch point and connects two Riemann sheets belonging to a pair of
complex eigenvalues 𝐸𝑛, 𝐸𝑚.

For simplicity, let us focus on one-parameter finite systems described by the Hamil-
tonian

Ĥ(Λ) = Ĥ0 + ΛV̂, Λ ∈ C, (4.2)

that lives in the Hilbert space H of dimension dimH = N . We shall denote the EPs
positions as Λ(EP)

𝑗
, 𝑗 = 1, . . . , 𝑁EP, where

𝑁EP = 2N(N − 1) (4.3)

is the total number of EPs. The EPs come in complex conjugate pairs, Λ
(EP)
𝑗

=

Λ
(EP)
𝑁EP− 𝑗 [166].

A natural question arises, What is the use of a complex extension? Is it not just
a smug mathematical game? The answer is no. As will be demonstrated in this
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chapter, in the “real” world, we can observe imprints of events and phenomena that
are firmly placed in the complex extension, in the same way as the prisoners in Plato’s
cave observe just shadows cast by the true reality [167]. Hence, moving complex,
although often difficult and painful, can help us free ourselves from the cave illusion
and understand the source of our observations in a more profound way [168].

We shall present three different research areas where the complex extension of the
standard mechanics can be used: an analysis of the properties of the EPs when the
system undergoes a QPT (Section 4.1), a study of the behaviour of the spectrum when
a closed subsystem is coupled to a continuum (Section 4.2) and an application of the
complex-extended level density to study quantum tunnelling through multibarrier
one-dimensional potentials (Section 4.3). In addition, we have recently published a
mathematical paper that derives the equations of motion for the exceptional points
in multiparametric systems [53], and another paper in which we extend the survival
amplitude of a quenched quantum system into the complex domain, compare it
with the complexified partition function and analyse the distribution of its zeros in a
system with ESQPTs and another critical concept called a Dynamical Quantum Phase
Transition (DQPT) [52].

Note that there are other ways to use complex extensions in quantum mechanics.
One of the important areas of research that should not be omitted to mention is the
parity-time-symmetric (𝑃𝑇-symmetric) extension of the quantum mechanics [169,
170]. As a curiosity, the CUSP system introduced in Section 2.2.1 also received a
PT-symmetric extension [171].

4.1 Quantum phase transitions

It was mentioned in Chapter 2 that one of the essential features of the QPTs is the
closing gap between the ground-state energy and the first excited-state energy. Since
the width of the gap

𝑔 = 𝐸1 − 𝐸gs (4.4)

is known to be connected with the imaginary components of the energy at a corre-
sponding EP, the non-Hermitian extension and the distribution of EPs offer valuable
tools for studying the QPTs [172–174] and ESQPTs [175]. Another piece of theory that
can be exploited is the analogy between the Yang-Lee zeros of the partition function
𝑍 (𝛽) at thermal phase transitions [176, 177] and the EPs, which says that the zeros
of 𝑍 (𝐵) for complex inverse temperature 𝐵 = 𝛽 + i𝜁 accumulate near the real critical
inverse temperature 𝛽𝑐 and the rate of accumulation determines the order of the
thermal phase transition [178–180]. A similar conclusion can be made for the QPTs
at zero temperature if, instead of zeros of 𝑍 (𝐵), one considers the EPs distribution of
Ĥ(Λ) and its behaviour with increasing system size [35, 181].

A detailed study of this analogy in the Lipkin model (2.37) reveals that, indeed, the
EPs tend to converge to the real axis in the vicinity of the QPT if the system size N ≡ 𝑁
grows. The EP situated the closest to the real axis, corresponding to the level crossing
of the ground state and the first excited state, approaches the real axis exponentially
fast for the first-order QPT and algebraically fast for the second-order QPT.
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Figure 4.1: Level dynamics (top panels; each eigenlevel is displayed by a curve of a
different colour) and the positions of the EPs (bottom panels) in the non-Hermitian
extension of the Lipkin model (2.37) by mapping 𝜆, 𝜒 ∈ R ↦→ Λ, 𝑋 ∈ C. Only half of
the EPs with Re 𝑋 (EP) > 0,ReΛ(EP) > 0 are shown (the second half is obtained by
reflecting the displayed EP along the horizontal axis). If the EPs can be associated with
the avoided crossings in the level dynamics, they are marked in both top and bottom
panels by the same colour (of the lower eigenlevel) and point type; if not, they appear
in the bottom panels in light grey. The dashed red lines and the red arrows indicate
the value of the corresponding control parameter at which the QPTs in the N → ∞
limit occur. (a) First-order QPT regime with Λ = 0.6 + 0i, 𝑁 = 10. (b) Second-order QPT
regime with 𝑋 = 0 + 0i and 𝑁 = 20. Only the even-parity subspace is shown in this
configuration. The level dynamics is extended beyond the usual interval ReΛ ∈ [0, 1].

The EP distribution for the finite-size precursors of both the first- and second-
order QPTs is illustrated for relatively small system size 𝑁 in Figure 4.1. The Lipkin
model is complexified by extending 𝜆, 𝜒 ∈ R ↦→ Λ, 𝑋 ∈ C. The first-order QPT at 𝑋 = 0
demonstrated in column (a) exhibits a much tighter gap 𝑔 (see the black and red curves
in the top subfigure), reflected by a small imaginary component Im 𝑋

(EP)
0 ≈ 10−7 of

the corresponding EP (black square in the bottom subfigure), even for a chosen small
system size. The imaginary component connected with the QPT gap asymptotically
scales as

Im 𝑋
(EP)
0 ∝ 𝑁−𝜁 e−𝜂𝑁 (4.5)
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where, for the Lipkin model, a fit of the constants gives (𝜁, 𝜂) ≈ (0.52, 1.49), see
Appendix F.

Note that the gap 𝑔 is more than one order of magnitude smaller than the gaps
between the excited states. Therefore, it turns out that the essence of the first-order
QPT can be described solely by the two-level interaction between the ground state
and the first excited state, and the rest of the spectrum can be disregarded.

The second-order QPT at Λ = 1/5 shown in column (b) is, on the other hand,
connected with a more complicated “collective” interplay of several exceptional points
originating in avoided crossings of a bunch of lowest-lying eigenlevels. The gap 𝑔 is
wider and decreases slower than in the case of the first-order QPT when the system
size grows. The corresponding EP has ImΛ

(EP)
0 ≈ 0.04 and scales algebraically with

the system size,

Im ImΛ
(EP)
0 ∝ 𝑁−𝜅, (4.6)

where the fitted value of the exponent is 𝜅 ≈ 0.67.
Notice that in the lower subfigure, there is another EP very close to the real axis

depicted by the filled violet pentagon. This EP is connected with the narrow avoided
crossing between the highest level and the second-highest level, which is connected
with a QPT-like behaviour of the highest level at Λ = 1.

The EPs can be associated with avoided crossings between specific levels provided
the levels are not far from one another. The algorithm consists of connecting a selected
EP by the shortest line with the real axis of the corresponding parameter. Then from
the evolution of the real parts of the energy levels, one can determine which energy
levels intersect at the selected EP. Since the complex-energy-level sheets are analytical
extensions of the real energies, the indices of the levels intersecting at the EP are
identical to the indices of their real parts on the real axis [182]. This procedure fails if
there is another EP in the vicinity of the line connecting the selected EP and the real
axis because this EP mixes and swaps another pair of energy levels (an effect called
EP shadowing). It is the case of several EPs accumulated near 𝑋 ≈ 0 + 0.2i, shown by
grey points in the top-left panel of Figure 4.1.

A detailed theoretical and numerical study of the EPs convergence speed to the real
axis for different orders of QPTs is presented in Appendix F. The Appendix also shows
what happens when the critical Hamiltonian is randomly perturbed and demonstrates
that the presence of criticality leads to qualitatively different distributions of the EPs.

4.2 Non-Hermitian superradiance

A non-Hermitian Hamiltonian can effectively describe an open quantum system in the
sense of the Feshbach theory [183, 184]. Let us model such a system with a finite Hamil-
tonian on an 𝑛-dimensional Hilbert space H , describing a bound subsystem with real
energies 𝐸 (0)

𝑘
and corresponding orthonormal eigenvectors

���𝐸 (0)
𝑘

〉
, 𝑘 = 1, . . . , 𝑛, cou-

pled to a continuum via an effective “decay” Hamiltonian Ĥd, living in a 𝑑-dimensional
subspace Hd ⊂ H whose basis is spanned over the states

��𝜙 𝑗 〉 , 𝑗 = 1, . . . , 𝑑 and

have, in general, nonvanishing overlap with all the unperturbed states
���𝐸 (0)
𝑘

〉
, i.e.,
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𝐸
(0)
𝑘

���𝜙 𝑗 〉 ≠ 0 ∀𝑘, 𝑗 . The full Hamiltonian will read

Ĥ(Λ) = Ĥ0 + (𝜖 − i𝛾)︸   ︷︷   ︸
Λ

𝑑∑︁
𝑗=1

��𝜙 𝑗 〉〈𝜙 𝑗 �� , (4.7)

where the complex parameter Λ is the coupling strength between the bound and
open subsystems. For simplicity, all the states

��𝜙 𝑗 〉 have the same decay widths
𝛾 = ℏ/(2𝜏) ≥ 0, reciprocal to the mean lifetime 𝜏, and energy offset 𝜖 , which can be
set to zero. Under a nonzero value of 𝛾 the whole system (4.7) becomes unstable,
resulting in complex eigenenergies

E𝑘 (𝛾) = 𝐸𝑘 (𝛾) − iΓ𝑘 (𝛾), (4.8)

whose imaginary parts Γ𝑘 specify the decay widths of the eigenstates of the full
Hamiltonian Ĥ.

When one starts opening the system, all the widths Γ𝑘 initially increase linearly
with 𝛾 due to the perturbation theory. However, at 𝛾 values comparable with the
spacings between the unperturbed energies, the set of eigenstates of Ĥ splits into two
groups: (i) 𝑑 eigenstates whose widths keep growing and the growth rate saturates at
Γ𝑘 (𝛾) ≈ 𝛾 for high 𝛾, and (ii) 𝑛 − 𝑑 eigenstates that turn back towards the real axis and
become asymptotically stable, Γ𝑘 (𝛾 → ∞) → 0. The real parts 𝐸𝑘 (𝛾) also changes with
𝛾, but always stays within the range 𝐸𝑘 (𝛾) ∈ [𝐸 (0)

1 , 𝐸
(0)
𝑛 ] of the unperturbed system.

The splitting of energies into fast-decaying ones and long-living ones was for the
first time described in the continuum nuclear shell model [185] and later revealed in
other many-body models [186]. This phenomenon is related to the so-called Dicke
superradiance [187], which is a spontaneous radiation burst emitted from an ensemble
of atoms strongly coupled with an electromagnetic field. In our case, the mediating
field is substituted by Ĥ𝑑 and the superradiant burst is related to the very short-living
superradiant states. This is why the phenomenon has been called the non-Hermitian
superradiance (NHSR).

A demonstration of the complex level dynamics and its evolution leading towards
the NHSR is given in Figure 4.2, in which the Lipkin Hamiltonian (2.37) at the first-
order QPT (panel a) and the second-order QPT (panel b) models the bound system 𝐻0.
The basis

��𝜙 𝑗 〉 for the decay zone of the total Hamiltonian is selected as a subset of 𝑑
eigenstates of a 𝑛 × 𝑛 random matrix from the Gaussian Orthogonal Ensemble, known
to have eigenvectors pointing at completely random directions in the 𝑛-dimensional
space [129], hence, due to their normalisation, covering uniformly a unit 𝑛-dimensional
sphere. Each line in the Figure corresponds to one eigenstate of Ĥ with energy given
on the horizontal axis and the decay width on the vertical axis. The colour of the
curves encodes the coupling strength 𝛾 between the Lipkin system and the open
channels.

One observes that initially, for 𝛾 ⪅ 0.01 (blue colour), all the eigenstates open
simultaneously. When the coupling strength reaches the mean level density �̄� ≈ 0.05
(dark green colour), the levels begin to curve and tangle. If 𝛾 increases further (red
colour), 𝑑 levels decouple and decay, whereas the rest of the states return to the safety
of the real axis.
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Figure 4.2: Complex level dynamics of Hamiltonian (4.7) with 𝑑 = 10 open channels.
The unperturbed Hamiltonian Ĥ0 is the Lipkin model (2.37) with 𝑛 = 𝑁 = 20 at (a)
the first-order QPT (𝜆 = 0.6, 𝜒 = 0) and (b) the second-order QPT (𝜆 = 0.2, 𝜒 = 0).
Randomly chosen decay-inducing eigenvectors

��𝜙 𝑗 〉 , 𝑗 = 1, . . . , 10 are the same in both
cases (a) and (b).

Since the Hamiltonian (4.7) is non-Hermitian and has the form of Equation (4.2), a
question arises whether the distribution of EPs in the parameter Λ = 𝜖 − i𝛾 can give
insight into the mechanism of the NHSR and distinguish systems with QPTs from
noncritical ones. As was discussed earlier in this chapter, the imaginary component of
an EP is proportional to the distance of two energy levels at their avoided crossing, and
the QPTs are characterised by a tight avoided crossing between the ground state and
the first excited state. Therefore, the distribution of the EPs for the NHSR Hamiltonian
when its unperturbed part Ĥ0 undergoes a QPT should be shifted towards the origin,
compared to a generic case with noncritical Ĥ0. An illustration of why it should be so
is presented in Figure 4.3, in which the real level dynamics in parameter 𝜖 and the EPs
in Λ are shown both for Ĥ0 modelling a first-order QPT (panel a) and second-order
QPT (panel b). The levels at the first-order QPT bunch together in pairs, so any generic
perturbation to the Hamiltonian Ĥ0 governed by parameter Λ leads to an immediate
avoided crossing with

��ΛEP
�� ≈ 0. The EPs corresponding to the first three eigenlevel

pairs are highlighted in Figure 4.2 (a) by the green squares, which, indeed, lie very
close to the origin in the inset. A similar, but more subtle shift in the EPs distribution
can be observed for the second-order QPT.

In order to obtain a full account of the distribution of the EPs, we generate many re-
alisations of the decay-inducing subspace Hd. We also perform an ensemble averaging
to obtain a bulk evolution of both decayed and stabilised states, which significantly
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Figure 4.3: Real level dynamics of the NHSR Hamiltonian (4.7) with 𝑑 = 2 open chan-
nels (main panels) and exceptional points in parameter Λ (insets). The unperturbed
Hamiltonian Ĥ0 is the Lipkin model (2.37) with 𝑁 = 10 at (a) the first-order QPT
(𝜆 = 0.6, 𝜒 = 0) and (b) the second-order QPT (𝜆 = 0.2, 𝜒 = 0). Randomly chosen decay-
inducing eigenvectors

��𝜙 𝑗 〉 , 𝑗 = 1, 2 are the same in both cases (a) and (b). The dashed
red lines indicate the spectrum of the clean QPT configuration. The EPs are associated
with the avoided crossings in the level dynamics using the procedure commented in
Section 4.1.

differ if the unperturbed Hamiltonian is critical or generic. The results are shown and
thoroughly discussed in Appendix G.

To conclude this section, the NHSR has had applications in many-body systems
that exhibit decay or resonance phenomena, such as nuclei, atoms, molecules, atomic
clusters or generic gain-loss systems [186, 188–190], and the current contribution can
play an important role in the decaying system undergoes a QPT.

4.3 Quantum tunnelling

The last topic covered in this chapter will be the semiclassical theory of quantum tun-
nelling through general onedimensional multibarrier potential. Whereas the previous
two sections deal with systems that are described by non-Hermitian Hamiltonians,
this section addresses complex extensions of inherently real quantities, such as quan-
tum level density or classical time delay. We show a tight connection between these
quantities and demonstrate ESQPT-like singularities associated with stationary points
of the tunnelling potential.

The level density of quantum bound systems is given by the sum of Dirac 𝛿
functions sitting at the discrete eigenenergies (2.7), or equivalently and somewhat
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more abstractly,

𝜌(𝐸) = −1
𝜋

lim
𝜖→0

Im Tr
[
Ĝ(𝐸 + i𝜖)

]
, (4.9)

where
Ĝ(𝐸) = 1

𝐸 − Ĥ
(4.10)

is the Green operator associated with the system’s Hamiltonian Ĥ. The level den-
sity (4.9) diverges if applied to a system with a continuous spectrum. However, if
we subtract another “infinity” given by the level density of a noninteracting system
described by Hamiltonian Ĥ0 with Green operator Ĝ0,

𝛿𝜌(𝐸) = −1
𝜋

lim
𝜖→0

Im Tr
[
Ĝ(𝐸 + i𝜖) − Ĝ0(𝐸 + i𝜖)

]
, (4.11)

we obtain a finite number used as the continuum level density in scattering theory [191,
192].

Instead of real energy 𝐸 , we switch to complex eigenvalues E = 𝐸𝑘 − i
2Γ𝑘 corre-

sponding to resonance states with widths Γ𝑘 . Technically, the resonances can be found,
for instance, using the complex-scaling method [165], which reveals discrete reso-
nances up to a certain width, while the rest remains in the so-called rotated continuum.
Combined with confining the system into a box with arbitrarily large dimensions,
the number of resonances will be large but countable and we can reformulate the
continuous level density as

Δ𝜌(E) = i
𝜋

Tr
1

E − Ĥ
− i
𝜋

Tr
1

E − Ĥ0
, (4.12)

where E𝑘 and E (0)
𝑘

represent poles of Ĥ and Ĥ0, respectively. Note that Δ𝜌 is in general
a complex variable.

A 1D scattering problem is usually described by Hamiltonian in the standard form

Ĥ = Ĥ0 + V̂, (4.13)

where Ĥ0 ≡ T̂ = p̂2/(2𝑚) is the kinetic term and V̂ is the coordinate-dependent
tunnelling potential, assumed to be practically nonzero only inside a certain finite
interval 𝑞 ∈ (𝑎, 𝑏). A stationary solution of the Schrödinger equation is

𝜓(𝑞) =
{

e
i
ℏ 𝑝𝑞 +𝑅(𝐸) e−

i
ℏ 𝑝𝑞 𝑞 < 𝑎,

𝑇 (𝐸) e
i
ℏ 𝑝𝑞 𝑞 > 𝑏,

(4.14)

where 𝑝 =
√

2𝑀𝐸 is the momentum of the particle, 𝑅(𝐸) is the reflection amplitude
and 𝑇 (𝐸) the transmission amplitude. The complex transmission amplitude can be
written as

𝑇 (𝐸) = |𝑇 (𝐸) | ei𝜙(𝐸) = eiΦ(𝐸) , (4.15)

where 𝜙(𝐸) is the real phase shift of the transmitted wave and Φ(𝐸) is a corresponding
complex phase.
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The real continuum level density (4.11) is connected to the phase shift 𝜙(𝐸) [193]
via relation

𝛿𝜌(𝐸) = 1
𝜋

d
d𝐸

𝜙(𝐸). (4.16)

Extended to the complex level density and complex phase, it reads

Δ𝜌(𝐸) = 1
𝜋

d
d𝐸

Φ(𝐸) = 1
𝜋
𝜙(𝐸) − i

𝜋

d
d

ln |𝑇 (𝐸) | (4.17)

and provides a link from the level density to the observable quantities 𝜙(𝐸) and 𝑇 (𝐸).
The phase shift can be also related to a properly defined time or “time delay”. For

instance, the Eisenbud-Wigner time [194],

𝛿𝑡 (𝐸) = ℏ
d

d𝐸
𝜙(𝐸) (4.18)

gives a time shift 𝛿𝑡 ≈ ℏ/Γ𝑘 near the centre of a single resonance of width Γ𝑘 , propor-
tional to the average lifetime, whereas it vanishes away from the resonance. A complex
extension of the time delay will naturally be

Δ𝑡 (𝐸) = ℏ
d

d𝐸
Φ(𝐸) = ℏ𝜋 Δ𝜌(𝐸). (4.19)

Since the complex level density has a strongly oscillating component, similar to its
real sibling (2.8), we shall focus on the smoothed values Δ�̄�(𝐸), Φ̄(𝐸) and Δ𝑡 (𝐸) only.

The smooth time shift Δ𝑡 can be understood from the semiclassical Wentzel-
Kramers-Brillouin approximation, which gives for the transmitted wave

𝑇 (𝐸) e
i
ℏ 𝑝𝑏 = e

i
ℏ 𝑝𝑎 e

i
ℏ
∫ 𝑏

𝑎
d𝑞
√

2𝑀 [𝐸−𝑉 (𝑞)]+𝑐, (4.20)

where 𝑐 is the phase accumulated at the turning points between the classically allowed
and forbidden regions in (𝑎, 𝑏) [195].

By putting everything together, the real part of the complex time delay will be

ReΔ𝑡 (𝐸) =
∫ 𝑏

𝑎

d𝑞Θ(𝐸 −𝑉 (𝑞))

√︄
𝑀

2[𝐸 −𝑉 (𝑞)] −
𝑀

2𝐸
(𝑏 − 𝑎), (4.21a)

and, similarly, the imaginary component

ImΔ𝑡 (𝐸) =
∫ 𝑏

𝑎

d𝑞Θ(𝑉 (𝑞) − 𝐸)

√︄
𝑀

2[𝑉 (𝑞) − 𝐸] , (4.21b)

where Θ is the Heaviside step function that guarantees that the integrals are taken
across all the classically allowed (forbidden) regions for the real (imaginary) part of
Δ𝑡 (𝐸), which can include several coordinate intervals for a multibarrier tunnelling
potential.

The theory is demonstrated on a Hamiltonian with a polynomial potential sup-
ported by a Gaussian function,

Ĥ =
p̂2

2𝑚
+ e−𝜂q̂2

∑︁
𝑗

𝑐 𝑗 q̂ 𝑗 , (4.22)
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Figure 4.4: The smooth continuum level density Δ�̄� calculated for a finite size (“classi-
cality”) parameter N = 200 (2.25) (characteristic energy and characteristic lengths are
taken as 𝐸ch = 1, 𝑞ch = 1) is shown by light blue and orange solid curves for the real
and imaginary part, respectively. The semiclassical time delay Δ𝑡 (4.21), is plotted by
dark blue and red dash curves.

where 𝜂 > 0 characterises the width of the potential and 𝑐 𝑗 are tunable parameters
modelling the tunnelling barriers and wells. Figure 4.4 shows the smooth complex
level density and the complex time delay for all eight possible configurations of the
multibarrier potential (4.22) with three local quadratic maxima and two local quadratic
minima [the polynomial in (4.22) is of the fourth-order]. The potentials are plotted
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in the insets. The parameters 𝑐 𝑗 are chosen in such a way that all the local extremes
of the potential sit at 𝑉 = 0.2, 0.4, 0.6, 0.8 and the global maximum is situated at
𝑉 = 1. Following the theory given in Chapter 2, one expects singularities in the level
density—analogues of the ESQPTs in the discrete spectra of bound systems—at the
energies of the stationary points. The stationary points of the 1D tunnelling system
can only have indices 𝑟 = 0 (quadratic minimum) and 𝑟 = 1 (quadratic maximum),
leading to upward jumps and upward-pointing logarithmic divergencies in the real
part of the level density, respectively. A novelty here is that the singularities appear
also in the imaginary part of the level density, but they have an opposite character:
a downward jump for the potential maximum and a logarithmic divergence for the
potential maximum. In general, the singularities in the imaginary part of the level
density follow the same ESQPT theory as in the real part, but one has to analyse the
indices of the stationary points of the Hamiltonian turned “upside down”, −𝐻 (𝑝, 𝑞),
instead of 𝐻 (𝑝, 𝑞). It means that the potential minimum has index 𝑟 = 2 for −𝐻,
whereas the potential maximum has index 𝑟 = 1 for −𝐻 (the kinetic term of the
negative Hamiltonian is a local maximum). Note that the opposite character of the
singularities in Im �̄�(𝐸) can also be deduced from Formulae (4.21).

The theory is fully developed in Appendices J and K, where the reader can also
find technical details about the calculations, more numerical examples of tunnelling
potentials and extensive discussion. The Appendices further discuss a possible com-
plex extension of classical mechanics that offers a straightforward interpretation of
the complex tunnelling time: the particle moves forward in the real time in classically
allowed regions of the potential, but they tunnel in the imaginary time with imaginary
momentum through the classically forbidden regions. The position of the tunnelling
particle stays real in all regions.
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Chapter 5

Summary and Outlook

This thesis presented the main three branches of our ongoing research in collective
many-body physics: critical phenomena (quantum phase transitions and excited-state
quantum phase transitions), classical-quantum correspondence in chaos theory and
non-Hermitian extensions of quantum mechanics. The intention was to give a brief
but clear and summarising introduction to the individual areas and demonstrate how
these areas are interconnected and how one can help to understand the other, which is
usually not possible in specialised papers. However, the main text is firmly based on
and tightly related to the selection of published works reprinted in the Appendices,
which give thorough rigorous analyses of specific problems.

Each of the three main lines of research is still being developed and pushed further.
Let us conclude this thesis by mentioning some open questions and directions for
further development.

Concerning the ESQPTs, an interesting open question is how these critical phe-
nomena are connected to other recently introduced concepts, such as the Dynamical
Quantum Phase Transitions (DQPTs). There are some indications that there is, indeed,
a relation, especially between the ESQPTs and the DQPTs of type I [196]. However,
the connection can be more profound and can be fruitfully studied by the complex
extension of the survival probability [52]. Another field of study stems from the fact
that so far, it has been shown that ESQPTs can practically be observed only if the
effective number of degrees of freedom is low (the ESQPT singularities appear in low
derivatives of the level density and other affected quantities), which is often connected
with a high degree of collectivity in the dynamics. However, would there be any way
to extend the ESQPT concept into non-collective many-body systems, often without a
classical limit? Active current research by our group also tries to elucidate what could
be the optimal quantum driving (adiabatic or nonadiabatic) in the presence of the QPTs
or ESQPTs. We are also working on the classification of ESQPT singularities connected
with the boundary of the compact phase space in algebraic collective models, where
the compactness can be related to the existence of an additional integral of motion.
One can also ask whether the analogues of ESQPTs exist in periodic lattice systems or
in periodically driven systems. And what happens if the system with an ESQPT is not
isolated, but interacts with an environment and decoheres? How does the presence of
the ESQPTs affect thermodynamics, especially canonical thermodynamics?

In the area of quantum chaos, we are currently elaborating on the theory of relative
asymptotic oscillations and plan to extend the analysis to (i) many-body systems with
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local interaction, and (ii) other than microcanonical OTOCs, especially the OTOCs
in coherent states, which is highly relevant experimentally. Also, there have been
introduced recently the concept of quantum many-body scars [197]—an extension
of quantum scars as an increased localisation of some wave functions around classi-
cally unstable periodic orbits [198]—so a natural question arises how the scarring is
imprinted in the OTOCs. Some case studies are already known [154, 160]

Finally, the complex extensions and non-Hermitian approach to quantum mechan-
ics offer a profound theoretical tool that has not been fully exploited yet. We plan to
focus on the distribution of zeros in the survival probability extended for complex
times, which seems promising for understanding the connection between the ESQPTs
and DQPTs.
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54P. Cejnar, P. Stránský, J. Střeleček, and F. Matus, “Decoherence-assisted quantum
driving”, Physical Review A 107, L030603 (2023).

55J. Novotný and P. Stránský, “Relative asymptotic oscillations of the out-of-time-
ordered correlator as a quantum chaos indicator”, Physical Review E 107, 054220
(2023).

62

https://doi.org/10.1103/PhysRevC.99.064323
https://doi.org/10.1103/PhysRevE.100.042119
https://doi.org/10.1063/1.5124589
https://doi.org/10.1063/1.5124589
https://doi.org/10.1103/PhysRevE.101.010202
https://doi.org/10.1103/PhysRevE.101.010202
https://doi.org/10.1103/PhysRevLett.125.020401
https://doi.org/10.1088/1751-8121/abdfe8
https://doi.org/10.1103/PhysRevA.103.032213
https://doi.org/10.1103/PhysRevA.103.062207
https://doi.org/10.1103/PhysRevA.104.053722
https://doi.org/10.1103/PhysRevA.104.053722
https://doi.org/10.1103/PhysRevA.107.012216
https://doi.org/10.1103/PhysRevA.107.012216
https://doi.org/10.1103/PhysRevB.107.094307
https://doi.org/10.1088/1751-8121/acc0ea
https://doi.org/10.1103/PhysRevA.107.L030603
https://doi.org/10.1103/PhysRevE.107.054220
https://doi.org/10.1103/PhysRevE.107.054220


Bibliography

56R. Filip, Private communication, 2020.
57S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, Cam-

bridge, 2011).
58L. Carr, Understanding quantum phase transitions, edited by L. Carr (CRC Press, Nov.

2011), p. 728.
59G. Jaeger, “The Ehrenfest Classification of Phase Transitions: Introduction and

Evolution”, Archive for History of Exact Sciences 53, 51–81 (1998).
60A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, “Colloquium: Nonequi-

librium dynamics of closed interacting quantum systems”, Reviews of Modern
Physics 83, 863–883 (2011).

61W. Huang, M. Wang, F. Kondev, G. Audi, and S. Naimi, “The AME 2020 atomic
mass evaluation (i). evaluation of input data, and adjustment procedures”, Chinese
Physics C 45, 030002 (2021).

62M. Wang, W. Huang, F. Kondev, G. Audi, and S. Naimi, “The AME 2020 atomic
mass evaluation (II). tables, graphs and references”, Chinese Physics C 45, 030003
(2021).

63C. F. v. Weizsäcker, “Zur Theorie der Kernmassen”, de, Zeitschrift für Physik 96,
431–458 (1935).

64A. E. L. Dieperink, O. Scholten, and F. Iachello, “Classical Limit of the Interacting-
Boson Model”, Physical Review Letters 44, 1747–1750 (1980).

65N. J. Stone, “Table of nuclear magnetic dipole and electric quadrupole moments”,
Atomic Data and Nuclear Data Tables 90, 75–176 (2005).

66P. Cejnar, J. Jolie, and R. F. Casten, “Quantum phase transitions in the shapes of
atomic nuclei”, Reviews of Modern Physics 82, 2155–2212 (2010).

67P. Cejnar, M. Macek, S. Heinze, J. Jolie, and J. Dobeš, “Monodromy and excited-state
quantum phase transitions in integrable systems: collective vibrations of nuclei”,
Journal of Physics A: Mathematical and General 39, L515 (2006).

68M. Caprio, P. Cejnar, and F. Iachello, “Excited state quantum phase transitions in
many-body systems”, Annals of Physics 323, 1106–1135 (2008).

69K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase
transition with a superfluid gas in an optical cavity”, Nature 464, 1301–1306 (2010).

63

https://doi.org/10.1007/s004070050021
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/https://doi.org/10.1088/1674-1137/abddb0
https://doi.org/https://doi.org/10.1088/1674-1137/abddb0
https://doi.org/https://doi.org/10.1088/1674-1137/abddaf
https://doi.org/https://doi.org/10.1088/1674-1137/abddaf
https://doi.org/10.1007/BF01337700
https://doi.org/10.1007/BF01337700
https://doi.org/10.1103/PhysRevLett.44.1747
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1088/0305-4470/39/31/L01
https://doi.org/10.1016/j.aop.2007.06.011
https://doi.org/10.1038/nature09009


BIBLIOGRAPHY BIBLIOGRAPHY

70M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and M. D. Barrett, “Realization
of the Dicke Model Using Cavity-Assisted Raman Transitions”, Physical Review
Letters 113, 020408 (2014).

71R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M. Rey, “Unifying scram-
bling, thermalization and entanglement through measurement of fidelity out-of-
time-order correlators in the dicke model”, Nature Communications 10, 10.1038/
s41467-019-09436-y (2019).

72M. A. Quiroz-Juárez, J. Chávez-Carlos, J. L. Aragón, J. G. Hirsch, and R. d. J. León-
Montiel, “Experimental realization of the classical Dicke model”, Physical Review
Research 2, 033169 (2020).

73X. Li, D. Dreon, P. Zupancic, A. Baumgärtner, A. Morales, W. Zheng, N. R. Cooper,
T. Donner, and T. Esslinger, “First order phase transition between two centro-
symmetric superradiant crystals”, Physical Review Research 3, L012024 (2021).

74M. Heyl, “Dynamical quantum phase transitions: a review”, Reports on Progress in
Physics 81, 054001 (2018).

75F. Haake, Quantum signatures of chaos (Springer Berlin Heidelberg, 2010).
76V. Ivrii, “100 years of Weyl’s law”, Bulletin of Mathematical Sciences 6, 379–452

(2016).
77M. C. Gutzwiller, Chaos in classical and quantum mechanics (Springer New York,

1990).
78M. Morse, Calculus of variations in the large, Vol. 18, Colloquium Publications (Amer-

ican Mathematical Society, 1934), p. 368.
79J. Milnor, Morse theory, Vol. 51, Annals of Mathematic Studies (Princeton University

Press, 1963), p. 160.
80M. Pettini, Geometry and topology in hamiltonian dynamics and statistical mechanics,

Interdisciplinary Applied Mathematics (Springer, 2007), p. 456.
81M. Audin and M. Damian, Morse theory and floer homology, Universitext 1, Original

French edition published by EDP Sciences, Les Ulis Cedex A, France, 2010 (Springer
London, 2014).

82M. Kastner, “Phase transitions and configuration space topology”, Reviews of
Modern Physics 80, 167–187 (2008).

83B. Dietz, F. Iachello, and M. Macek, “Algebraic Theory of Crystal Vibrations: Local-
ization Properties of Wave Functions in Two-Dimensional Lattices”, Crystals 7, 246
(2017).

84I. Stewart, “Catastrophe theory in physics”, Reports on Progress in Physics 45, 185
(1982).

85S. C. Creagh and N. D. Whelan, “Complex Periodic Orbits and Tunneling in Chaotic
Potentials”, Physical Review Letters 77, 4975–4979 (1996).

86P. Stránský, Dynamics of the Creagh-Whelan potential, https://pavelstransky.
cz/cw.php, [online].

64

https://doi.org/10.1103/PhysRevLett.113.020408
https://doi.org/10.1103/PhysRevLett.113.020408
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1103/PhysRevResearch.2.033169
https://doi.org/10.1103/PhysRevResearch.2.033169
https://doi.org/10.1103/PhysRevResearch.3.L012024
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1007/s13373-016-0089-y
https://doi.org/10.1007/s13373-016-0089-y
https://doi.org/10.1103/RevModPhys.80.167
https://doi.org/10.1103/RevModPhys.80.167
https://doi.org/10.3390/cryst7080246
https://doi.org/10.3390/cryst7080246
https://doi.org/10.1088/0034-4885/45/2/002
https://doi.org/10.1088/0034-4885/45/2/002
https://doi.org/10.1103/PhysRevLett.77.4975
https://pavelstransky.cz/cw.php
https://pavelstransky.cz/cw.php


BIBLIOGRAPHY BIBLIOGRAPHY

87H. J. Lipkin, N. Meshkov, and A. J. Glick, “Validity of many-body approximation
methods for a solvable model: (I). Exact solutions and perturbation theory”, Nuclear
Physics 62, 188–198 (1965).

88N. Meshkov, A. J. Glick, and H. J. Lipkin, “Validity of many-body approximation
methods for a solvable model: (II). Linearization procedures”, Nuclear Physics 62,
199–210 (1965).

89A. J. Glick, H. J. Lipkin, and N. Meshkov, “Validity of many-body approximation
methods for a solvable model: (III). Diagram summations”, Nuclear Physics 62,
211–224 (1965).

90F. Iachello, Lie algebras and applications, Lecture Notes in Physics (Springer Berlin
Heidelberg, 2015), p. 272.

91F. Iachello and A. Arima, The interacting boson model, Cambridge Monographs on
Mathematical Physics (Cambridge University Press, Cambridge, Aug. 1987).

92E. Ising, “Beitrag zur Theorie des Ferromagnetismus”, de, Zeitschrift für Physik 31,
253–258 (1925).

93A. Zymin, “Quasispin models in quantum physics”, Bachelor thesis (Faculty of
Mathematics and Physics, Charles University, Prague, Czech Republic, 2019).

94J. P. Blaizot and E. R. Marshalek, “Boson expansions and quantization of time-
dependent self-consistent fields (I). Particle-hole excitations”, Nuclear Physics A
309, 422–452 (1978).

95P. S. Jakub Novotný Pavel Cejnar, In preparation.
96F. Iachello, Algebraic theory of molecules (Oxford University Press, Apr. 1995), p. 243.
97F. Iachello and S. Oss, “Algebraic approach to molecular spectra: two-dimensional

problems”, The Journal of Chemical Physics 104, 6956–6963 (1996).
98D. Larese, F. Pérez-Bernal, and F. Iachello, “Signatures of quantum phase transitions

and excited state quantum phase transitions in the vibrational bending dynamics
of triatomic molecules”, Journal of Molecular Structure 1051, 310–327 (2013).

99F. Pérez-Bernal and F. Iachello, “Algebraic approach to two-dimensional systems:
shape phase transitions, monodromy, and thermodynamic quantities”, Physical
Review A 77, 032115 (2008).

100J. Khalouf-Rivera, F. Pérez-Bernal, and M. Carvajal, “Anharmonicity-induced excited-
state quantum phase transition in the symmetric phase of the two-dimensional
limit of the vibron model”, Physical Review A 105, 032215 (2022).

101M. Rautenberg and M. Gärttner, “Classical and quantum chaos in a three-mode
bosonic system”, Physical Review A 101, 053604 (2020).

102C. S. Gerving, T. M. Hoang, B. J. Land, M. Anquez, C. D. Hamley, and M. S. Chap-
man, “Non-equilibrium dynamics of an unstable quantum pendulum explored in a
spin-1 Bose–Einstein condensate”, Nature Communications 3, 1169 (2012).

103P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner,
and M. K. Oberthaler, “Spatially distributed multipartite entanglement enables EPR
steering of atomic clouds”, Science 360, 413–416 (2018).

65

https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1007/BF02980577
https://doi.org/10.1007/BF02980577
https://doi.org/10.1016/0375-9474(78)90489-X
https://doi.org/10.1016/0375-9474(78)90489-X
https://doi.org/10.1063/1.471412
https://doi.org/10.1016/j.molstruc.2013.08.020
https://doi.org/10.1103/PhysRevA.77.032115
https://doi.org/10.1103/PhysRevA.77.032115
https://doi.org/10.1103/PhysRevA.105.032215
https://doi.org/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.053604
https://doi.org/10.1038/ncomms2179
https://doi.org/10.1126/science.aao2254


BIBLIOGRAPHY BIBLIOGRAPHY

104F. Iachello and R. D. Levine, “Algebraic approach to molecular rotation-vibration
spectra. i. diatomic molecules”, The Journal of Chemical Physics 77, 3046–3055
(1982).

105M. M. Estévez-Fregoso and R. Lemus, “Connection between the su(3) algebraic and
configuration spaces: bending modes of linear molecules”, Molecular Physics 116,
2374–2395 (2018).

106E. Wigner, “On the quantum correction for thermodynamic equilibrium”, Physical
Review 40, 749–759 (1932).

107M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribution functions
in physics: Fundamentals”, Physics Reports 106, 121–167 (1984).

108D. F. Walls and G. J. Milburn, Quantum optics, edited by D. Walls and G. J. Milburn
(Springer Berlin Heidelberg, 2008), p. 350.

109L. E. Reichl, A Modern Course in Statistical Physics (Wiley, 2016).
110M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, “Thermal and

quantum phase transitions in atom-field systems: a microcanonical analysis”, en,
Journal of Statistical Mechanics: Theory and Experiment 2016, 093105 (2016).

111P. Pérez-Fernández and A. Relaño, “From thermal to excited-state quantum phase
transition: The Dicke model”, Physical Review E 96, 012121 (2017).

112P. Stránský, “Classical and quantum chaos in atomic nuclei”, PhD thesis (Faculty of
Mathematics and Physics, Charles University, Prague, Czech Republic, June 2009).

113M. Tabor, Chaos and integrability in nonlinear dynamics, An introduction (Wiley, 1989),
p. 364.

114L. E. Reichl, The transition to chaos (Springer New York, 2004).
115W. B. Hayes, “Is the outer Solar System chaotic?”, Nature Physics 3, 689–691 (2007).
116J. Laskar and M. Gastineau, “Existence of collisional trajectories of Mercury, Mars

and Venus with the Earth”, Nature 459, 817–819 (2009).
117G. Brown and H. Rein, “A Repository of Vanilla Long-term Integrations of the Solar

System”, Research Notes of the AAS 4, 221 (2020).
118E. N. Lorenz, The Essence of Chaos (University of Washington Press, 1995).
119A. N. Kolmogorov, “Preservation of conditionally periodic movements with small

change in the Hamilton function”, en, in Stochastic Behavior in Classical and
Quantum Hamiltonian Systems, Vol. 93, edited by G. Casati and J. Ford, Lecture
Notes in Physics (1979), pp. 51–56.

120J. Moser, “On invariant curves of area-preserving mappings of an annulus”, Nachrichten
der Akademie der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
1962, 1–20 (1962).

121V. I. Arnol’d, “Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-
periodic motions under small perturbations of the Hamiltonian”, Russian Mathe-
matical Surveys 18, 9 (1963).

122M. V. Berry and M. Robnik, “Semiclassical level spacings when regular and chaotic
orbits coexist”, Journal of Physics A: Mathematical and General 17, 2413 (1984).

66

https://doi.org/10.1063/1.444228
https://doi.org/10.1063/1.444228
https://doi.org/10.1080/00268976.2018.1487599
https://doi.org/10.1080/00268976.2018.1487599
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/10.1088/1742-5468/2016/09/093105
https://doi.org/10.1103/PhysRevE.96.012121
https://doi.org/10.1038/nphys728
https://doi.org/10.1038/nature08096
https://doi.org/10.3847/2515-5172/abd103
https://doi.org/10.1007/BFb0021737
https://doi.org/10.1007/BFb0021737
https://doi.org/10.1070/RM1963v018n05ABEH004130
https://doi.org/10.1070/RM1963v018n05ABEH004130
https://doi.org/10.1088/0305-4470/17/12/013


BIBLIOGRAPHY BIBLIOGRAPHY

123G. Contopoulos and M. Harsoula, “Stickiness effects in conservative systems”,
International Journal of Bifurcation and Chaos 20, 2005–2043 (2010).

124B. Mandelbrot, “How long is the coast of britain? statistical self-similarity and
fractional dimension”, Science 156, 636–638 (1967).

125A. Husain, J. Reddy, D. Bisht, and M. Sajid, “Fractal dimension of coastline of
australia”, Scientific Reports 11, 10.1038/s41598-021-85405-0 (2021).

126J. J. Duistermaat, “On global action-angle coordinates”, Communications on Pure
and Applied Mathematics 33, 687–706 (1980).

127N. W. Evans, “Superintegrability in classical mechanics”, Physical Review A 41,
5666–5676 (1990).

128O. Bohigas, M. J. Giannoni, and C. Schmit, “Characterization of chaotic quantum
spectra and universality of level fluctuation laws”, Physical Review Letters 52, 1–4
(1984).

129M. L. Mehta, Random matrices, volume 142, third edition (pure and applied mathematics)
(Elsevier, Academic Press, 2004), p. 706.

130M. V. Berry, “Semiclassical theory of spectral rigidity”, Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences 400, 229–251 (1985).

131A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, “Quantum
chaos and 1/f noise”, Physical Review Letters 89, 244102 (2002).

132C. E. Porter, Statistical theories of spectra fluctuations, Fluctuations (Academic Press,
1965).

133M. Berry, “Quantum chaology, not quantum chaos”, Physica Scripta 40, 335 (1989).
134S. Weigert, “The problem of quantum integrability”, Physica D: Nonlinear Phenom-

ena 56, 107–119 (1992).
135P. Šeba, “Wave chaos in singular quantum billiard”, Physical Review Letters 64,

1855–1858 (1990).
136A. Relaño, J. Dukelsky, J. M. G. Gómez, and J. Retamosa, “Stringent numerical test

of the poisson distribution for finite quantum integrable hamiltonians”, Physical
Review E 70, 026208 (2004).

137E. P. Wigner, “On the statistical distribution of the widths and spacings of nu-
clear resonance levels”, Mathematical Proceedings of the Cambridge Philosophical
Society 47, 790–798 (1951).

138E. P. Wigner, “Characteristic Vectors of Bordered Matrices With Infinite Dimen-
sions”, Annals of Mathematics 62, 548–564 (1955).

139E. P. Wigner, “Characteristics Vectors of Bordered Matrices with Infinite Dimensions
II”, Annals of Mathematics 65, 203–207 (1957).

140J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa, “Misleading signatures
of quantum chaos”, Physical Review E 66, 036209 (2002).

141R. Fossion, G. T. Vargas, and J. C. L. Vieyra, “Random-matrix spectra as a time
series”, Physical Review E 88, 060902 (2013).

67

https://doi.org/10.1142/S0218127410026915
https://doi.org/10.1126/science.156.3775.636
https://doi.org/10.1038/s41598-021-85405-0
https://doi.org/10.1038/s41598-021-85405-0
https://doi.org/10.1002/cpa.3160330602
https://doi.org/10.1002/cpa.3160330602
https://doi.org/10.1103/PhysRevA.41.5666
https://doi.org/10.1103/PhysRevA.41.5666
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1098/rspa.1985.0078
https://doi.org/10.1098/rspa.1985.0078
https://doi.org/10.1103/PhysRevLett.89.244102
https://doi.org/10.1088/0031-8949/40/3/013
https://doi.org/10.1016/0167-2789(92)90053-P
https://doi.org/10.1016/0167-2789(92)90053-P
https://doi.org/10.1103/PhysRevLett.64.1855
https://doi.org/10.1103/PhysRevLett.64.1855
https://doi.org/10.1103/PhysRevE.70.026208
https://doi.org/10.1103/PhysRevE.70.026208
https://doi.org/10.1017/S0305004100027237
https://doi.org/10.1017/S0305004100027237
https://doi.org/10.2307/1970079
https://doi.org/10.2307/1969956
https://doi.org/10.1103/PhysRevE.66.036209
https://doi.org/10.1103/PhysRevE.88.060902


BIBLIOGRAPHY BIBLIOGRAPHY

142Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, “Distribution of the ratio of
consecutive level spacings in random matrix ensembles”, Physical Review Letters
110, 084101 (2013).

143Y. Y. Atas, E. Bogomolny, O. Giraud, P. Vivo, and E. Vivo, “Joint probability densities
of level spacing ratios in random matrices”, Journal of Physics A: Mathematical
and Theoretical 46, 355204 (2013).

144J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos”, Journal of High
Energy Physics 2016, 106 (2016).

145D. A. Roberts and B. Swingle, “Lieb-Robinson Bound and the Butterfly Effect in
Quantum Field Theories”, Physical Review Letters 117, 091602 (2016).

146E. M. Fortes, I. García-Mata, R. A. Jalabert, and D. A. Wisniacki, “Gauging classi-
cal and quantum integrability through out-of-time-ordered correlators”, Physical
Review E 100, 042201 (2019).

147K. Hashimoto, K. Murata, and R. Yoshii, “Out-of-time-order correlators in quantum
mechanics”, Journal of High Energy Physics 2017, 138 (2017).

148A. Larkin and Y. Ovchinnikov, “Quasiclassical method in the theory of supercon-
ductivity”, Soviet Journal of Experimental and Theoretical Physics 28, 1200 (1969).

149S. H. Shenker and D. Stanford, “Black holes and the butterfly effect”, Journal of
High Energy Physics 2014, 67 (2014).

150B. Swingle, “Unscrambling the physics of out-of-time-order correlators”, Nature
Physics 14, 988–990 (2018).

151B. Yan, L. Cincio, and W. H. Zurek, “Information scrambling and loschmidt echo”,
Physical Review Letters 124, 160603 (2020).

152F. Borgonovi and F. M. Izrailev, “Emergence of correlations in the process of ther-
malization of interacting bosons”, Physical Review E 99, 012115 (2019).

153R. A. Kidd, A. Safavi-Naini, and J. F. Corney, “Saddle-point scrambling without
thermalization”, Physical Review A 103, 033304 (2021).

154D. Yuan, S.-Y. Zhang, Y. Wang, L.-M. Duan, and D.-L. Deng, “Quantum information
scrambling in quantum many-body scarred systems”, Physical Review Research 4,
023095 (2022).

155X. Mi, P. Roushan, C. Quintana, S. Mandrà, J. Marshall, C. Neill, F. Arute, K. Arya,
J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, J. Basso, A. Bengtsson, S. Boixo,
A. Bourassa, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Z.
Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R. Derk, A. Dunsworth,
D. Eppens, C. Erickson, E. Farhi, A. G. Fowler, B. Foxen, C. Gidney, M. Giustina,
J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, A. Ho, S. Hong, T. Huang,
W. J. Huggins, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, J.
Kelly, S. Kim, A. Kitaev, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis,
P. Laptev, E. Lucero, O. Martin, J. R. McClean, T. McCourt, M. McEwen, A. Megrant,
K. C. Miao, M. Mohseni, S. Montazeri, W. Mruczkiewicz, J. Mutus, O. Naaman,
M. Neeley, M. Newman, M. Y. Niu, T. E. O’Brien, A. Opremcak, E. Ostby, B. Pato,
A. Petukhov, N. Redd, N. C. Rubin, D. Sank, K. J. Satzinger, V. Shvarts, D. Strain,

68

https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1088/1751-8113/46/35/355204
https://doi.org/10.1088/1751-8113/46/35/355204
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevE.100.042201
https://doi.org/10.1103/PhysRevE.100.042201
https://doi.org/10.1007/JHEP10(2017)138
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1200?a=list
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1038/s41567-018-0295-5
https://doi.org/10.1038/s41567-018-0295-5
https://doi.org/10.1103/PhysRevLett.124.160603
https://doi.org/10.1103/PhysRevE.99.012115
https://doi.org/10.1103/PhysRevA.103.033304
https://doi.org/10.1103/PhysRevResearch.4.023095
https://doi.org/10.1103/PhysRevResearch.4.023095


BIBLIOGRAPHY BIBLIOGRAPHY

M. Szalay, M. D. Trevithick, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman,
H. Neven, I. Aleiner, K. Kechedzhi, V. Smelyanskiy, and Y. Chen, “Information
scrambling in quantum circuits”, Science 374, 1479–1483 (2021).

156J. M. Deutsch, “Quantum statistical mechanics in a closed system”, Physical Review
A 43, 2046–2049 (1991).

157M. Srednicki, “Chaos and quantum thermalization”, Physical Review E 50, 888–901
(1994).

158E. B. Rozenbaum, S. Ganeshan, and V. Galitski, “Lyapunov Exponent and Out-of-
Time-Ordered Correlator’s Growth Rate in a Chaotic System”, Physical Review
Letters 118, 086801 (2017).

159E. B. Rozenbaum, S. Ganeshan, and V. Galitski, “Universal level statistics of the
out-of-time-ordered operator”, Physical Review B 100, 035112 (2019).

160S. Pilatowsky-Cameo, D. Villaseñor, M. A. Bastarrachea-Magnani, S. Lerma-Hernández,
L. F. Santos, and J. G. Hirsch, “Ubiquitous quantum scarring does not prevent er-
godicity”, Nature Communications 12, 10.1038/s41467-021-21123-5 (2021).
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Appendix A

Excited-state quantum phase transitions
in systems with two degrees of freedom:
Level density, level dynamics, thermal
properties

Pavel Stránský, Michal Macek, and Pavel Cejnar, Annals of Physics 345, 73–97 (2014).
DOI: 10.1016/j.aop.2014.03.006

Abstract: Quantum systems with a finite number of freedom degrees 𝑓 develop ro-
bust singularities in the energy spectrum of excited states as the system’s size increases
to infinity. We analyze the general form of these singularities for low 𝑓 , particularly
𝑓 = 2, clarifying the relation to classical stationary points of the corresponding poten-
tial. Signatures in the smoothed energy dependence of the quantum state density and
in the flow of energy levels with an arbitrary control parameter are described along
with the relevant thermodynamical consequences. The general analysis is illustrated
with specific examples of excited-state singularities accompanying the first-order
quantum phase transition.

The full text of the paper is not included in this version.
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Appendix B

Excited-state quantum phase transitions
in systems with two degrees of freedom:
II. Finite-size effects

Pavel Stránský, Michal Macek, Amiram Leviatan, and Pavel Cejnar, Annals of Physics
356, 57–82 (2015).
DOI: 10.1016/j.aop.2015.02.025

Abstract: This article extends our previous analysis Stránský et al. (2014) of Excited-
State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus
on the oscillatory component of the quantum state density in connection with ESQPT
structures accompanying a first-order ground-state transition. It is shown that a
separable (integrable) system can develop rather strong finite-size precursors of ESQPT
expressed as singularities in the oscillatory component of the state density. The
singularities originate in effectively 1-dimensional dynamics and in some cases appear
in multiple replicas with increasing excitation energy. Using a specific model example,
we demonstrate that these precursors are rather resistant to proliferation of chaotic
dynamics.

The full text of the paper is not included in this version.
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Appendix C

Excited-state quantum phase transitions
in systems with two degrees of freedom.
III. Interacting boson systems

Michal Macek, Pavel Stránský, Amiram Leviatan, and Pavel Cejnar, Physical Review
C 99, 064323 (2019).
DOI: 10.1103/PhysRevC.99.064323

Abstract: The series of articles [Ann. Phys. 345, 73 (2014) and 356, 57 (2015)] devoted
to excited-state quantum phase transitions (ESQPTs) in systems with 𝑓 = 2 degrees of
freedom is continued by studying the interacting boson model of nuclear collective
dynamics as an example of a truly many-body system. The intrinsic Hamiltonian for-
malism with angular momentum fixed to 𝐿 = 0 is used to produce a generic first-order
ground-state quantum phase transition with an adjustable energy barrier between the
competing equilibrium configurations. The associated ESQPTs are shown to result
from various classical stationary points of the model Hamiltonian, whose analysis
is more complex than in previous cases because of (i) a nontrivial decomposition to
kinetic and potential energy terms and (ii) the boundedness of the associated classical
phase space. Finite-size effects resulting from a partial separability of both degrees of
freedom are analyzed. The features studied here are inherent in a great majority of
interacting boson systems.

The full text of the paper is not included in this version.

77

https://doi.org/10.1103/PhysRevC.99.064323




Appendix D

Classification of excited-state quantum
phase transitions for arbitrary number
of degrees of freedom

Pavel Stránský and Pavel Cejnar, Physics Letters A 380, 2637–2643 (2016).
DOI: 10.1016/j.physleta.2016.06.031

Abstract: Classical stationary points of an analytic Hamiltonian induce singularities
of the density of quantum energy levels and their flow with a control parameter in the
system’s infinite-size limit. We show that for a system with f degrees of freedom, a
non-degenerate stationary point with index 𝑟 causes a discontinuity (for 𝑟 even) or
divergence (𝑟 odd) of the ( 𝑓 −1) th derivative of both density and flow of the spectrum.
An increase of flatness for a degenerate stationary point shifts the singularity to lower
derivatives. The findings are verified in an 𝑓 = 3 toy model.

The full text of the paper is not included in this version.
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Appendix E

Heat capacity for systems with
excited-state quantum phase transitions

Pavel Cejnar and Pavel Stránský, Physics Letters A 381, 984 (2017).
DOI: 10.1016/j.physleta.2017.01.022

Abstract: Heat capacities of model systems with finite numbers of effective degrees
of freedom are evaluated using canonical and microcanonical thermodynamics. Dis-
crepancies between both approaches, which are observed even in the infinite-size
limit, are particularly large in systems that exhibit an excited-state quantum phase
transition. The corresponding irregularity of the spectrum generates a singularity in
the microcanonical heat capacity and affects smoothly the canonical heat capacity.

The full text of the paper is not included in this version.
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Appendix F

Exceptional points near first- and
second-order quantum phase
transitions

Pavel Stránský, Martin Dvořák, and Pavel Cejnar, Physical Review E 97, 012112 (2018).
DOI: 10.1103/PhysRevE.97.012112

Abstract: We study the impact of quantum phase transitions (QPTs) on the distribu-
tion of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter
domain. Analyzing first- and second-order QPTs in the Lipkin-Meshkov-Glick model
we find an exponentially and polynomially close approach of EPs to the respective
critical point with increasing size of the system. If the critical Hamiltonian is subject to
random perturbations of various kinds, the averaged distribution of EPs close to the
critical point still carries decisive information on the QPT type. We therefore claim that
properties of the EP distribution represent a parametrization-independent signature
of criticality in quantum systems.

The full text of the paper is not included in this version.
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Appendix G

Superradiance in finite quantum
systems randomly coupled to
continuum

Pavel Stránský and Pavel Cejnar, Physical Review E 100, 042119 (2019).
DOI: 10.1103/PhysRevE.100.042119

Abstract: We study the effect of superradiance in open quantum systems, i.e., the
separation of short- and long-living eigenstates when a certain subspace of states in
the Hilbert space acquires an increasing decay width. We use several Hamiltonian
forms of the initial closed system and generate their coupling to continuum by means
of the random matrix theory. We average the results over a large number of statistical
realizations of an effective non-Hermitian Hamiltonian and relate robust features of
the superradiance process to the distribution of its exceptional points. We show that
the superradiance effect is enhanced if the initial system is at the point of quantum
criticality.

The full text of the paper is not included in this version.
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Appendix H

Quantum and Classical Lyapunov
Exponents in Atom-Field Interaction
Systems

Jorge Chávez-Carlos, B. López-del-Caprio, Miguel A. Bastarrache-Magnani, Pavel
Stránský, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch, Physical
Review Letters 122, 024101 (2019).
DOI: 10.1103/PhysRevLett.122.024101

Abstract: The exponential growth of the out-of-time-ordered correlator (OTOC)
has been proposed as a quantum signature of classical chaos. The growth rate is
expected to coincide with the classical Lyapunov exponent. This quantum-classical
correspondence has been corroborated for the kicked rotor and the stadium billiard,
which are one-body chaotic systems. The conjecture has not yet been validated for
realistic systems with interactions. We make progress in this direction by studying
the OTOC in the Dicke model, where two-level atoms cooperatively interact with a
quantized radiation field. For parameters where the model is chaotic in the classical
limit, the OTOC increases exponentially in time with a rate that closely follows the
classical Lyapunov exponent.

The full text of the paper is not included in this version.
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Appendix I

Positive quantum Lyapunov
exponents in experimental systems with
a regular classical limit

Saúl Pilatowsky-Cameo, Jorge Chávez-Carlos, Miguel A. Bastarrache-Magnani, Pavel
Stránský, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch, Physical
Review E 101, 010202(R) (2020).
DOI: 10.1103/PhysRevE.101.010202

Abstract: Quantum chaos refers to signatures of classical chaos found in the quantum
domain. Recently, it has become common to equate the exponential behavior of
out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical
correspondence between the OTOC exponential growth and chaos in the classical limit
has indeed been corroborated theoretically for some systems and there are several
projects to do the same experimentally. The Dicke model, in particular, which has a
regular and a chaotic regime, is currently under intense investigation by experiments
with trapped ions. We show, however, that for experimentally accessible parameters,
OTOCs can grow exponentially also when the Dicke model is in the regular regime.
The same holds for the Lipkin-Meshkov-Glick model, which is integrable and also
experimentally realizable. The exponential behavior in these cases are due to unstable
stationary points, not to chaos.

The full text of the paper is not included in this version.
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Appendix J

Complex Density of Continuum States
in Resonant Quantum Tunneling

Pavel Stránský, Milan Šindelka, Michal Kloc, and Pavel Cejnar, Physical Review
Letters 125, 020401 (2020).
DOI: 10.1103/PhysRevLett.125.020401

Abstract: We introduce a complex-extended continuum level density and apply
it to one-dimensional scattering problems involving tunneling through finite-range
potentials. We show that the real part of the density is proportional to a real “time
shift” of the transmitted particle, while the imaginary part reflects the imaginary time
of an instantonlike tunneling trajectory. We confirm these assumptions for several
potentials using the complex scaling method. In particular, we show that stationary
points of the potentials give rise to specific singularities of both real and imaginary
densities which represent close analogues of excited-state quantum phase transitions
in bound systems.

The full text of the paper is not included in this version.
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Appendix K

Continuum analogs of excited-state
quantum phase transitions

Pavel Stránský, Milan Šindelka, and Pavel Cejnar, Physical Review A 103, 062207
(2021).
DOI: 10.1103/PhysRevA.103.062207

Abstract: Following our work [Phys. Rev. Lett. 125, 020401 (2020)], we discuss a
semiclassical description of one-dimensional quantum tunneling through multibar-
rier potentials in terms of complex time. We start by defining a complex-extended
continuum level density of unbound systems and show its relation to a complex time
shift of the transmitted wave. While the real part of the level density and time shift
describes the passage of the particle through classically allowed coordinate regions,
the imaginary part is connected with an instantonlike picture of the tunneling through
forbidden regions. We describe singularities in the real and imaginary parts of the
level density and time shift caused by stationary points of the tunneling potential,
and show that they represent a dual extension of excited-state quantum phase tran-
sitions from bound to continuum systems. Using the complex scaling method, we
numerically verify the predicted effects in several tunneling potentials.

The full text of the paper is not included in this version.
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Appendix L

Relative asymptotic oscillations of the
out-of-time-ordered correlator as a
quantum chaos indicator

Jakub Novotný and Pavel Stránský, Physical Review E 107, 054220 (2023).
DOI: 10.1103/PhysRevE.107.054220

Abstract: A detailed numerical study reveals that the asymptotic values of the
standard-deviation-to-mean ratio of the out-of-time-ordered correlator in energy eigen-
states can be successfully used as a measure of the quantum chaoticity of the system.
We employ a finite-size fully connected quantum system with two degrees of freedom,
namely, the algebraic u(3) model, and demonstrate a clear correspondence between
the energy-smoothed relative oscillations of the correlators and the ratio of the chaotic
part of the volume of phase space in the classical limit of the system. We also show
how the relative oscillations scale with the system size and conjecture that the scaling
exponent can also serve as a chaos indicator.

The full text of the paper is not included in this version.
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