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Preface
The presented thesis consists of 8 published scientific articles and accompanying
text which forms the body of the thesis. The selected articles focus on understand-
ing the accuracy and precision of advanced electronic structure methods, primar-
ily of the random phase approximation. In addition, I included two articles which
are results of collaboration with experimental groups. Most of the research was
performed at the Faculty of Mathematics and Physics of the Charles University,
with the exception of one work which resulted from my Marie Sklodowska-Curie
fellowship at J. Heyrovský Institute of Physical Chemistry in Prague.

The motivation for the research and the random phase approximation method
are presented in the first and second chapters, respectively. The three subsequent
chapters present the main findings of our work together with additional back-
ground information, related works not included in the thesis, and outlook. The
third chapter discusses the results obtained for the random phase approximation
method for molecular solids and molecular adsorption in zeolites. Simulations
that were used to support experimental findings in two papers are presented
in chapter four. Chapter five presents published work as well as some work in
progress in which we try understand precision of our results.
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1. Introduction
The world around us is formed by atoms yet it’s very difficult to imagine mate-
rials at the atomic level due to the small size of atoms. Fortunately, researchers
were able to figure out the physical laws of the atomic world, that is the quantum
mechanics, without seeing them. The laws can be used to describe the interac-
tions between atoms and can thus explain the existence of molecules or solids.
Later, these laws were used in computer simulations to build collections of atoms
and analyse their time evolution or other properties. Nowadays, with powerful
supercomputers and accurate methods we can perform “virtual experiments” in
which we can see how atoms behave in complex materials. Needless to say, ex-
perimental techniques have also made substantial progress and in the past years
we could see some beautiful examples of world at the atomic level viewed both by
simulations and experiments [1]. In this thesis I’ll discuss some of our contribu-
tions to the development of methods for materials simulations and applications
to systems studied experimentally. But let me first briefly discuss my motivation
for this research direction and how it occurred.

I finished my masters by simulations of current flow through a chain of gold
atoms between two electrodes, a model for “nanoelectronic” system. This and
related “molecular electronics” were very popular topics at the time and I wanted
to continue to work on them [2]. After searching I applied for PhD at the London
Centre for Nanotechnology and, after some modifications of the plan, I started
under the supervision of Angelos Michaelides. Amusingly, I started to work in
the field of surface science, one that I haven’t realised before that it existed. The
project that I was working on was to understand basic natural processes and my
part was to study salt dissolution in water. However, after some time it became
clear that the methods that we were using lack accuracy, the adsorption energy
of a single water molecule was only around 2/3 of that obtained by a reference
quality approach [3]. As my work involved a comparison of energies of various
surfaces with water clusters the large error of adsorption energy made the results
a bit dubious and I felt it’s important to take the accuracy seriously and look for
a better method.

The scheme that we were using was Kohn-Sham density functional theory
(DFT) [4, 5] with approximate exchange-correlation (XC) functional called PBE
after its proponents Perdew, Burke, and Ernzerhof [6]. The DFT is a particularly
efficient approximation of quantum mechanics that, at the time, allowed us to
perform the salt dissolution study involving structure optimisation of hundreds
of structures with hundreds of atoms. However, the efficiency comes at the cost
of reduced accuracy and while PBE was perceived as the standard for solid state
calculations, it was clearly having problems to describe the interaction between
salt and water. Fortunately, at that time more and more people realised that
the simple XC functionals lack the ability to describe long-range correlations
between electrons, also known as dispersion forces. The dispersion interactions
decay as r−6 and hold together systems such as graphene or noble gas clusters.
This change of our perception of the DFT methods was coming from people
interested in organic chemistry and biochemistry [7–14] and also from researchers
in solid state physics that were interested in systems such as layered materials [15–
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17]. Fortunately for us, various methods that these and other groups had been
developing were becoming more widely available to be used or to be tested.

To try to improve the adsorption energy of water on salt we used several
of the newly developed methods, such as the van der Waals density functional
(vdW-DF) of Langreth and Lundqvist groups [17] or pairwise dispersion correc-
tions mostly developed by group of prof. Stefan Grimme [18]. However, the first
didn’t improve the adsorption energy compared to PBE and the latter gave an
adsorption energy too large, likely due to overestimation of the interaction orig-
inating from sodium atoms. This is because the early pairwise methods didn’t
make a difference between sodium atoms that are neutral and have a large polar-
isability and atoms that are positively charged, as in the salt crystal, and have a
small polarisability. The long-range correlation effects in the vdW-DF scheme are
calculated directly from density so this approach looked more promising. Apart
from a correlation functional that includes dispersion, the vdW-DF method also
contains a standard XC functional that should describe short-range exchange
and correlation effects. When looking at the vdW-DF method more closely we
realised that the original XC functional, called revPBE [19], can be replaced by
another one without breaking any physics. We used this fact to try out different
parametrisations and, after some time, we got variants of vdW-DF that worked
better for intermolecular binding energies and also for the adsorption energy [20].
This scheme is used even nowadays, especially in condensed matter systems for
which it’s difficult to describe the different oxidation states of the atoms [21].

For myself, the experience with testing and developing vdW-DF-based meth-
ods and various XC functionals gave me the feeling that the DFT development
can be quite messy. As a next step I hoped to work on something that required
less parametrisation and offered hopefully better accuracy. Being lucky again I
had a chance to visit group of prof. Georg Kresse in Vienna who at the time
published a study about implementation of second-order Møller-Plesset pertur-
bation theory (MP2) for solids [22]. Moreover, his group was working on other
correlated methods, such as the random-phase approximation (RPA) [23]. These
methods are based on perturbation theory in which one only needs to make a
choice which set of perturbation terms to use. Having even more luck again, I
started to work in the group in 2012.

In Vienna I was working on different projects related to the development of
RPA. The first one was to obtain energies of electronic bands for self-consistent
RPA within the optimised effective potential (OEP) method [24]. This looked like
a short project for prof. Kresse as he did many of the calculations already and,
according to him, we just had to do the calculations for a few more materials
to finish. However, while doing some tests I realised that the default settings
that we were using lead to imprecise results. The energies of the states were
converging only slowly with the basis-set size and, in fact, extrapolation to the
complete basis set limit was needed to avoid the basis-set related errors. In fact,
I stumbled upon another change of mindset that was going on, now in the solid
state community and that highlighted the importance of precision.

The band-structure calculations that I did using OEP-RPA are similar to GW
calculations that are very often performed to obtain the electronic band-structure
of solid materials. The GW calculations are usually done on top of DFT states [25,
26]. However, they are significantly more computationally demanding compared
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to the DFT calculations. Therefore, several simplifications have been employed
to reduce their cost and, in fact, the GW is itself an approximation of a more
general expression for electron self-energy [27]. This wealth of choices meant that
while there had been many GW calculations it was difficult to find results which
actually agreed with each other. A particularly worrying example of disagreement
was zinc oxide (ZnO) which even prompted someone to write a blog about this
issue (now probably lost). One of the reasons of disagreement was the fact the
GW energies converge much slower with parameters, such as the basis-set size or
the number of k-points, than the DFT energies. Therefore, evaluating the GW
energies using a set of parameters sufficient to converge the DFT data can give
values which are still very imprecise. This was shown shortly before I started
with the OEP-RPA calculations and was still in the process of being accepted by
the wider community [28–30]. While the necessity to converge our results slowed
down the process of getting them, it showed the importance of obtaining precise
values and later helped us to contribute to explanation and understanding of their
origin [31, 32].

Many of the articles presented in this thesis are devoted to molecular solids.
These systems are important but their properties such as binding energy are
quite difficult to describe accurately as they depend on a good description of
both intramolecular and intermolecular interactions. Moreover, many of them
have the right size to be studied by simple correlated methods such as MP2 or
RPA within periodic boundary conditions. Hence they are useful test systems
for our methods and often give us information that can’t be obtained from other
tests. For example, we modified the vdW-DF functional to give very accurate
binding energies for molecular dimers. However, the results for binding energies
of molecular solids contained in tests C21 [33] and X23 [34] were much less satis-
factory. Therefore, the good results for dimers are due to some error cancellation
which is less effective for the molecular solids.

Molecular solids can be also used to illustrate a qualitative change that ap-
peared in method development and testing. For our vdW-DF paper in 2010 [20]
we were able to test the method on few tens of structures, mainly due to the
large computational cost of the scheme [35]. Since that time increased compu-
tational power and improved algorithms allow one to test methods on data sets
with thousands or even more binding energies [36]. For molecular solids we can
obtain similar sets by creating dimers, trimers, and larger molecular clusters by
choosing an appropriate number of molecules from the solid. We can then obtain
reference data and test the specific method for this large set which gives us a very
detailed information about the strengths and weaknesses of the method, such as
the extent of the error cancellations. In Chapter 3 I show some examples of our
recent work along this direction.

Let me mention one more point that motivates part of our research and which
relates to replicability and reproducibility of results. On several occasions I spent
days, weeks, or even months trying to figure out why results of my calculations
deviate from data published in the literature. Sometimes I was able to identify
the issue myself, sometimes not, in other cases the disagreement pointed to an
interesting observation. In many studies we therefore try to estimate the uncer-
tainty of our results or we even calculate the same property using two different
codes and analyse the differences. This helps us to develop a set of reliable pa-
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rameters and set-ups for the calculations and hopefully makes our data more
reproducible. I think this exercise is particularly useful for calculations involving
molecular solids since there is a lot of parameters that one needs to choose and
that can affect the result. Some examples of our research that concerns precision
are discussed in Chapter 5.

To conclude, I’ve been working on projects that involved approaches used tra-
ditionally within quantum chemistry as well as projects using solid state meth-
ods. In some cases it was even convenient to learn to use codes for simulation of
biomolecules to get access to longer simulation times. The systems that we study
are on the border between the mentioned fields as well and we can therefore use
quite a variety of approaches to analyse the problem at hand.
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2. Methods
We use a range of simulation methods to describe the various systems and proper-
ties that we study. All of them describe nuclei as classical particles, the electrons
are then treated at the level of quantum mechanics or neglected within classical
force-fields. Within quantum mechanics we use Kohn-Sham density functional
theory (DFT) approximations or methods that consider correlations between
electrons explicitly such as Møller-Plesset perturbation theory, random-phase ap-
proximation (RPA), or coupled clusters (CC) at various levels. This range of
theoretical approaches gives us a versatile set of tools that we can use for various
tasks, from calculation of highly accurate energies of small systems to molecular
dynamics of systems with tens of thousands of atoms. Many of the methods
are standard and available in different computational packages and I’ll thus not
discuss them here. In the following I’ll comment on the scheme that we try to
develop and which is less widely used and that’s the RPA.

2.1 Random phase approximation
The RPA method comes from the works of Bohm and Pines in 1950s [37] in
which an approximation that became known as the RPA was made to simplify
calculations of electron correlation energy in the uniform electron gas (UEG).
Since that time RPA saw years of interest and neglect and nowadays the RPA is
used in several contexts for calculating total energies or excitation spectra. The
origins and various approaches to evaluate the RPA energy are discussed in more
detail in review articles [38–40].

There are several ways to derive the different RPA energy expressions and
let me here briefly outline the one used in solid state physics which is based on
adiabatic connection and fluctuation-dissipation theorem [23, 41, 42]. Within the
adiabatic connection one scales the Coulomb interaction Vee with a parameter λ
to go from the non-interacting Kohn-Sham (KS) system (λ = 0) to the interact-
ing one (λ = 1) [43–46]. In this way one obtains a formula for the exchange-
correlation energy which is exact in principle but contains unknown quantities,
such as wavefunctions for different values of λ. The relation can be further mod-
ified by what’s denoted as fluctuation dissipation theorem leading to an equation
for the correlation energy that involves response function χ(iω, λ) at imaginary
frequency iω and coupling strength λ

Ec = − 1
2π

∫ 1

0
dλ

∫ ∞

0
dωTr [Vee [χ(iω, λ) − χ(iω, 0)]] . (2.1)

The trace in the integral denotes integration over real space and spin coordinates
which we don’t explicitly write in the equation. The response function for the non-
interacting system χ(iω, 0) can be calculated from the occupied and virtual KS
states [47] or using KS Green’s functions [48]. The response χ(iω, λ) at interaction
strength λ can be evaluated within time-dependent DFT. To obtain χ(iω, λ)
exactly one would need to know the exact exchange-correlation kernel fxc [49].
To make the scheme computationally tractable fxc can be approximated [50, 51]
or neglected. The latter case then leads to the RPA energy expression commonly

6



used in solid state physics

ERPA
c = 1

2π

∫ ∞

0
dωTr [ln [1 − χ(iω, 0)Vee] + χ(iω, 0)Vee] . (2.2)

In this expression the frequency integral is evaluated on a grid and diagonalisation
is used to evaluate the logarithm.

In simple terms, RPA can be understood via interactions of independent elec-
tron excitations or density fluctuations [42]. This is illustrated in Fig. 2.1 for
two and three atoms. Within perturbation theory one starts from mean field
solution (one colour spheres in Fig. 2.1) and considers electron excitations to
virtual states. These lead to density fluctuations which are indicated with the
red-blue spheres in the figure. In Eq. 2.2 the excitations and density fluctuations
are described by the response function χ(iω, 0). The Coulomb interaction then
couples the different excitations. Due to the logarithm, the number of possible
excitations is infinite. When two excitations appear on atoms in distance r we
obtain the long-range electron correlation with the leading order proportional to
−r−6. This process can be also nicely illustrated with a pair of quantum os-
cillators that we teach in our classes of introduction to quantum mechanics. A
process where electrons on three atoms get excited is shown on the right hand
side of Fig. 2.1. This contribution to the correlation energy can be approximated
by so-called Axilrod-Teller-Muto formula [52, 53].

Figure 2.1: A sketch of interactions described by random-phase approximation
(RPA) between atomic dimer (left) and trimer (right). Full spheres indicate
mean field solutions and red-blue spheres show electron excitations or density
fluctuations. The wiggly line then shows the Coulomb interactions between the
excitations.

When the logarithm is expanded into series the integral over frequency can be
carried out and one obtains the same expressions as within Møller-Plesset pertur-
bation theory (MPPT). The corresponding terms can be drawn with Goldstone
diagrams, as illustrated in Fig. 2.2. Note that the first diagram is a contribution
obtained within MP2 and is often called direct MP2 [22]. The third- and fourth-
order contributions would be only obtained at MP3 and MP4 levels. The MPPT
expressions contain additional terms that also allow for exchange of electrons
between the density fluctuations (bubbles) as well as other diagrams.

The RPA energy expression includes diagrams up to infinite order while MP2,
MP3, . . . expressions are finite. This is important for metals and other systems
with delocalised electrons as for them screening by higher-order terms can be sig-
nificant. This can be imagined with the help of Fig. 2.1 for the case of two atoms.
In the second order, the fluctuation on one of the atoms interacts directly with
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the fluctuation on the other atom. However, in third order one of the fluctuations
can interact with another fluctuation on the same atom (we still consider only
two atoms). This additional fluctuation will typically reduce the extent of the
initial fluctuation as electrons tend to avoid each other. As a consequence, the
overall polarisation of the atom and thus the interatomic interaction will be re-
duced compared to the second-order process. One can also say that the excitation
will be screened by the other electrons. Within MPPT the lack of screening leads
to overestimated MP2 energies for some systems, e.g., for those with delocalised
electrons [54–56].

Figure 2.2: Examples of Goldstone diagrams giving low-order contributions to
energy at random-phase approximation level. Notably, there is no exchange of
electrons between the different bubbles (density fluctuations) and there are no
particle-hole interactions (ladder diagrams).

RPA has attracted interest within the DFT community as an advanced ex-
change-correlation (XC) functional [57]. It’s often denoted as a fifth-rung func-
tional, according to the classification of Perdew and Schmidt [58]. More specifi-
cally, the fifth rung contains functionals that consider virtual states for the cal-
culation of the exchange-correlation energy. This can mean RPA in its form of
Eq. 2.2 or a general, double-hybrid, XC functional that contains some RPA con-
tribution and other terms. Both of these forms are being used and developed.
The double hybrid schemes are typically developed to improve the description
of long-range correlations within hybrid functionals or, from the other side, to
improve the accuracy of RPA for calculation of atomisation energies and similar
properties [59–61]. In such functionals one often performs range-separation of
the Coulomb interaction [62, 63] and takes only the long-range part of the RPA
energy [64, 65]. The double hybrid methods with long-range RPA component
have the benefit of a faster convergence with the basis-set size as one avoids the
reconstruction of the two-electron cusp [66].

RPA is often evaluated non-self-consistently, meaning that the RPA energy is
obtained in a “one shot” manner for a set of states (orbitals and their energies)
calculated by other XC functional or the Hartree-Fock (HF) method. A self-
consistent evaluation is possible within the optimized-effective potential scheme.
This procedure removes the dependence on the input states but increases the
computational cost [67–71]. Within the “one shot” approach, there is therefore
an additional flexibility due to the input states and while majority of calculations
use the PBE functional [6], there is no reason not to use another one [57, 72].
In our work we also tested the use of different XC functionals to provide input
states for RPA to identify if another choice improves the predicted properties.

The RPA energy expression can be also obtained from the CC method. To do
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this only double (D) excitations are included in the cluster operator T̂ , integrals
are not anti-symmetrised and contributions from ladder diagrams are not consid-
ered. The approximation is then called direct ring CCD or drCCD for short. The
relation between the methods and the different working equations was discussed
by Scuseria and co-workers [73], Jansen et al. [74], and others [75, 76].

The neglect of exchange diagrams in RPA allows for a fast evaluation of the
energy but it introduces some serious errors in the result. The neglect means that
each electron correlates with itself and as a consequence, the correlation energy is
usually loo large in magnitude. Most notably, the correlation energy is non-zero
even for systems with a single electron, such as hydrogen atom. The accuracy of
the total energies can be included by adding the exchange terms, such as in the
second-order screened exchange (SOSEX) scheme [75, 76].

There is one more point that deserves to be mentioned here. As discussed,
RPA is often evaluated on energies of semi-local DFT, most often the PBE func-
tional. It’s also known that PBE and similar “generalised-gradient approxima-
tion” (GGA) functionals give a smaller energy difference between the occupied
and virtual orbitals than the one obtained by the HF method. The gap appears in
denominator when calculating the response function χ(iω, 0) therefore a smaller
gap increases the response and should thus increase the interaction energy be-
tween atoms or molecules. However, within CC, the larger HF gap is reduced by
attractive electron-hole ladder diagrams. These are missing from RPA and there
is a notion that the smaller GGA gap partially compensates for the lack of the
ladder diagrams. Therefore, the long-range correlations, expressed, e.g., by C6
coefficients turn out to be described reasonably well at the RPA level based on
GGA functionals, at least for closed shell atoms and molecules.

To summarise, RPA is a method that can be either viewed as an advanced
DFT functional or a simple CC approximation. As such it avoids some of the
problems of simpler DFT approximations at a computational cost typically lower
than that of accurate CC approximations. These properties make it suitable for
our work which is primarily focused on cohesive properties of molecular clusters
or solids. How RPA performs for these systems is discussed in the next chapter
of this thesis.
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3. Tests of random phase
approximations for molecular
solids and clusters

3.1 Introduction
In this chapter I will discuss results of tests that we performed to assess the ac-
curacy of the random phase approximation (RPA) scheme for the prediction of
binding energies. Before going into the discussion, I comment on the development
of RPA-based methods for predicting binding energies. Initial results appeared
around 2010 and showed that the RPA binding energies are too weak when com-
pared to reference data. One such result was obtained by Li and co-workers [77]
for benzene and methane crystals. Moreover, we also obtained an unsatisfactory
result for adsorption energy of a water molecule on NaCl(100) surface [78]. The
adsorption energy was less accurate even compared to dispersion corrected den-
sity functional theory (DFT) functionals which typically require much smaller
computational time. However, there were also some encouraging results. The
RPA binding energies of various systems were underestimated by a consistent
amount, typically by 10 to 20%. Moreover, RPA gave correct predictions for
systems considered to be difficult, such as the CO adsorption on transition met-
als [79]. Therefore, at that time, the RPA looked promising but more tests were
required to understand the results.

The consistent results obtained for RPA suggested that its accuracy could
be improved by adding additional terms from perturbation theory. One such
scheme is the second-order screened exchange (SOSEX), which adds second-order
exchange diagram with one screened Coulomb interaction [75]. This makes the
method similar to second-order Møller-Plesset perturbation theory (MP2) with
the difference that in MP2 the Coulomb interactions aren’t screened. The screen-
ing means that RPA+SOSEX keeps its accuracy for systems with small energy
gap between occupied and virtual states or bands [76]. The downside of SOSEX
is its increased scaling and computational cost compared to RPA when using
plane-wave basis sets. As a result and due to other developments it hasn’t seen
a lot of applications for calculations of binding energies [38, 80], at least so far.

In a work published in 2011 Ren and co-workers noticed that the consistent
underbinding can be reduced by replacing the exact exchange (EXX) energy
component of RPA by Hartree-Fock (HF) [81]. The EXX evaluates the same
Hamiltonian as HF but using DFT states. This difference suggests that additional
perturbation theory terms that take into account non-diagonal part of the many-
body Hamiltonian would improve the binding energies. This was indeed observed
and the energy correction was termed “renormalised singles energies” (RSE) by
Ren et al. [81].

The RSE corrections to RPA can be evaluated by diagonalization and they
thus don’t affect the computational cost of RPA significantly. However, adding
RSE reduces the accuracy of RPA for lattice constants of metals due to pres-
ence of bare Coulomb interaction [42]. During my postdoc in Vienna with prof.
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Kresse we developed a singles correction that takes screening of the Coulomb
interaction into account and we called it GWSE [42]. RPA with GWSE, based
on PBE orbitals, then shows similar benefits as RPA: consistent accuracy over
different classes of materials (metals, semiconductors, insulators). Moreover, it
substantially improved the binding energies over RPA which we illustrated for
adsorption energy of water monomer on NaCl(100) and for benzene crystal [42].
For the first system, RPA with RSE gave the same adsorption energy as the es-
timated reference value of −430 meV, using the RPA+GWSE scheme lead to a
weaker binding of −410 meV. For benzene crystal, we observed a reduction of the
errors by around 10 % for either of the methods [42].

The work discussed so far motivated my research presented within this chap-
ter. In short, RPA with the RSE or GWSE corrections showed a very high
accuracy and modest increase of computational cost (same O(N3) scaling and
a prefactor larger by 6 to 10 times compared to RPA). Therefore, the method
looked promising and we decided to analyse its accuracy in a more detail. In
our work from 2015 we only tested one molecular solid and one adsorption en-
ergy [42]. Therefore, we focused on expanding the tests both for molecular solids
and adsorption. As a result we published the articles P1 and P2 included in this
thesis which are discussed later in this chapter, in Section 3.2. Furthermore, in
that section I also briefly mention published articles to which I contributed but
which are not included in this thesis.

The work performed in P1 showed that RPA with RSE or GWSE corrections
gives a very good binding energies for molecular solids. However, binding energies
are only a single number for each solid and it’s possible that a good performance is
a consequence of various error cancellations. To understand the binding energies
in detail one can perform many-body expansion (MBE) of the binding energy.
Within MBE the binding energy is obtained as a sum of interaction energies of
molecular dimers extracted from the solid and corrections from molecular trimers,
tetramers, and possibly even larger clusters. If the crystalline material is formed
by a single compound and all the molecules are symmetry equivalent, it suffices to
set one molecule as the reference one. The binding energy can be then obtained
from interactions of the reference molecule (ref) with the other molecules (indexed
by i, j, k, . . . ) as

Ebind = 1
2

∑
i

Eref,i + 1
3

∑
i,j

∆Eref,i,j + 1
4

∑
i,j,k

∆Eref,i,j,k + . . . , (3.1)

where Eref,i are the dimer contributions and ∆Eref,i,j and ∆Eref,i,j,k are non-
additive three- and four-body terms.

Analysis of the RPA errors using MBE was one of the main topics of my
ERC grant. We used crystalline hydrocarbons and methane clathrate cluster
as test systems. Moreover, we also used a reference set of molecular trimers to
understand the three-body errors of RPA for a broader set of interactions [82].
The results of these tests were published in three papers included in this thesis
as P3, P4, and P5 and are discussed in Section 3.3.

One of the points we tried to understand is how the RPA energies depend
on input states. As discussed in the previous chapter, it is possible to run RPA
calculations self-consistently but this comes with a higher computational cost and
can introduce other issues [24, 68, 71]. Therefore, for solids, the current practice
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is to run self-consistent DFT calculations first and use the resulting states as an
input for RPA energy evaluation [23, 50, 83]. To assess the effect of using different
input states we evaluated binding energies and many-body terms for RPA based
on several DFT functionals.

There is one more reason to understand the many-body errors of a given
theoretical method and that is embedding. Imagine that we have a very accurate
but computationally expensive method and the system is too large to be treated
with this method within a single calculation. For molecular solids it can mean that
the energy of the periodic solid cannot be obtained directly, we can get only the
energies of small molecular clusters. In this way, we could use the MBE to obtain
the binding energy of the solid. This could be rather computationally demanding
and prone to slow convergence with the number of fragments considered. An
alternative is to start from a binding energy obtained with a simpler scheme and
correct only terms where the simpler scheme produces errors. Therefore, we can
obtain a good estimate of the binding energy by using:

EPBC, high = EPBC, low +
∑

i

(
EMBE, high

i − EMBE, low
i

)
. (3.2)

In this equation, “high” and “low” correspond to the accurate and less accurate
methods, respectively, “PBC” is a result corresponding to periodic boundary
conditions while “MBE” is many-body expansion. The terms that we sum over
can be different dimers, trimers, and so on, as in Eq. 3.1. Therefore, when
more and more terms are included in the summation in Eq. 3.2 the initially less
accurate result is gradually improved to the value of the high quality method.
This scheme will work the better the closer the differences in the sum are to
zero. Therefore, one of our motivations is to understand how close are different
methods to reference schemes such as CCSD(T) for the two-, three-, four-, and
higher-order interactions.

3.2 Tests of RPA binding and adsorption ener-
gies

In this part I discuss articles P1 and P2 in which we analysed the accuracy of the
RPA method using a general test set of molecular solids and a set of adsorption
energies of molecules in zeolites, respectively.

3.2.1 Binding energies of molecular solids
To test RPA for binding energies of molecular solids we selected the C21 test
set developed by de la Roza and Johnson [33] and later modified as the X23
test set by Reilly and Tkatchenko [34]. The test set contains molecular crystals
for which reliable experimental sublimation enthalpies are available. Zero-point
energies and thermal effects are subtracted from the experiment to obtain binding
energies that can be directly compared to calculated results. In the set there are
hydrogen bonded crystals, such as ammonia or oxalic acid, as well as crystals
bound by weaker electrostatic (quadrupole) and dispersion interactions, such as
benzene or adamantane. While the C21 contains 21 crystals, in P1 we obtained
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the binding energy only for ten systems due to limited computational resources
as discussed below.

Our aim in P1 was to obtain the binding energies with a precision of around
1 %. As the binding energies are approximately between 25 and 100 kJ/mol, we
aimed at errors of 1 kJ/mol at most. Such high precision is needed to veritably
assess the accuracy of RPA. However, reaching high precision of RPA binding
energies is not straightforward as the energies depend strongly on the k-point
grid and basis-set size. At the same time, these parameters can’t be set at
values sufficiently high to achieve convergence due to the memory demands of the
calculations. For example, we observed that increasing the basis set cut-off by
100 eV approximately doubles the memory requirements. The largest calculations
made for P1 needed around 6 TB of RAM distributed over 64 compute nodes on
the Salomon supercomputer.

The computational details are described in P1 and here we mention points
that might seem minor at first but can be actually important. First, if it is not
possible to obtain energy for a large cut-off and dense k-point grid Ek

cut, one can
approximate it by starting from energy Ek low

cut obtained for a less dense k-point
grid and correct it with a difference of energies obtained for a smaller basis-set
cut-off as follows

Ek
cut ≈ Ek low

cut + Ek
cut low − Ek low

cut low . (3.3)

The difference of the last two energies can be though of as a k-point correction
and can substantially reduce the cost of performing the calculations. However, we
found that this k-point correction depends on the basis-set cut-off. Importantly,
the difference Ek

cut low − Ek low
cut low is larger in magnitude for smaller cut-offs. For

the systems considered, the correction is not reliable for basis-set cut-offs below
600 eV when standard projector-augmented wave (PAW) data sets are used in
VASP. Therefore, it is not advisable to use calculations with a small basis-set
cut-off, say 400 eV in VASP, to check the k-point convergence. The calculations
with this small cut-off are relatively fast but the results will give misleading
information about the actual k-point convergence for large cut-offs.

Second, the RPA energy of the solid as well as the energy of the reference
isolated molecule depend on the basis-set size. The leading order of the basis-set
incompleteness error was derived to be E

−3/2
cut [23, 31, 32]. This is simply the

inverse number of basis functions and identical to the L−3 dependence on largest
angular momentum L observed for typical Gaussian basis sets [84–86]. However,
when one calculates the binding energy, the leading errors might accidentally
subtract out, leading to a E

−5/2
cut dependence of the binding energy. The prefactor

in the basis-set incompleteness error is determined by the electron density, if the
density doesn’t change upon formation of the dimer or crystal, the leading orders
subtract out. We observed such a behaviour for adamantane which is a crystal
bound by dispersion. For other systems the E

−3/2
cut convergence of binding energy

was observed.
Third, the GWSE calculations can be tricky to evaluate, due to their small

magnitude and necessity to extrapolate with the basis-set size and with the k-
point set. A tedious but reliable approach was to obtain converged RSE correc-
tions separately and only use the computationally demanding GWSE routines to
converge the EGW SE − ERSE difference. The benefit is that the difference is small
and thus the uncertainties of the extrapolated result are much lower than when
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extrapolating the EGW SE energy directly.
Finally, we performed the calculations and extrapolations with k-point grid

and basis-set size using standard PAW potentials distributed with VASP. We
then used a finite cells and k-point grids to obtain data for more computationally
demanding hard PAW potentials to assess the quality of the standard PAW data.
The effects turned out to be non-negligible, using the standard PAW potentials
instead of the more reliable hard PAW potentials leads to errors within 1 kJ/mol
for dispersion dominated systems. Errors can be larger for hydrogen bonded
systems and for the GWSE correction, therefore one should use the hard PAWs
for such systems or at least calculate similar correction to what done in P1.
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Figure 3.1: Relative differences from reference binding energies of molecular crys-
tals for RPA-based methods and a dispersion corrected hybrid functional PBE0-
D3 with three-body correlation and Becke-Johnson damping [87–89]. The values
were obtained for ten solids from the C21/X23 test set [33, 34]. All the RPA
calculations were based on the PBE functional [6] and results are shown for stan-
dard RPA as well as RPA with renormalised singles energies (RSE) [81] and GW
singles energies (GWSE) [42].

Overall, we found that, when PBE states are used, singles corrected RPA
provides binding energies with an average absolute error of 4.3 and 2.9 kJ/mol
for RSE and GWSE corrections, respectively. The errors were lower than those
observed for state-of-the-art dispersion corrected hybrid DFT functionals, namely
PBE0 [87] with range-separated many-body dispersion (rsMBD) [90] and two
versions of the D3 correction [88, 89]. Moreover, the errors were more consistent
for all the RPA-based schemes than for the DFT methods, as shown in Fig. 3.1.
This is especially visible for hydrogen bonded systems where RPA with RSE or
GWSE give consistent errors around 3 %. In contrast, the errors for the DFT
functional are both positive and negative.
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We have used the RPA-based schemes to study molecular solids also in articles
not included in this thesis. In Ref. [91], which was a result of collaboration with
my former PhD supervisor and other colleagues, we compared various high quality
methods for the prediction of binding energies of molecular solids. RPA+GWSE
based on PBE orbitals showed again errors consistent across different binding
types and of only few percent when compared to the reference. Moreover, we
have RPA+RSE based on SCAN orbitals to rank polymorphs in the 7th crystal
structure prediction blind test. The publication is being prepared at the time of
the writing of this thesis. We took part in second part of the blind test where we
were given a hundred of crystal structures and were asked to rank them in energy.
The structures differed in number of molecules per unit cell and the cell shape.
This made it difficult to identify k-point grid setting that would give converged
energy differences while still being computationally tractable. In a similar spirit,
also the basis-set cut-off had to be chosen sufficiently large but not too large due
to the quickly rising computational cost.

3.2.2 Molecular adsorption in zeolites
Adsorption energies of molecules on solid surfaces are properties for which RPA-
based methods were very promising, as exemplified by the work of Schimka et
al. [79] on the “CO puzzle” [92]. However, already in 2009 during my stay in
Vienna with prof. Kresse we found that RPA underestimates the adsorption
energy of water on NaCl(001), a system for which a reference was available [3],
by around 10 %. The introduction of RSE and GWSE corrections to RPA then
significantly reduced this issue [42]. This motivated us to assess the accuracy of
RPA-based methods for adsorption in zeolites, that is, the work performed in P2.

From different possible zeolites we picked chabazite which has a small unit
cell and the calculations are thus computationally cheap. We started from a
model of chabazite used previously by Florian Göltl and co-workers [93]. The
structure is visualised in Fig. 3.2, where we show approximately four unit cells
of the material with methane adsorbed. The structure is formed by a network of
oxygen connected silicon atoms with one silicon atom replaced by an aluminium
atom. Moreover, there is one hydrogen atom bound to one oxygen adjacent to
the aluminium and the adsorption site is on the thus formed -OH group.

To test the accuracy of RPA we initially wanted to use the MP2 approach as
a reference. Zeolites have a strongly ionic character and an electronic band gap
of around 9 eV [94]. This means that electron excitations are mostly local, not
extended over several atoms, and the importance of screening is low. For this
reason, MP2 can be expected to be a good reference method for the adsorption
energy if the adsorbing molecule shares similar characteristics. Moreover, MP2
also seemed sufficient as previous calculations of adsorption energies of methane,
ethane, and propane in chabazite showed differences of tens of percent between
MP2 and RPA data [93].

For our test we selected seven small molecules: methane, ethane, ethylene,
acetylene, propane, carbon dioxide, and water. From all these, we expected that
MP2 will give less reliable adsorption energies only for ethylene and acetylene
as they have π bonds with delocalised electrons. The largest surprise came very
early: the adsorption energies obtained by MP2 and singles-corrected RPA were
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Figure 3.2: Structure of solid chabazite model with adsorbed methane. The figure
shows approximately four unit cells.

essentially on top of each other, see Fig. 3.3. The only differences could be
observed for ethylene and acetylene for which the most plausible explanation was
the larger error of MP2 due to the lack of screening. MP2 was only a good
reference for RPA without singles, and, as expected, the RPA errors could be
described as a rather consistent underbinding by around 10 %.
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Figure 3.3: Adsorption energies of different molecules in bulk chabazite model
with a structure AlSi11O24H.

To assess the errors of singles-corrected RPA a better reference than MP2
was needed. At that time some quantum Monte Carlo (QMC) scheme would be
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the only and very computationally demanding possibility within periodic bound-
ary conditions [95, 96]. Therefore, we opted for an alternative and commonly
used approach: we selected several atoms around the adsorption site from the
periodic material, capped broken bonds with hydrogens and formed a finite
cluster. A finite cluster with two tetrahedral sites (2T, AlSiO7H7) was small
enough to be treated by the CCSD(T) scheme in an explicitly correlated variant
CCSD(T)(F12*), these calculations were done by Dr. Tew using the Turbomole
code [97]. The differences of RPA+RSE from the CCSD(T) reference values were
extremely low, below 3 % in absolute magnitude, as shown in Fig. 3.4. The
RPA+RSE results were also more consistent than those of MP2. For example,
MP2 underestimated the adsorption energies of ethane and propane by almost
one kJ/mol (around 5 %) but overestimated those of ethylene and acetylene by
almost two kJ/mol (around 10 %).
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Figure 3.4: Deviation of adsorption energies on a 2T cluster for different methods
and molecules. The reference scheme was explicitly correlated coupled clusters
approach CCSD(T)(F12*) [97]. The values are in kJ/mol and positive number
means underbinding and negative values overbinding.

The low errors of the adsorption energies obtained for the simple correlated
methods (RPA+RSE, MP2) made it necessary to consider carefully the precision
of the set-up. For example, we used hard PAW potentials in VASP as the bind-
ing energies were around 1 kJ/mol smaller in magnitude when standard PAW
potentials were used. To be able to compare the VASP data to the reference val-
ues obtained for finite clusters using Gaussian basis sets the adsorption energies
obtained with VASP had to be extrapolated with the basis-set cut-off and unit
cell size. This again required a rather careful and meticulous approach but in the
end we found a good agreement between the MP2 adsorption energies obtained
by VASP and Turbomole. This is demonstrated in Fig. 3.4 where one can see
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that the two approaches (data called “MP2 VASP” and “MP2 Turbomole”) dif-
fer marginally, by few tenths of a kJ/mol at most. After thorough testing, we
didn’t compute the GWSE corrections for the finite cluster due to precision rea-
sons. The computational cost and memory requirements of GWSE corrections
made it impossible to obtain enough data to extrapolate reliably the GWSE
correction with the basis-set size and cell volume. For illustration, for the 2T
cluster, RPA+RSE differs from CCSD(T) by −0.1 and 0.4 kJ/mol for methane
and acetylene, respectively, the reference energies are −11.0 and −16.7 kJ/mol.
The GWSE correction beyond RSE would be a fraction of kJ/mol, and we didn’t
have resources to obtain enough data to extrapolate the values with sufficient
precision.

Having adsorption energies of very high quality both for bulk and finite clus-
ters we used them to assess the quality of prediction of different DFT-based
methods. In general, approximate DFT functionals, including hybrids, can be
nowadays quite easily used to obtain adsorption energies even for zeolites with
a larger unit cell. However, DFT dispersion corrections can predict erroneous
adsorption energies for zeolites if they do not consider the ionic character of the
material. One of the schemes that was developed to take changes of density
response due to changing oxidation state is the iterative Hirshfeld approach for
the Tkatchenko-Scheffler method [21, 98]. Our tests showed a superiority of this
method to other DFT schemes, see the data obtained for 2T cluster in Fig. 3.4.
Moreover, a D4 correction of Grimme and co-workers [99, 100] turned out to
introduce only a minor change compared to its D3 predecessor [88].

Overall, RPA with RSE or GWSE corrections turned out to provide adsorp-
tion energies with a very high accuracy and with an acceptable computational
cost. Over the years, similar observations were made in other cases as well by
other researchers, for example for water on graphene or hexagonal boron ni-
tride [80, 101]. We have also used singles corrected RPA for zeolites in three
papers not included in this thesis. First, to study the adsorption behaviour of
carbon monoxide in a zeolite with a ferrierite structure [102], then to analyse
adsorption properties of various molecules in Ref. [103] and finally to compare
stabilities of various structures of zeolites relevant for catalysis in Ref. [104].

3.3 Tests of many-body energies
The small errors of RPA with singles corrections, either RSE or GWSE, that we
observed in P1 and P2 confirmed the high promise of RPA for highly accurate
calculations of binding or adsorption energies. Moreover, they suggested that
RPA with singles can be a good starting point for the correction scheme given by
Eq. 3.2 mentioned earlier in this Chapter. That is, that to increase the accuracy
of the binding energy predicted by RPA one would need to correct only a small
number of two- or three-body energies with a higher-level approach. To find
out if this is indeed so, one needs to understand the RPA errors in detail. To
achieve this, we can perform many-body expansion to see if the errors of four-
and higher-order errors are negligible and if for the two- and three-body terms
the RPA errors are dominated by a small set of contributions. To understand the
many-body errors of RPA we used the 3B-69 test set of Řezáč and co-workers
which is a set for testing three-body energies [82]. The results were published in
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P3 and are discussed in the next Subsection. Furthermore, we performed MBE
for methane clathrate and four molecular solids, obtaining reference CCSD(T)
energies for two-, three-, and four-body energies and tested the accuracy of various
RPA-based schemes. This work, published in P4 for methane clathrate and P5
for the solids, then forms the subsequent parts of this Chapter.

3.3.1 Accuracy of RPA for three-body energies
When it comes to understanding the errors of theoretical methods for predicting
binding energies, we often focus on binding energies of dimers, larger clusters,
or solids. There are several tests for the dimers, such as S22, S66, or X40 from
prof. Hobza’s group [105–107] or those in the “GMTKN” databases of Goerigk,
Grimme, and co-workers [108–111]. For larger clusters, the binding energies of
water clusters are available [112] and reference binding energies are available also
for molecular solids [33, 34]. While testing on the binding energies is important
and useful, more information can be obtained for clusters and solids by testing
various many-body energies [113, 114]. This can uncover if a good performance
for the total binding energy is a result of some cancellation of errors. Despite this
importance, reference data for three-body interactions are comparatively rare,
the (most likely) only general test set is the 3B-69 of Řezáč and co-workers [82].
We used this test set as a first step on our way to understand the accuracy of RPA
for molecular solids. As with the S22 or S66 sets also the 3B-69 test set contains
trimers of different molecules and with different dominating contribution to the
binding. In Fig. 3.5 we show one of the trimers from the set, succinic anhydrate
in a structure where both dispersion and electrostatic interactions are important.

It is known that different exchange-correlation (XC) DFT functionals pro-
duce very different predictions for three-body interactions [82, 113]. Moreover,
the three-body errors can be rather large with relative errors easily reaching tens
of percent [82]. In our set-up we evaluate RPA energies on DFT states and in
P3 we were also interested how the RPA result varies when different XC func-
tionals are used. For this we used three XC functionals: PBE [6], PBE0 [87],
and SCAN0 [115, 116]. When going from PBE to PBE0 we test the effect of
Fock exchange and the SCAN0 allows to test a recent meta-generalized gradient
approximation. Note that in the paper as well as in the following we put the
name of the XC functional that was used to obtain the RPA energies in brackets
like this: RPA(XC). The singles corrections also depend on the DFT functional
input, however, we do not repeat the name of the functional after RSE and only
write RPA(XC)+RSE instead of RPA(XC)+RSE(XC). One of the downside of
the 3B-69 test set is the lack of distance dependent data. Therefore, we calculated
also binding energies of neon and argon trimers to gain information about the
short- and long-range errors.

A crucial contribution to P3 was done by Dr. Modrzejewski who implemented
RPA in his code focusing on scalability and high precision of the three-body
interactions. To illustrate the latter point, consider that the RPA energy is
often evaluated by integration over a frequency grid [48]. The frequency grid is
generated based on the excitation energies in the system and therefore a different
grid is usually used for the trimer, dimer, and monomer calculations. To reach a
high precision of the three-body interactions, one should therefore use a very dense
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Figure 3.5: Trimer of succinic anhydride, structure 18c of the 3B-69 test set [82].

integration grid to avoid numerical errors from the integration. To reduce these
errors the code of Dr. Modrejewski uses a common grid for all the calculations
needed to obtain the trimer non-additive energy. This helps to keep the number of
integration points low, below twenty. There are other technical points concerning
the reduction of numerical errors and they are discussed in detail in P3.

One interesting observation of the study was that the singles corrections (at
the RSE level) do not always improve the three-body energies. While we observed
a substantial improvement for RPA based on PBE states upon addition of the
singles corrections and a smaller reduction of errors for PBE0-based RPA, the
errors were actually larger for RPA(SCAN0)+RSE compared to RPA(SCAN0),
see Table 3.1. The reason for the worsening is difficult to extract from the data
but could be simply due to the fact that RPA(SCAN0) was already giving low
errors and the RSE correction is a too crude approximation and overcorrects the
energies. Nevertheless, the overall accuracy of RPA was very satisfactory for
the 3B-69 test set with RPA(SCAN0) and RPA(PBE0)+RSE giving an accuracy
between that of MP3 and CCSD.

Table 3.1: Mean absolute errors (MAE) for the different methods on the whole
3B-69 data set, data in kJ/mol.

Method MAE (kJ/mol)
RPA(PBE) 0.18
RPA(PBE)+RSE 0.11
RPA(PBE0) 0.11
RPA(PBE0)+RSE 0.10
RPA(SCAN0) 0.08
RPA(SCAN0)+RSE 0.12
MP2 0.19
MP3 0.11
CCSD 0.06

The distance-dependent three-body energies for neon and argon trimers show-
ed also interesting results. A clear observation from these calculations was that
the three-body errors of DFT functionals largely transfer to errors of the sub-
sequent RPA calculations. This is illustrated in Fig. 3.6 where we compare the
three-body energies obtained with different XC functionals, the singles-corrected
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RPA energies calculated on top of these functionals, and the CCSD(T) data
which we take as a reference. The structure is an isosceles triangle with R be-
ing the length of the base and the base angles are 45◦. Both for DFT and the
RPA+RSE data the errors are the largest for PBE and consequently decrease for
PBE0, SCAN, and SCAN0. In an afterthought, the inheritance of the errors by
RPA from the DFT calculation makes sense, large DFT errors are likely related
to errors in density and the states, i.e., quantities that form the input for RPA
calculations.
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Figure 3.6: Three-body energies of neon trimer for CCSD(T), different exchange-
correlation functionals, and singles-corrected RPA on top of these functionals.
The structure is an isosceles triangle with base angles of 45◦ and R being the
base length.

Another point that became clear is that the errors for different input states
can be deduced already from the EXX data. That is, one doesn’t need to com-
pare the RPA energies to reference and can compare EXX to HF to get a basic
understanding of the magnitude of the three-body errors. Strictly speaking, the
HF should not be considered as a reference for EXX and only the total energies
should be compared. However, we observed that if EXX is far from the HF three-
body energies, the RPA three-body energies are far from CCSD(T) as well. This
point is demonstrated in Fig. 3.7 in which we show the EXX and EXX+RSE
data obtained for different XC functionals. One can see that the ordering of the
functionals is the same as in Fig. 3.6 with SCAN0 again being the closest to
the HF three-body curve. Therefore, the three-body energies seem to offer an
independent and very simple and fast test of quality of XC functionals.

Overall, we saw that running RPA using PBE input leads to rather large errors
and the singles corrections are crucial to improve the quality of this method. The
PBE XC functional is commonly used to provide input states for RPA, at least
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in solid state calculations. Our results then highlight that this might be far
from optimal choice. However, it is possible that the three-body errors are either
balancing some errors in other many-body terms or they are comparatively low to
errors in two-body terms. The results presented next for clathrate and molecular
solids shed more light on this issue.
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Figure 3.7: Three-body energy of neon trimer for Hartree-Fock (HF), exact ex-
change (EXX), and EXX with renormalized singles corrections (RSE). The EXX
and RSE data were evaluated using different exchange-correlation functionals.
The structure is an isosceles triangle with base angles of 45◦ and R being the
base length.

3.3.2 Methane clathrate
In this part I discuss results of tests that we performed on binding energy of
methane in methane clathrate. Methane clathrates are materials present on the
Earth in seas and oceans where they store large amounts of methane. Their
structure is formed by water cages in which methane, or other molecule for dif-
ferent clathrates, is present, see the structure on the left of Fig. 3.8. One of the
properties of interest is the binding energy of methane with the water cage [117],
Ebind, that is obtained as

Ebind = Ecage+CH4 − Ecage − ECH4 , (3.4)

where the energies on the right hand side are the energy of methane in the cage,
the energy of the empty cage, and the energy of isolated molecule, respectively.
From the point of view of methods development the binding energy of methane in
clathrate represents a nice example of a property which is difficult to be described
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accurately with DFT-based methods [117]. For example, the optPBE-vdW func-
tional which performs well on molecular dimers [20] or ice structures [118] predicts
Ebind twice as large as the reference [117].

Figure 3.8: Structure of methane clathrate crystal on the left and methane
clathrate cluster on the right.

To test RPA and other methods we used a finite cluster model of the clathrate
which consists of a single methane molecule bound in a cage of twenty water
molecules, as shown on the right hand side of Fig. 3.8. The cluster was used
previously by Deible et al. [119] who assessed the performance of different DFT
functionals for predicting of Ebind. There are several benefits of using the cluster
compared to the periodic solid. Most of all, the number of MBE contributions
that needs to be evaluated is finite. Moreover, the system is small enough so that
Ecage+CH4 and Ecage can be calculated in a single calculation for DFT, HF, RPA,
and MP2. Therefore, the binding energy Ebind can be evaluated directly using
so-called supermolecular approach. The name “supermolecular” is used because
the water cage is considered as a single entity. The results of the supermolecular
approach can be then used to compare to the results obtained with MBE. This
serves to check the convergence of MBE and also to verify the quality of the
set-up. Both the supermolecular approach and MBE for calculating Ebind are
sketched in Fig. 3.9.

The first step that we needed for the testing was to obtain the reference MBE
contributions. Specifically, we needed the interaction energies of 20 methane-
water dimers and the non-additive contributions of 190 trimers and 1140 te-
tramers. To have values which are both highly accurate and precise we used the
CCSD(T) scheme and performed a careful analysis of the convergence of the MBE
contributions with respect to the basis set size. The details are discussed in P4,
but the precision can be illustrated by the fact that Ebind obtained by the super-
molecular and MBE schemes differ by only 0.05 kJ/mol for the HF method and
by 0.1 kJ/mol for MP2. Our final CCSD(T) binding energy equals −19.7 kJ/mol
and confirms a good accuracy of a previous estimate of −20.4 kJ/mol obtained
by Lao and Herbert using the supermolecular approach and the domain-based
local pair natural orbital coupled clusters scheme [DLPNO-CCSD(T)] [120, 121].
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Figure 3.9: Two possible ways to calculate the binding energy: a supermolecular
approach on the left and many-body expansion on the right.

In the following we briefly mention some of our observations made for the
calculations and results of the clathrate. These are both technical or related to
the accuracy of the different methods.

One technical point concerns the calculation of reference quality binding ener-
gies using MBE. We usually use the CCSD(T) scheme to obtain reference binding
energies and use or at least test its explicitly correlated (F12) version to speed
up convergence with the basis-set size [97, 122, 123]. However, the F12 methods
affect only the CCSD energy and not directly the triples (T) term. To reduce the
basis-set size dependence of the (T) term one can scale it using ratio of MP2-F12
and MP2 energies [124, 125]. This is called scaling and it is quite efficient for the
dimer or two-body interaction energies. However, for trimers and tetramers, we
observe large errors when the scaled energies from the output are used directly,
see Table 3.2. The errors are smaller when a common scaling factor is used [125].
However, the most reliable way to obtain the three- and four-body (T) terms is
to use the bare (T) contributions directly as they have almost no dependence
on the basis-set size (Table 3.2). This approach is also the simplest as, com-
pared to using a common scaling factor, no additional data processing needs to
be performed.

Table 3.2: The (T) many-body contributions to the binding energy of methane in
clathrate obtained for different basis-sets. The (T)unscaled data show the bare (T)
terms as obtained by Molpro, (T)indiv. scaled and (T)common scaled give (T) contri-
butions which were scaled with MP2-F12/MP2 energy factor by the programme
and externally using a common scaling factor [125].

Scaling Two-body Three-body Four-body
AVTZ AVQZ AVTZ AVQZ AVDZ AVTZ

(T)unscaled −6.33 −6.65 0.84 0.85 0.08 0.09
(T)indiv. scaled −6.80 −6.85 0.19 0.48 −6.19 3.75
(T)common scaled −6.94 −6.93 0.93 0.88 0.11 0.10

24



As with the 3B-69 reference data we used the clathrate system to test how
the RPA energy depends on the input states provided by DFT XC functionals.
Specifically, we used PBE, SCAN, PBE0, and SCAN0 which again allowed an
assessment of an effect of using Fock exchange in the XC formula. Moreover, we
also obtained two- and three-body contributions for RPA based on HF states and
two-body contributions based on two optimized effective potentials (OEP). The
OEP calculations were done by Dr. Śmiga from Toruń and were done at the level
of exact exchange (OEPX) [126] or including second-order perturbation theory
terms (OEP2-sc) [127–129].

For the 2-body interactions, the results are somewhat expected (Table 6 in
P4), RPA without singles underbinds and this underbinding is corrected by the
singles corrections. For hybrids (PBE0 and SCAN0), the singles have a smaller
effect as the starting Hamiltonian is already close to the HF one. Interestingly,
the OEP2-sc gave EXX, RSE, and RPA 2-body energies similar to those obtained
by using SCAN states and both approaches also gave similar energy gap between
occupied and virtual states for water and methane. However, the energy of the
highest occupied state was −14.0 eV for OEP2-sc while it was only −9.9 eV for
SCAN. These data support the idea that the good performance of RPA based
on (meta-)GGA states comes from the good estimation of the electronic gap
(governing the excitation energies) rather than correct estimation of the orbital
energies.
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Figure 3.10: Three-body energies for interaction energy of methane with water
clathrate cage obtained with different methods. The green dashed line gives the
reference value of 4.4 kJ/mol obtained using CCSD(T).

From the 3B-69 test set we know that the RPA errors for three-body energies
are strongly affected by the errors of the DFT functionals used to provide the
input states. The observations that we made for clathrate are consistent with
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the 3B-69 results. To illustrate the results for clathrate, we show the three-
body energies obtained by the different DFT functionals and RPA without and
with singles in Fig. 3.10. The three-body energies obtained by PBE and PBE0,
equal to 31.2 and 18.4 kJ/mol, respectively, grossly overestimate the reference
CCSD(T) value of 4.4 kJ/mol which we show with the dashed line. In contrast,
the SCAN and SCAN0 data are −2.3 kJ/mol and −0.5 kJ/mol, respectively,
straddling the HF value of −1.1 kJ/mol. As a consequence, the EXX, RSE, and
RPA contributions are generally larger when PBE states are used compared to
using SCAN inputs. For example, RPA correlation energy is 9.8 kJ/mol for PBE
input but only 2.7 kJ/mol for SCAN. Despite the larger individual terms, the
RPA+RSE three-body energy evaluated on PBE states, equal to 3.9 kJ/mol, is
the one closest to the reference. However, without singles the RPA(PBE) three-
body energy equals to −8.0 kJ/mol and has the largest error of all the methods
tested. The results are much less sensitive for the SCAN inputs and we believe
that this is a piece of evidence that makes SCAN (or similar methods with low
three-body errors) more suitable to be used as input for RPA.

We found one rather surprising result when testing the predictions of more
recent dispersion corrections, such as the D4 from Grimme’s group [99, 100],
on the clathrate data. Specifically, the three- and four-body contributions were
much overestimated in magnitude when correcting HF data and here we briefly
discuss a plausible explanation. The two-, three-, and four-body energies for
SCAN and HF are given in Table 3.3 in the “Energy” columns together with the
corresponding D4 corrections. As mentioned, the SCAN and HF three-body and,
to a lesser extent, the four-body energies are close to each other. In contrast, for
two-body terms SCAN gives strong binding while HF is repulsive. In both cases,
this is the expected behaviour [115]. Therefore, to obtain good two-body energies
the dispersion correction needs to be small for SCAN and large for HF. To achieve
this, the damping function must reduce the dispersion term substantially more
for SCAN than for HF. As a consequence, for SCAN the dispersion terms are
small also for the three- and four-body terms while for HF the lack of substantial
damping most likely leads to the large many-body D4 energies. While one might
not be interested in using dispersion-corrected HF, it is a reminder that one
should also test at least three-body energies and not only the total or two-body
terms when developing DFT methods and dispersion corrections.

Table 3.3: The SCAN and Hartree-Fock many-body contributions and the re-
spective dispersion corrections as obtained by the D4 method. Data in kJ/mol.

Method Two-body Three-body Four-body
Energy D4 Energy D4 Energy D4

SCAN −21.6 −6.9 −2.3 0.4 7.00 0.3
HF 16.0 −30.3 −1.1 −54.7 2.3 48.6

The evaluation of the three- and four-body terms tends to be more time
consuming compared to the evaluation of the two-body interactions. This is due
to their larger number as well as larger fragment size. The fact that smaller basis
sets suffice to achieve their convergence compared to the two-body terms helps
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to reduce the computational demands but typically not enough to make the cost
of the two-body terms dominant. One way to reduce the overall computational
cost of the binding energy evaluation is to obtain part of the contributions using
less demanding method. This can be done either for specific terms or using the
correction scheme described by Eq. 3.2 where one starts from a supermolecular
calculation. For a method to be useful within the correction scheme, it needs to
deviate as little as possible from the demanding scheme which it replaces. For
clathrate, the RPA(PBE0)+RSE and RPA(SCAN0) were the methods that gave
the smallest errors for the three- and four-body terms. In contrast, the large
three- and four-body errors of RPA(PBE) make it unsuitable for the correction
scheme.

To compare the results obtained using the correction scheme for different
methods we created subgroups for the three- and four-body terms. Specifically, we
divided the fragments according to the number of hydrogen-bonded water dimers
they contain. The reason is that the clusters containing proximate molecules
tend to have larger errors. Therefore, we have two subgroups of trimers: “L3b 1hb”
and “L3b 0hb” where in the first group the water molecules are hydrogen bonded
and there is no hydrogen bond in the second group. Similarly we have three
subgroups of tetramers. According to the correction scheme, we start with the
supermolecular binding energy obtained at the RPA level and consecutively re-
place the RPA terms with their CCSD(T) counterparts. The convergence of
the binding energy with the subset included at the CCSD(T) level is shown in
Fig. 3.11. Apart from the two RPA-based results we also obtained data for MP2
combined with CCSD(T) (CC/MP2 data) and supermolecular binding energy at
HF level combined with MBE expansion at the CCSD(T) level (HF/CC data).
All the approaches converge faster with the fragment set included than the bare
MBE at the CCSD(T) level. Also the data from the correction scheme are rea-
sonably close (within 1 kJ/mol) to the converged value when the contributions
of hydrogen-bonded trimers (3b 1hb set) are included at the CCSD(T) level.

We note that a large part of the errors of MP2 comes from missing three-body
correlations and adding it via an approximate term would further improve the
MP2 data [130]. Finally, we note that standard DFT functionals have substantial
errors for the many-body contributions and they would hardly be useful here.
A possible exception are long-range corrected functionals but that needs to be
explored [131].

Overall, the data obtained for methane clathrate clearly show that methods
that give low error in the supermolecular approach can exhibit large errors in the
many-body contributions. Moreover, the SCAN states seem to be preferable to
PBE ones due to their lower many-body errors. Finally, the clathrate cluster was
a useful system on which we thoroughly tested the computational set-up not only
for RPA but also for calculation of reference CCSD(T) energies.

3.3.3 Many-body expansion of binding energies of solids
In the final results part of this Chapter I will discuss MBE calculations for crystals
of short hydrocarbons: ethane, ethylene, and acetylene that we published in P5.
This work allowed us to test and use our methodology for molecular crystals,
systems with an infinite number of many-body contributions. The molecules in
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Figure 3.11: Binding energy of methane in clathrate for different terms included
in many-body expansion and the correction scheme. The terms are divided ac-
cording to the n-body order (n = 2, 3, and 4) and the number of hydrogen bonds
(hb) in the fragments. The standard CCSD(T) many-body expansion is labeled
MBE(CC) and it’s final value of −19.7 kJ/mol is indicated by the black dashed
line with the blue dotted lines indicating values one percent larger and smaller.
The correction scheme starts from a supermolecular interaction energy obtained
for a method X and many-body expansion of a difference between CCSD(T) and
X. For the simpler method X we use two RPA approaches, MP2, and Hartree-Fock.

these crystals have a small size and thus the computational cost of the many-body
terms is affordable. Moreover, the molecules have weak but different electrostatic
moments which we expected to affect the convergence of the MBE contributions
with cut-off distance.

The large number of fragment contributions that we needed to evaluate re-
quired a substantial change to the way we prepare and process the data. As a
consequence we wrote a Python library called mbelib [132] in which we collected
subroutines and processing scripts that we had, made them more consistent and
added several other functions. With this library, we can take a structure of a
crystal (in VASP POSCAR format), extract monomers, create a list of dimers,
trimers, and tetramers within some cut-off, prepare input files for Molpro, and
process output files. Moreover, we can divide the data into separate groups based
on intermolecular distances occurring in the fragments, that is, we can group the
fragments according to the number of nearest neighbours occurring in them. This
is very useful for isolating and understanding the asymptotic behaviour of the er-
rors.

As with the work on methane clathrate we needed to calculate the reference
MBE energies, for which we used again CCSD(T). An important point for the
evaluation of the reference energies was the size of basis-set that needs to be used
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to obtain converged results. A large basis set should yield more precise values
but the computational cost can be too large to be practical. In P5 we showed
that for two-body contributions large basis sets are needed only for small inter-
molecular distances. This is understandable as with increasing distance between
the molecules the perturbing fields become more and more homogeneous. Here
we show an additional example that a similar situation occurs also for trimers.

The three-body energies have a smaller dependence on the basis-set size com-
pared to the two-body terms, at least when all the energies needed to evaluate
the three-body contribution of a single fragment are evaluated in the same basis
set. For ethylene, we observed differences up to few percent between AVDZ and
AVTZ energies. To understand how different trimers contribute to the error we
divided them into groups according to the number of nearest neighbours in the
trimer. For ethylene, we classify the molecules as nearest neighbours if their av-
erage distance is below 5 Å.1 We then have a small group of trimers with three
nearest neighbours and a larger one with two neighbours. The groups with one
and zero nearest neighbours are infinite in principle, they are only finite due to
the finite cut-off distance imposed on the trimers.

A useful way to look at the errors is to sum the basis-set errors from the
largest cut-off distance to the lowest one. In our scripts this is called reverse
summation. The differences between AVDZ and AVTZ values for all the trimers
and the subgroups are plotted in Fig. 3.12 for CCSD on the left and CCSD-F12b
on the right. One should read the graphs from the right hand side, the black
line (all data) starts at zero for the largest cut-off and as the cut-off decreases,
it accumulates the differences obtained for different trimers. The value for the
smallest cut-off is then the final difference between the AVDZ and AVTZ three-
body energies. The data show that the basis-set dependence is indeed very small
for the trimers with no nearest neighbours, that is, the red line is close to zero for
all the cut-offs for which data exist. This is true both for CCSD and its explicitly
correlated variant. The explicitly corrected variant clearly reduces the basis-set
errors for the sets with a single or two nearest neighbours. This is demonstrated
by smaller changes of the values for the CCSD-F12b data compared to CCSD.
The contribution to the basis set error due to the set of trimers with three nearest
neighbours (orange line) is similar for CCSD and CCSD-F12b. We note that in
P5 we surprisingly observed a larger basis-set difference for CCSD-F12b, around
0.03 kJ/mol compared to ≈0.01 kJ/mol for CCSD. The analysis in Fig. 3.12
clearly shows that this is not because of smaller individual differences for CCSD
but due to a larger cancellation of positive and negative values.

Our main goal while performing the study was to identify the origins of the
good performance of the RPA+RSE scheme based on PBE input states observed
previously [91, 133]. The many-body analysis in P5 showed that, at least for
the systems considered, the good performance of the RPA(PBE)+RSE is mainly
due to error cancellations. Specifically, the two- and four- body terms are too
repulsive and the three-body terms are too attractive, as shown for ethylene in
Fig. 3.13. While this is rather disappointing, it’s rather remarkable how well this
error cancellation works across the range of systems studied in Refs. [133] and
[91].

1Actually, there are no dimers with distance above 5 and below 6 Å, the second nearest
neighbours have then distances above 6 Å.
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Figure 3.12: Difference between three-body energies obtained by AVDZ and
AVTZ basis sets for CCSD on the left and CCSD-F12b on the right. Apart
from data for all the trimers we show the data for groups of trimers created
according to different number of nearest neighbours (NN).

As with clathrate, the reason for the large many-body errors of RPA(PBE)
and RPA(PBE)+RSE can be traced down to the many-body errors of input
PBE states. In fact, for PBE the three-body energy of ethylene is equal to
6.86 kJ/mol, far away from the CCSD(T) reference of 1.56 kJ/mol or the HF
value of −0.38 kJ/mol. This difference is too large to be corrected by standard
dispersion corrections that include three-body terms [88, 100, 134]. Therefore,
our data support the idea that the three-body errors of molecular clusters and
solids are a crucial tool for assessing or developing DFT functionals and dispersion
corrections [82, 113].

In P3 and P4 we observed smaller many-body errors for RPA based on the
SCAN functional and the data calculated for molecular solids in P5 show a similar
behaviour, see Fig. 3.13. Moreover, when the RSE corrections are added to
RPA(SCAN), the errors for the three-body terms increase, again in line with
results obtained in P3 and P4. When compared to RPA(PBE), the error for
the two-body terms of RPA(SCAN) doesn’t decrease as much as the errors for
the three- and four-body terms. As a consequence, there is much less error
cancellation between the different MBE orders and the overall RPA(SCAN) or
RPA(SCAN)+RSE error is larger compared to their PBE-based counterparts.

The many-body contributions sum together hundreds of energies of individ-
ual fragments. Therefore, apart from looking at the errors of the many-body
energies it is extremely useful to consider errors of the individual contributions.
A convenient way to do this is to plot the many-body energy as a function of
the cut-off distance. For the two-body terms we found that the errors of RPA
methods are large when the intermolecular distance is small. We called this group
“proximate” dimers and it included all dimers with intermolecular distance less
than 10 Å. Moreover, as mentioned previously, the interaction energy in this
group depends strongly on the basis-set size. In contrast, the RPA approaches
exhibited low errors for the rest of the dimers, called the “distant” group. We can
illustrate the good results for the distant dimers by the fact that the difference
between CCSD and RPA(SCAN) two-body energies was 0.01 kJ/mol at most,
the actual values being between 0.35 to 0.5 kJ/mol for the four different systems.
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Figure 3.13: Errors of MP2 and different RPA schemes for the n-body contribu-
tions to binding energy of ethylene solid. Positive values mean that the terms are
too repulsive compared to the CCSD(T) reference.

The (T) contribution is around 0.1 kJ/mol for the distant dimers and for all the
systems so the CCSD(T) and RPA(SCAN) differ by approximately this amount.
However, the close agreement of CCSD and RPA(SCAN) likely suggests that,
at large separations, RPA with SCAN input states is a good approximation to
CCSD.

The low errors of RPA-based methods for the distant dimers suggest that the
three-body errors could be also low for separated trimers. To analyse this, it is
again useful to divide the trimers into four groups according to the number of
nearest neighbours in the trimer. We then expect that the errors will decrease
with decreasing number of contacts in the fragment. The results that we found
for ethane are shown in Fig. 3.14. Interestingly, the fragments with three NNs
look to be described better by RPA than those from the group with two NNs. The
trimers with a single NN contribute by around 0.1 kJ/mol to the overall error,
which is still significant. As expected, the deviations of RPA from the reference
are rather small for the trimers without any molecules in contact. However, the
overall contribution of these trimers is almost negligible within the cut-off we
used.

For comparison, we also included MP2 data in Fig. 3.14. MP2 correlation
lacks three-body terms and the Hartree-Fock contributions are also small due to
the small quadrupole moment of ethane [135]. Overall, the values are close to zero
for all the fragments in all the groups. In fact, the MP2 line for the 0 NN group
coincides with the line denoting zero, the contribution of this group is less than
0.001 kJ/mol. Of course, the MP2 results would be likely improved by adding an
approximate three-body correlation term but we haven’t tested this thoroughly
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Figure 3.14: Three-body energy of ethane as a function of cut-off distance for
different methods. The contributions were divided into subgroups according to
number of nearest neighbours (NN) in the fragments with dividing distance of
6.1 Å. For clarity, the data for one NN was shifted upwards by 0.3 kJ/mol and
the dashed lines denote zero.

yet [130, 136].
Our study was largely motivated by the possibility of using RPA in the cor-

rection scheme of Eq. 3.2 and the promising results obtained for clathrate. The
results for molecular solids showed that neither PBE- nor SCAN-based RPA are
suitable for the correction due to problems occurring for the three-body terms.
There are two main issues that we identified. First, the difference between the
reference data and RPA energies converges only slowly with the distance cut-off.
This can be seen in Fig. 3.14: the distance between the RPA and CCSD lines for
the 1 NN group visibly increases with cut-off distance. It means that the RPA
terms are not a very good approximation of their CCSD counterparts and that
many trimers would need to be included in the correction scheme to reduce the
overall error. Second, the RPA energies have a much larger dependence on the
basis-set size compared to the reference data. To illustrate this, we show the
cut-off distance convergence of the RPA correlation energies in AVTZ and AVQZ
basis sets together with extrapolation to the complete basis-set limit (CBS) for
orthorhombic acetylene in Fig. 3.15. For comparison we also included the CCSD
energies obtained using the AVDZ and AVTZ basis sets. Clearly the difference
between the RPA data is much larger than the one for CCSD, even though the
latter uses a smaller basis set. Moreover, as we show in P5, the slow convergence
is not restricted to short trimer separations but also affects the data at larger
distances. This means that the RPA energies require basis-set extrapolation for
the three-body terms to reduce the basis-set errors. This makes the calculations
rather costly from the computational point of view.
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Figure 3.15: Three-body correlation energies obtained by CCSD and RPA as
a function of the distance cut-off and for different basis sets for orthorhombic
acetylene.

The reason for the slow basis-set convergence and deviations from CCSD is
still not completely clear. However, our tests performed after completion of P5
suggest that part of the issue can be attributed to the use of DFT states instead
of HF states employed by CCSD. An additional reason is the lack of second-order
exchange terms which seem to reduce the basis-set dependence as well. We note
that the latter point can be likely supported by analysing the leading terms of
basis-set convergence for the appropriate energies, as done in Ref. [32].

Overall, in P5 we assessed the accuracy of different correlated methods using
a newly generated test set of many-body energies of four solids. We identified
that smaller and thus computationally cheaper basis sets are sufficient to generate
the reference data when molecules in the fragment are not in contact. The other
results were not so positive or encouraging. We found that the good performance
of RPA(PBE)+RSE is mostly due to cancellation of errors between different
orders of MBE. Three- and four-body errors of RPA are smaller when SCAN
states are used, however, two other issues appear. Specifically, the three-body
energies converge slowly with the basis-set size and their difference to CCSD(T)
also converges slowly with the cut-off distance. Either of these issues make the
SCAN- or PBE-based RPA unsuitable for the correction scheme.

3.4 Summary
Let me summarise this chapter by discussing the results in a broader view. The
work performed for P1, P2 as well as related works by us and other researchers
showed that RPA with singles corrections (RSE or GWSE) evaluated non-self-
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consistently on PBE states predicts accurate binding energies and adsorption
energies. The results are close to CCSD(T) or QMC reference and the method
treats well both insulators as well as metals, as showed, for example, for adsorp-
tion of water molecule on graphene [101] and hexagonal boron nitride [80, 137].
This makes it preferred to use over simpler DFT functionals for such problems if
the computational cost allows it. The analysis done in P4 and P5 showed that,
unfortunately, the good performance for binding energies of molecular solids is
due to error cancellations between different MBE orders. This makes RPA(PBE),
with or without singles, unsuitable for the correction scheme of Eq. 3.2. That is,
one can’t improve the binding energies with few tens of CCSD(T) calculations
for the most problematic terms.

The large many-body errors of RPA(PBE)+RSE are inherited from many-
body errors of PBE. One can therefore expect that RPA based on DFT functionals
with three- and four-body errors smaller than PBE will give improved results for
the non-additive energies. In P3 and P4 we found that the three-body errors
are lowered for hybrid functionals. In a work performed as a follow-up to P5
and for the same systems we also observe that hybrid functionals tend to reduce
the many-body errors over the respective pure functionals. This is illustrated on
many-body errors for ethylene crystal shown in Fig. 3.16. Interestingly, the four-
body terms of RPA(SCAN0) are small, below 0.05 kJ/mol in absolute magnitude.
In contrast both RPA(PBE0) and its singles corrected version give an error over
0.3 kJ/mol.
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Figure 3.16: Errors of MP2 and different RPA schemes for the many-body energy
contributions of crystalline ethylene.

Due to the problems with the description of three- and four-body terms ob-
served for the various DFT functionals, RPA based on HF input states is worth
exploring and we are currently following this direction. Would there be any prob-
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lem with this approach? Yes, the HF states would likely substantially reduce the
accuracy of RPA for two-body energies. The reason is a much larger electronic
gap between the occupied and virtual states in HF and thus smaller polarizability.
However, the two-body energies need to be recalculated for the proximate dimers
anyway. Moreover, one can expect that the dimer interaction energies for dis-
tant dimers could be easily corrected by a pairwise formula, similar to dispersion
correction. Another possibility would be to use a range-separated hybrid with
a long-range HF potential. This could possibly, keep a good description of the
two-body terms and reduce the large errors for the three- and four-body energies.
A problematic part would be of a technical character, one would have to make
sure that the periodic calculations of a range-separated hybrid precisely repro-
duce finite cluster energies needed in the second part of the correction scheme.
This is a potential issue if the PAW approach would be used for the former and
Gaussian basis calculations for the latter. Nevertheless, it is another route that
is worth exploring based on the data we gathered.

There is another technical issue connected with using hybrid functionals or
HF as an input for RPA within periodic boundary conditions and plane-wave
basis sets. It is a larger computational cost of HF diagonalisation compared to
diagonalisation based on PBE or SCAN. Of course, this issue is less pressing with
increasing power of supercomputers but it is a possible problem nevertheless.

The three- and four-body errors of MP2 are quite small, primarily due to the
use of HF states. Therefore, one could think to use MP2 for the correction scheme
instead of RPA and we saw that for clathrate this approach worked rather well.
Moreover, the leading error of MP2 can be attributed to the lack of three-body
correlation which can be approximately added via the ATM correction [130]. The
problem with using MP2 is again more technical and caused by a larger computa-
tional cost compared to RPA, as will be discussed in Chapter 5. Specifically, MP2
has an O(N3

k ) scaling with the number of k-points which is much less favourable
compared to the O(Nk) scaling of RPA. While this might not seem like a lot, one
needs to realise that the ratio of going from 2×2×2 k-point grid to, say, 3×3×3
grid is not (3/2)3 = 3.375 for MP2 but actually (33/23)3 ≈ 38.

The other unpleasant feature that we observed for RPA based on PBE or
SCAN is the slow convergence of the three-body energies with the basis-set size.
In another ongoing work that was spurred by the results obtained in P5 we are
testing how the basis set errors of change when hybrid or HF states are used
to evaluate RPA energy. Moreover, we are also testing how including additional
perturbation terms, such as the second-order screened exchange affects the con-
vergence with the basis-set size.

Overall, RPA(PBE)+RSE or +GWSE is a suitable and comparatively com-
putationally affordable scheme to reach high accuracy. For reference energies
within the correction scheme, smaller many-body errors are needed and the PBE
input fails for this task while functionals employing, at least partly, HF states are
more promising.
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4. Understanding experimental
results

4.1 Introduction
In this chapter I’ll discuss my contributions to studies that were done together
with experimental groups and that were published in P6 and P7. The interaction
with experimentalists is very useful for a modeller as real systems can be very
far from idealised structures that we usually use to test and develop theoretical
methods. Effects that can be neglected in calculations of test systems might
be indispensable to account for to understand the experimental data. Finally,
the experimentally measured properties can be different from those on which
we focus when developing methods. Therefore, understanding the experimental
observations can be a detective-like work where we try to find ways how to extract
relevant data from simulations and, at the same time, often need to use novel
approaches to perform the simulations.

The aforementioned points were very relevant for both P6 and P7. First, the
structures were essentially unknown, second, the main effects were believed to be
caused by water but there was little to no proof of the presence of water, third,
the measured effects were strongly affected by quantities that we often neglect.
The first work, P6, was done in collaboration with experimental groups at MFF
UK and J. Heyrovský Insitute of Physical Chemistry and studied temperature-
dependent behaviour of water between graphene and silica. The second work, P7,
was done in collaboration with an experimental group in Taiwan and considered
water between graphene layers.

In both studies we analysed the properties of water layer confined between
two materials. As the thickness of the water layer is on the nanometre scale, such
configurations are also called nano-confined water [138]. Nano-confined water
attracts a lot of interest from researchers from various fields as water can be
considered nano-confined in cells of organisms, in cracks between rocks, and many
other systems. There have been many heated debates about the possible structure
and properties of water in general [139] and nano-confined in particular, especially
about its thermodynamic properties [140]. One relevant property of water that
was important to consider in P6 and P7 was surface premelting [141, 142]. The
molecules on a surface of ice become liquid below the melting temperature of the
bulk. The shift of the melting temperature is several tens of degrees C for the
first surface layer although different experimental techniques can give different
values due to the small layer thickness [143]. When the water is confined, the
premelting is further affected by bonding to the confining material and by its
movements. An interesting question related to nano-confined water is from which
cavity size does the confined water start to freeze in structure similar to bulk ice
and not in amorphous structure. This question was answered for water droplet
in vacuum [144, 145], but the answer most likely depends on the properties of the
confining material and the shape of the cavity.
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4.2 Graphene wrinkles
Graphene and 2D materials in general have been widely studied in the past two
decades using many different techniques [146]. The experimental set-ups often
involve supported 2D material, that is, the system is placed on a surface of
another material. In P6 the support was silica (SiO2) and the main technique
used to study graphene was Raman scattering at different temperatures. For
graphene, Raman spectra give information about charge doping and strain in
the material [147–150]. From atomic force microscopy it was known that the
graphene on surface is not flat but corrugated, with so-called wrinkles [151].
The Raman spectra was then a combination of contributions from the flat parts
and from the wrinkles, but were disentangled to obtain temperature dependent
strain and doping [152]. The strain was then used to calculate lattice constant of
the graphene. The problem appeared when the temperature dependence of the
graphene lattice constant was compared to data available for silica and isolated
graphene: the observed lattice expansion was about one or two magnitudes larger
than that of graphene or silica. Therefore, the increase in strain could not be
explained by expansion of the substrate and there had to be another effect in
play. A possible explanation was that there was water between the substrate
and the graphene layer. Its increased mobility with increasing temperature and
possibly other effects would then drive the expansion of the graphene and affect
the doping. My role was then to analyse the role of water in the system and
contribute thus to the explanation of the observed effects.

It is known that orientation of water molecules can affect the doping of a
graphene layer, I contributed to one such study during my stay at UCL [153].
These effects can be modelled using a single static layer of water molecules and a
rather small simulation cell with sides not necessarily exceeding 1 nm. Therefore,
density functional theory (DFT) can be used and one can assess the changes
in doping from the density of states. In contrast, the height of the wrinkles is
several nm, their width can be even larger and molecular dynamics is needed
to capture temperature effects. Therefore, much larger system sizes and longer
time scales need to be used than for studies like in Ref. [153]. We checked the
use of simpler quantum mechanical methods such as tight binding but they had
still too large computational cost. Therefore, we opted for the use of classical
forcefields to model the system. The clear downside of this option is that one
can’t access the doping directly, the benefit is that the dynamics of water can
be studied on sufficiently long time scales. To get some information about the
changes in doping, we analysed how temperature affects the orientation of the
water molecules. Moreover, we calculated the average distance of the graphene
layer from the surface atoms as it likely affects charge transfer and thus doping.

As stated, the information about the structure of the system was rather scarce.
We therefore constructed several models with different number of water molecules
between the silica substrate and the graphene layer. The graphene itself was built
from a flat part and a wrinkled part with defined width and height, the structure
of the substrate was taken from the literature [154]. We then run molecular
dynamics for these different structures to gain basic information about how the
system behaves. In Fig 4.1 we show result of molecular dynamics at 300 K for
the same initial structure of graphene layer and two different numbers of water
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molecules. In the (a) structure, water molecules create a double layer in the
wrinkle which itself has a shape of a hairpin. Water molecules which were in the
flat regions condense so that there are areas where graphene is in direct contact
with the substrate. In the (b) structure the number of water molecules is larger
leading to a Gaussian or bell-like structure of the wrinkle. Water molecules in the
flat region also condense and their number is sufficient to form a double layer.
Moreover, for either of the structures we note that the width of water in the
wrinkle is larger at the bottom of the wrinkle, this is caused by the presence of
OH groups on the surface which bind water more strongly than graphene.

Figure 4.1: Some of the models tested for the graphene wrinkle-water-silica sys-
tem. System (a) contains 1950 water molecules and shows a “hairpin” structure
of wrinkle with a water double layer forming between the hydrophobic graphene
surfaces. System (b) contains 3800 water molecules and apart from water-filled
wrinkle shows that a water double-layer forms on the silica surface.

Apart from silica substrate we also briefly tested how water behaves when
graphene layer is used as a substrate. One of the reasons was that the model
of silica surface needed to be rather large to accommodate the wrinkle and con-
tained around 50 thousand atoms (without graphene and water). The graphene
substrate then allows one to use a smaller simulation cell and also affects the
interfacial water due to lack of atomic charges in the forcefield. The structure
turned out to be quite interesting so we show it here in Fig. 4.2. When the number
of water molecules is such that a double layer can form in the flat area, a double
layer 2D water ice is formed. The structure is not formed by perfect hexagons,
we observe rings with smaller as well as larger number of water molecules. This
is again consistent with various similar structures that were observed for confined
2D water [155].

Our final set-up to obtain the data at different temperatures was the following:
A wrinkle with width and height of 4 nm was build on the silica substrate.
The space between the substrate and graphene was filled with water using a
structure of water ice Ih. Subsequently we run geometry optimization and several
short molecular dynamics at temperatures of few tens of K to obtain structure
without short interatomic distances. Long molecular dynamics at the desired
temperatures were then run to equilibrate the structures. Several properties, such
as average volume per water molecule, were analysed to assess if the structure is
equilibrated or not. However, reaching equilibrium is difficult for temperatures
below 200 K due to a very slow dynamics of the system.

The final structures at temperatures of 228, 256, and 266 K are shown in
Fig. 4.3. Note that we used the TIP4P/Ice water model which has a melting
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Figure 4.2: Side (a) and top (b) view of water between a flat and wrinkled
graphene surfaces. In contact with graphene, formation of layered structures of
water was observed.

temperature close to the experimental one [156] thus all the models are at tem-
peratures below that of melting of bulk water. One can see that the ice core
persists at 228 K and only melts at higher temperatures, consistent with the ob-
servations for finite ice crystal [142]. Moreover, we can observe a formation of
water layers for water in contact with graphene, again in agreement with previous
works [157, 158].

Figure 4.3: Snapshots of water in graphene wrinkle from molecular dynamics
simulations. The systems were run at 228 K (left), 256 K (middle), and 266 K
(right).

For each temperature we obtained production runs of lengths of at least
5.25 ns. These were used to obtain properties such as the C-C bond length,
water orientation and self-diffusion, and others. In agreement with experiment,
the C-C bond length increased with increasing temperature. The magnitude of
increase was about twice as large compared to experiment which could be con-
sidered satisfactory given the long list of approximations and simplifications of
the set-up.

Interestingly, there was one approximation which could have a large effect
on the results – the neglect of the quantum nature of the nuclei. It was shown
that when carbon nuclei are treated classically, graphene expands at all temper-
atures, when the nuclei are treated using quantum mechanics, graphene actually
shrinks at low temperatures [159]. We therefore decided to use the so-called
path-integral molecular dynamics (PIMD) to model the dynamics of the carbon
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nuclei at the quantum level. This scheme required us to change the code from
gromacs [160] to LAMMPS [161] to use the i-Py driver [162] which reduced the ac-
cessible timescales. However, we also used the PIGLET thermostats [163] which
reduced the number of necessary PIMD beads down to only 8 for temperatures
of 60 and 125 K and less for higher temperatures.

The PIMD simulations were started from the last structure of classical MD
for each simulated temperature. As shown in Fig. 4.4 the change of the lattice
constant was reduced from the classical MD simulations and the increase of strain
resembled the experimental one. Moreover, the simulated data show a clear kink
in the strain dependence on temperature which appears at temperatures close
to the melting of the ice core. Therefore, it is consistent with the assumption
that the increased dynamics of melted water drives the increased strain in the
graphene wrinkle.
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Figure 4.4: The change of lattice constant from the equilibrium value as a function
of temperature. The simulated data were obtained for a different number of PIMD
beads and the PIGLET coupling.

One of the properties that we calculated was self-diffusion coefficient of water.
We compared the results for water in wrinkle and in the flat region. Moreover,
we also used data from molecular dynamics runs which contained more water
molecules as they started from a structure with two ice layers between silica and
graphene and not only one as those used for most of the calculations. The self-
diffusion coefficient for the different areas and number of water molecules are
shown in Fig. 4.5 as a function of temperature. For all the data sets one can
observe a kink in the temperature dependence appearing at around 200 K and
caused by the premelting of confined water. The differences between the two
data sets for water in wrinkle are small. The water in flat region shows a smaller
diffusion for the thicker two layer structure. This is likely due to formation of
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larger water “puddles” of condensed water in which water molecules are more
strongly bound and thus they are less mobile. The mobility of water is larger
in the wrinkle than in the flat parts temperatures above ≈ 170 K. For lower
temperatures the diffusion is the largest in the flat part of the single layer model.
This is due to the fact that the water molecules in this structure aren’t typically
bound to other water molecules but only to the surface atoms and thus their
binding energies are weaker compared to the molecules in wrinkle or in the thicker
two layer ice. This likely transfers to a smaller barriers for diffusion and thus
slightly faster dynamics of the water molecules in the single layer system.
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Figure 4.5: Self-diffusion coefficient of water in the wrinkle and flat areas of the
system as a function of temperature. We show data for two systems differing in
the water coverage in the flat area.

Overall, our simulations were consistent with the experimental data and show
a clear influence of water on the properties of graphene layer on silica. Moreover,
it was important to consider quantum nature of nuclei which lead to a quantitative
agreement with experiment. We note that with around 93 thousands of atoms,
our simulations are likely one of the largest PIMD simulations performed so far.

One of the issues that still deserves attention is the structure of water in
wrinkle. We assumed that the structure is the same as in ice Ih as the wrinkle
size should be large enough to make it stable. It’d certainly be interesting to
go from the other side – to freeze liquid water and to analyse how the frozen
structure depends on the size of the wrinkle. This would complement studies
that are performed for carbon nanotubes [164–166].

4.3 Ferroelectric 2D ice
The system studied by the group from Taiwan consisted of a 40 nm thick layer
of aluminium oxide with holes of around 1 µm and two sheets of graphene on
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both sides of the oxide. The graphene layers could be brought in close contact
by applying voltage with water layer thought to be forming in between them, as
sketched in Fig. 4.6. However, the layers stayed in contact even after removing the
voltage and different measurements indicated a presence of a ferroelectric ordering
of the water layer. Importantly, the effect was reduced with increasing humidity
or increasing temperature. This supported the hypothesis that a ferroelectric
ice forms between the graphene sheets because for larger temperatures ice would
be less stable. Moreover, a thicker water layer wouldn’t keep the ferroelectric
structure after switching off the voltage. However, as in the previous study there
was not enough evidence to support the hypothesis only from experimental data.
The simulations that I performed confirmed that the formation of ferroelectric
2D ice is plausible in the system.

Figure 4.6: One of the models used for 2D ferroelectric water ice confined within
graphene layers. For clarity, only some of the atoms are shown.

To obtain a set of plausible structures of water between graphene sheets we
tested several strategies. The first is to use different graphene cells and add water
molecules randomly between the sheets. For this random structure search [167]
we can force different periodicities on the water molecules. For example, each
molecule that is put in the unit cell can have a defined number of replicas in x
and y direction within the unit cell. This simplifies creation of incommensurate
structures. Moreover, we can change the distance between the graphene sheets to
increase or decrease the space available for water molecules. When adding a new
water molecule, we calculate its distance to molecules already present, and if the
distance is too small the molecule is not added and we generate a new random
position. We tested several sizes of unit cells and used different periodicities of
water molecules and their total number, using up to 16 water molecules in the
unit cell. The distances between graphene layers were set to 5 or 6 Å to obtain
monolayer structures and to 8 Å to obtain double layer structures.

For each of the settings (cell size, number of water molecules and their period-
icity) we generated between 100 and 1000 random structures. The structures were
then geometry optimized by LAMMPS [161] using different surface charges. This
helps to identify structures stable for zero voltage and structures that could exist
for non-zero voltage on the graphene sheets. As with P6 we used the AIREBO
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potential for carbon to describe graphene [168]. The low energy structures were
then visually inspected and those that were unique were reoptimized with VASP.

The random structure search procedure found some interesting structures.
For example, the water molecules often form a hydrogen bonded network and
due to the confinement this typically leads to water layers with in-plane dipole,
see Fig. 4.7(a). Upon reoptimization with VASP this structure turned into one
identified before by Zhao and co-workers and called high density flat rhombic
monolayer ice (HD-fRMI) [169] shown in Fig. 4.7(b). For charged surfaces stable
structures often contained water molecules oriented upright, that is with water
molecule dipole perpendicular to the graphene layers. An example of such struc-
ture is shown in Fig. 4.7(c), this structure started from the same initial random
geometry as that in Fig. 4.7(a). Interestingly, upon reoptimisation with VASP
(in zero external field) we obtained a single layer ice XI, see Fig. 4.7(d). This
was the lowest energy structure found, its adsorption energy is −647 meV, for
comparison, the adsorption energy of the HD-fRMI structure is −618 meV.

Figure 4.7: Structures of water layer between graphene sheets obtained from
random structure search. Structures (a) and (c) started from the same initial
random geometry and only used different surface charges on graphene atoms in
forcefield optimization (zero and ±0.1 |e|, respectively). Structures (b) and (d)
were obtained after reoptimizations of (a) and (c) structures using VASP. Only
the bottom graphene layer is shown for clarity.

Setting the distance between graphene layers to 8 Å typically resulted in bi-
layer structures. In general, for bilayer all water molecules can accept and donate
two hydrogen bonds. This is more energetically favourable compared to directing
OH bonds to graphene layer, which occurs for the monolayers. The possibility
to form more hydrogen bonds in the double layer has two consequences: the low
energy bilayer structures tend to be more stable than the low energy monolayer
configurations and they also tend to have zero net dipole along the surface nor-
mal. The lowest energy structure identified was a bilayer ice with 4-, 6-, and
8-membered rings (Eads = −688 meV), see Fig. 4.8(a) and (b). Another low en-
ergy structure contained staggered chains of water molecules (Eads = −637 meV),
see Fig. 4.8(c) and (d).

To expand our set of tested structures we also used confined ice geometries
proposed by Chen et al. [155]. Some of them turned out to be lower in energy
compared to those found by the random structure search. A possible reason is
that we typically allowed only two water molecules in the cell to be positioned
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Figure 4.8: Random structures obtained for water between graphene layers. Ini-
tial conditions set a space of 8 Å between the layers and 12 water molecules in
total. Panels (a) and (b) show a top and side views of a double-layer “ring”
structure while a less stable “staggered” structure is shown in panels (c) and (d).

explicitly randomly, the positions of the other molecules were set automatically
by assuming periodicity of the structure. While we tried to generate structures
with a larger number of randomly placed molecules, we were only able to use
a limited number of such structures and they were not as stable as the those
obtained from the less flexible settings. Apart from the structures of Chen and
co-workers we also used the ice XI monolayer structure.

To compare the ferroelectric structures to structures with zero net dipole we
took the structures hex and cairo from Ref. [155] and one monolayer of ice XI.
The first two have zero net dipole while ice XI is ferroelectric. We then made
ferroelectric versions of the hex and cairo structures and a ice XI with no dipole
by manually turning the water molecules pointing to one graphene layer to point
to the other layer. The energies of these structures, after geometry optimisation
and with the PBE-D3BJ functional, are shown in Table 4.1. The ferroelectric
structures are less stable in all the cases, the differences are, however, very small,
only 3 meV for the ice XI and 5 meV for the hex phase. This means that there
is only a very small energy penalty for stability of the ferroelectric phase and it
is possible that it can stay stable once formed, as hinted from the experimental
data.

Table 4.1: Binding energies of water molecules in the graphene confined struc-
tures. The hex and Cairo structures are from Ref. [155] and have no net dipole
along surface normal, thus they are noted as anti-ferroelectric (anti-FE). A fer-
roelectric phase (FE) was constructed from them by rotating water molecules so
that all free hydrogen bonds point to the same graphene. Ice XI is FE and thus
an opposite procedure was performed to obtain the anti-FE phase.

Structure Type Eads (meV)
Hex anti-FE −663
Hex FE −658
Cairo anti-FE −663
Cairo FE −652
Ice XI monolayer FE −648
Ice XI monolayer anti-FE −651
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It is likely that the ferroelectric phases become more stable when the graphene
layers are attached to a voltage. In VASP we do not possess the methods to
change the potential on the graphene planes and we tried to simulate this process
by setting an external constant electrostatic field in the simulation cell. This
should induce a charge transfer between the graphene sheets and qualitatively
lead to the same effect as setting the charges directly, as done in the forcefield
calculations. The total energies of the hex and hex FE phases in different fields
are compared in Fig. 4.9 where one can see that the ferroelectric phase becomes
indeed more stable when the field is large enough. One can also note that the
curve is symmetric for the hex phase due to the symmetry of the geometry.

Figure 4.9: Energy of single hexagonal ice layer with zero net dipole and its fer-
roelectric modification confined between two graphene layers for different values
of external electrostatic field.

We now mention some of the results obtained using forcefield molecular dy-
namics that we used to assess how water behaves for different coverages and
temperatures. We set up a system with two graphene layers and different num-
bers of water molecules between them. The lateral cell size was about 100×100 Å2

and the number of water molecules between around 400 and 2000, which corre-
sponds to coverages between ≈ 0.4 and 2.1 monolayers. In total eleven different
numbers of water molecules were used. For these structures we run simulations
at temperatures 260, 300, 320, and 340 K and with surface charges 0.0, 0.001,
0.002, 0.005, 0.01, 0.02, 0.03, and 0.06 ±|e|. Charges were positive on one layer
and negative on the other. The initial structure was a layer taken from molecular
dynamics of water bulk with some of the molecules removed to obtain the chosen
number of waters.

We analyse the simulations using distance between graphene layers which
gives an information about thickness of water layer. Examples of the results are
shown in Fig. 4.10 in which the distances are averaged over cells with a side of
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approx. 5 Å. Note that there is no water between the sheets for values below
≈5 Å, a monolayer is present for distances around 6 Å. Each additional water
layer then adds around 2.5 Å to the interlayer distance.

First of all, and not unexpectedly, water molecules tend to condense together,
as shown in the upper panels that result from simulation with zero surface charges.
At low temperatures (top left panel) the monolayer is preserved while at higher
temperatures a water multilayer or a puddle is formed. However, one should be
cautious, the condensation would be quite sensitive to relative strength of the
adsorption energy of water molecule and the water-water interactions [170]. The
situation is markedly different when there is an electric field between the graphene
layers (bottom panels). For charges 0.01 |e| and larger a monolayer is formed with
some of the water molecules oriented in a way that one OH bond points in the
direction of the graphene surface normal. Therefore, the interaction with the
electrostatic field is sufficient to prevent the water molecules from clustering.

Figure 4.10: Average interlayer distance between two graphene sheets that contain
929 confined water molecules. Data are shown for two temperatures (260 and
320 K) and the graphene atoms have either zero charge or +0.01 |e| on one and
−0.01 |e| on the other graphene sheet.

Overall, we see that ferroelectric structures have similar stability to structures
with zero net dipole along the graphene normal. Moreover, they become more
stable when electric field is added, which we used either using an external electric
field in VASP or by setting partial charges on the carbon atoms. Both the DFT
and forcefield simulations then support the experimental observations that point
to a formation of a ferroelectric water ice layer between the graphene sheets. Fi-
nally, we point out that our simulations were performed with flexible graphene
sheets which then allow for a formation of water multilayers even when the cov-
erage is equal to one (i.e., monolayer). This is an effect sometimes neglected in
other studies.
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4.4 Conclusions
The two discussed examples show how simulation can help to understand ex-
perimental observations or support some of the hypotheses that explain the ob-
servations. The works also showed that there are systems where our theoretical
methods need to be further developed to be able to assess some of the properties
directly or more easily.

One of the clear issues was the inability to obtain long trajectories of molecu-
lar dynamics while taking into account polarisation or dynamic charge transfer,
e.g., within graphene or between substrate and graphene. A possible solution
would be to use computationally cheap electronic structure methods, such as
DFT functionals with small basis sets [171–173] or simpler methods [174–176].
Another possibility would be to use more flexible machine learned potentials that
would incorporate the prediction of partial charges on graphene. The importance
of these methods is likely to rise as there are many complex materials for which
we will need to understand the dynamics as well as the electronic structure.
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5. Precision

5.1 Introduction
One of the interesting things about computer simulations of molecules and ma-
terials is that our results are almost always wrong compared to reality. Wrong
in the sense that the values, primarily energies, that we obtain are not exact be-
cause of the range of approximations that appear when setting-up the model, in
the Hamiltonian, wavefunction, numerical set-up of the system, implementation,
data processing and so on, as illustrated in Fig. 5.1. Of course the fact that our
results are not exact is not necessarily bad by itself and it is something that we
are usually very well aware of. Moreover, understanding to what extent differ-
ent approximations affect the results is often a driving force for our research. In
Chapter 3 I focused on errors observed for different theoretical methods and in
this chapter I focus on understanding some of the errors introduced by numerical
set-up.

Figure 5.1: There are many steps we have to make when calculating properties
of some system before we get the answer. Each of the steps involves some ap-
proximations or requires us to choose some parameters. These choices will affect
the result.

A large deal of our work concerns understanding the accuracy of different
theoretical methods, that is how large deviations of the predicted properties (such
as binding energies) are caused by the approximations made to the Hamiltonian or
the wavefunction. An example is the accuracy of the random phase approximation
which I discussed in Chapter 3. To assess the accuracy, we take reference data
for some property and calculate the same property using the method that we
are testing. We then compare the results of the tested method to the reference
to see how good or bad the tested method is. That is, we seek to find out how
accurate the method is. However, the differences will usually not come only from
the approximations made for the Hamiltonian or wavefunction. There are other
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settings and approximations that can lead to deviations as well, such as the basis
set size or treatment of core electrons. Moreover, for calculations within periodic
boundary conditions (PBC) we have additional parameters such as the density
of k-points for solids or the size of simulation cell for isolated-like molecules.
The deviations caused by these settings from exact energy for given method are
usually described by the term precision. It is important to note that to assess
the accuracy of some method we need data that are highly precise, both for the
reference and the tested data sets, otherwise the comparison will not reflect the
true performance of the method.

There are more reasons why we should try to produce precise data. First of
all, if reference data are not precise, researchers using them to test their methods
will get imprecise and maybe misleading results. Fortunately, for methods such
as coupled clusters we are quite aware of the issues with basis-set convergence or
neglect of core correlation and higher-order correlation contributions [177, 178].
However, one can come across results where the tested method was run with
a less converged or imprecise set-up. This can lead to a misleading assessment
of the method’s accuracy. This is not ideal as users often quote results of such
benchmark studies and they can misjudge the quality of their results. Finally, if
imprecise set-up is used in a publication another researcher can have hard time
reproducing the results, say with a different code or even with the same code if
crucial details of the set-up were not published.

The situation with quality of set-up and thus precision of the results is espe-
cially worrying for hybrid density functional theory (DFT) or post-Hartree-Fock
(post-HF) methods within PBC. The reason is that their computational cost is
high so it is tempting to quickly produce results with reasonable parameters than
to perform computationally expensive convergence tests. However, in contrast
to semi-local DFT functionals the energy has typically a stronger dependence on
some of the parameters. Thus using reasonable parameters, say similar to those
used for semi-local functionals, can lead to substantial reduction of the precision.
To identify various issues related to the use of hybrid functionals and post-HF
methods we often use a strategy in which we calculate the same property by
two different codes and analyse the differences. An example of this approach was
published in P8 is discussed below. It involves calculation of second-order Møller-
Plesset (MP2) binding energies of molecular solids with two methods: many-body
expansion (MBE) and directly within PBC.

Since the start of my PhD I’ve been using the VASP code which uses so-
called projector-augmented wave (PAW) method to avoid explicit optimization
of core electrons [179, 180]. The PAW is one of the approximations that affect
the precision of our calculations. For studies such as diffusion of water on NaCl
surface [181] or salt dissolution [182] we used so-called “standard” PAWs which
lead to imprecisions of around 2 % for adsorption energies. Such loss of precision
was deemed acceptable as there was a large number of structures to optimize and
using more precise “hard” PAWs would substantially increase the computational
cost. However, in another study [20], where we studied the accuracy of the van der
Waals density functional (vdW-DF) [17] the use of the more precise hard PAWs
was absolutely necessary. This was because the imprecision of the standard PAWs
was close, in terms of relative error, to the inaccuracy of the vdW-DF scheme
and thus using less precise standard PAWs would not lead to a fair comparison,
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as discussed above. In recent years, we have analysed the errors of different PAW
data sets distributed with VASP in order to understand their origin. The first
results are presented in a currently submitted preprint [183] and discussed in
Subsection 5.3 of this Chapter.

5.2 Comparison of many-body expansion and
calculations within periodic boundary con-
ditions

There are many publications discussing the calculations of binding energies of
molecular solids. As mentioned before, one wouldn’t expect some precision is-
sues of the results if the computational method is some density functional theory
(DFT) approximation, such as dispersion corrected semi-local DFT functional [33,
34]. This is because for such methods the energy converges quickly with param-
eters such as the basis-set size or the number k-points. However, correlated or
post-HF methods have a slower convergence with the basis-set size and with the
density of the k-point grid [22, 23, 184, 185] and the numerical set-up deserves
more attention.

For post-HF methods, the binding energy is often obtained using many-body
expansion (MBE) and not within PBC [186–188]. The reasons are two-fold, first,
there are not many implementations of post-HF methods within PBC, especially
for coupled clusters methods, and, second, the computational cost for a single
energy evaluation is larger within PBC than when MBE is used. Nevertheless,
both the MBE and PBC approaches should yield identical results if converged
with all the parameters. In P8 we used both MBE and PBC calculations to
obtain MP2 binding energies of four molecular solids and tried to find out how
close agreement one can obtain for the results in practice. Moreover, we asked
which of the calculations are easier to perform in practice and what are the main
barriers for getting a close agreement between the results.

The systems that we considered in P8 were methane, carbon dioxide, am-
monia, and methanol, their structures are shown in Fig. 5.2. The reasons for
choosing these systems were that the molecules as well as the unit cells are small,
which facilitates the calculations using post-HF methods and large basis sets, and
they have different importance of electrostatic interactions – small for methane
and large for methanol.

In P8 we were able to obtain PBC- and MBE-based binding energies within
0.1 kJ/mol or better for all the systems. This was probably the first time such
an agreement for binding energy of molecular solid was obtained for a post-HF
method, for HF such high precision was demonstrated before, e.g., for benzene
in Ref. [189]. During the five or so years that took between the start of the
work and the publication we identified several problems and issues, most of them
are discussed in P8. Here, I comment on some of the interesting or important
observations.

One of the problems that one encounters when calculating HF and post-
HF energies within PBC is their slow convergence with the k-point grid size.
This is caused by so-called Coulomb singularity for Γ-point which occurs due
to infinite value of some integrals [22, 190]. For HF methods the problem can
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Figure 5.2: Unit cells (including molecules) of systems considered for calculations
in P8: methane, carbon dioxide, ammonia, and methanol.

be reduced by using a real-space cut-off for the Coulomb interaction [191, 192].
When performing post-HF calculations in VASP, the magnitude of the error is
reduced by approximate calculation of the relevant terms [22, 47]. However, the
result of the post-HF calculation will also depend on whether the Coulomb cut-off
was used in the HF calculation or not.

In Fig. 5.3 we show two sets of MP2 correlation energies of solid methanol as
obtained by VASP for different k-point sets. The sets only differ in the way the
HF calculation was done, no Coulomb cut-off was used for the first set (black +)
while the Coulomb interaction was cut to obtain the second set of data (green ×).
Note that we did not obtain the data for the 3×3×2 k-point grid for the first set of
MP2 energies due to their very high computational cost. Clearly, the convergence
is much worse for the first set of data and extrapolation would be required to
obtain converged value. For the second set of data, the difference between the
values obtained with 2×2×1 and 3×3×2 k-point grids is less than 0.05 kJ/mol
(per unit cell) so already the first value could be considered converged. Clearly
if the Coulomb cut-off scheme is not used for HF, the states are farther from
convergence leading to errors for MP2 correlation energies. Note that one can
expect similar issue for random-phase approximation (RPA) energies based on
states obtained by global hybrid DFT functionals or HF states. In contrast,
the problem doesn’t appear for RPA based on pure DFT states as they are not
affected by the Coulomb singularity for exchange.

We now discuss some of the observations that we made for the MBE calcu-
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Figure 5.3: MP2 correlation energy of methanol solid as a function of k-point set.
The energy was obtained for two sets of HF states, default settings were used for
the first and the Coulomb cut-off technique was used for the second.

lations. The standard way to obtain the many-body energies within MBE is to
introduce a cut-off distance and sum all the contributions within the cut-off. To
understand if the many-body energies are converged with the cut-off, one usually
plots them as a function of the cut-off distance. The red line in Fig. 5.4 is an ex-
ample of such dependence for the two-body HF energy of methanol crystal. Note
that not all contributions are included above a cut-off distance of 30 Å. This
is because we sum contributions of all the dimers from given number of shells
around the unit cell with the reference molecule.1 The two-body energy shows
large fluctuations with the cut-off distance making it difficult to find a converged
value.

The reason for the oscillations in the two-body energy of methanol is that in
the crystal the molecules form two chains of hydrogen bonds, some point in one
direction and other chains point in the opposite direction. This can be seen in
Fig. 5.2(d) and it is schematically illustrated in the left panel of Fig. 5.5 with
the reference molecule highlighted with a green colour. In Fig. 5.5 we show the
individual molecules as arrows as they have a dipole moment. When the cut-off
distance is increased, there will be some dimers with positive contributions and
some with negative energies and generally they will not sum to zero. In fact,
for some distances one observes more positive contributions and for other more
negative contributions due to the structure of the crystal. This then causes the

1To obtain the two-body contributions we consider all dimers between the reference molecule
and all molecules contained in a set of unit cells. All cells within some shell around the unit
cell are considered. The shells are defined in a way that the unit cell with reference molecule
is shell 0, all the 26 unit cells around it form shell 1, the 98 unit cells around shell 1 cells form
shell 2 and so on.
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Figure 5.4: HF two body energy of methanol as a function of radial cut-off
distance using standard summation and a modified “box” summation in which
contributions from all monomers in one unit cell are considered at once.

oscillations in the curve showing the two-body energy as a function of the cut-off
distance. However, we see that the unit cells don’t have a net dipole moment. It is
therefore beneficial to bundle all the contributions from a given unit cell together
and add them at one cut-off, typically the lowest one. For methanol this means
that instead of accumulating dipole-dipole contributions we add together dipole-
quadrupole interactions. The convergence of this “cell” summation is shown by
the green dashed line in Fig. 5.4. One can see that the oscillations are significantly
reduced compared to the standard distance based cut-off summation.

The faster convergence of the box summation makes one think if the summa-
tion couldn’t be simplified further by adding even more contributions at once.
For example, we can add all the contributions from one shell of cells at the same
time. The values can be then easily listed in a table which makes it convenient
to assess their convergence as well as uncover numerical issues. This is illustrated
for the HF and MP2 two-body energies of methanol in Table 5.1. One can see
that the dominant contributions originate from the cells in the zeroth and first
shell and they are below 0.1 kJ/mol from the third shell onwards. Interestingly,
there are no oscillations and the signs are always negative. With such tables we
also showed in P8 that smaller basis sets are sufficient when obtaining contribu-
tions from the more distant shells. Overall, for molecules with a dipole adding
the two-body energies from shells 0 to 2 should yield more precise values than
using a distance cut-off and the same number of molecules.

We observed the largest benefits of the cell summation for the three-body
interactions. These are more demanding to calculate than the two-body energies
and can also show oscillations with the cut-off distance. A comparison of standard
summation and the cell summation is shown in Fig. 5.6 for crystal of CO2. For
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Figure 5.5: A sketch of the structure of methanol crystal. Each unit cell contains
two molecules with OH bonds pointing in one direction and two in the opposite
direction. The reference molecule used in many-body expansion (green arrow)
then necessarily belongs to one of the two groups. Thus for two-body terms the
reference molecule interacts with molecules that have dipoles oriented in the same
direction and with molecules with dipoles in (approximately) the opposite direc-
tion. The different distance at which these contributions occur and their opposite
sign leads to oscillations in the distance convergence of the two-body energy. As
each unit cell has zero dipole it is advantageous to sum all the contributions from
one unit cell at once. This modified “cell” summation is illustrated in the right
panel for three-body interactions. All the contributions to the three-body energy
involving one molecule from each of the highlighted cells would be added at once,
typically when the first contribution from these cells would be encountered.

the standard summations the oscillations are rather small but clearly visible even
though isolated CO2 molecule doesn’t have a dipole but only a quadrupole. The
oscillations are substantially reduced with the cell summation, both for the HF
and MP2 energies.

The data shown in Fig. 5.6 highlight another issue – problems with numerical
errors [193]. One can see that the curve for MP2-F12 is clearly going to negative
values above a cut-off distance of ≈ 30 Å. There are several settings that we
identified that can lead to such issues: too loose convergence settings for HF
orbitals or the total energy, small fitting basis set used in the F12 correction, or
large orbital basis sets. There is only one recommendation that we can make
and that is always look at your data. Indeed, the final value obtained from data
shown in Fig. 5.6 would look perfectly fine, but the graph uncovers the issues.

The benefits of using cell summation are smaller for the four-body terms.
While the standard distance cut-off summation leads to oscillations, the cell sum-
mation increases substantially the number of necessary calculations. As for four-
body terms we consider the reference molecule and three other unit cells, up-to
64 possible tetramers would need to be added in one contribution. This increases
the numerical demands as well as uncertainties due to finite numerical precision
and we didn’t use the cell summation for tetramers.

In our study we obtained the MBE contributions using rather large distance
cut-offs, especially for the dimers and trimers. This uncovered some numerical
problems of the calculations and results. However, a large number of calculations
should not be necessary in principle as one should be able to fit the results to
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Table 5.1: Contributions to the two body HF and MP2 correlation energy of
methanol from different shells of unit cells. Data in kJ/mol and for the AVTZ
basis set.

Shell No. mol. HF MP2
0 3 −6.11 −6.37
1 104 −3.56 −27.72
2 392 −0.61 −0.57
3 872 −0.06 −0.09
4 1544 −0.02 −0.02
5 2408 −0.01 −0.01
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Figure 5.6: Comparison of distance summation and “cell” summation for calcu-
lating three-body HF and MP2 energies of carbon dioxide. The “cell” summation
includes additional terms and leads to a smoother convergence with the cut-off
distance. The CABS and F12 corrections were used for HF and MP2, respectively,
to speed up the basis-set convergence.

some simple physical model when the distances between molecules are large and
the molecules are well separated [194, 195]. By large we mean that the molecules
are not nearest neighbours or, possibly, second nearest neighbours. For the sys-
tems considered here this corresponds to distances above approximately 7 Å. For
these separations, the interactions are dominated by the leading terms: dipole-
dipole for electrostatics and −C6/r6 for dispersion, possibly with an anisotropic
C6 coefficient. One can therefore fit a model describing these two interactions to
obtain the contributions at large distances. However, dipole-dipole and dispersion
interactions with C6 term are only pairwise and thus will give a zero for three-
and higher-body contributions. Using a model for the two-body terms is of only a
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limited value because the two-body energies typically require less computational
resources than the three- or four-body terms. The minimum requirement for a
model to describe three- and four-body contributions of well separated molecules
at the HF level is to include their polarisability. For correlation one could use in-
teracting quantum oscillator model, as used by Tkatchenko and co-workers in the
context of DFT dispersion corrections [134] or the Axilrod-Teller-Muto term [52,
53, 130].

In P8 we used a simple model based on point charges and point polarisability
to fit the data for three-body interactions of methanol as it was difficult to obtain a
converged value even with the cell summation. The fit is shown Fig. 5.7 as the red
line with the original data shown with a black line. The fit is not very accurate for
small cut-offs where the contributions come mostly from trimers with at least two
molecules in contact. In contrast, for large cut-offs where the number of trimers
with molecules in close contact is small, there is almost a constant off-set between
the fit and the original data. To simplify the comparison we also show a line where
the fit was shifted to be close to the original data for large distances, this is shown
with green line. One can see that the agreement between the original data and
the fit is very satisfactory. With the fitted forcefield we could easily estimate the
three-body energy for much larger distance cut-off. The estimated HF energies
for the larger cut-off differ by only 0.04 kJ/mol from the value obtained for the
cut-off used for the explicit HF calculations. This change is much smaller than
our estimated uncertainty of the HF energy, equal to 0.3 kJ/mol. Note that we
calculate the uncertainty as one half of the difference between the largest and
the smallest value of the three-body energy on an interval of last 10 Å below the
distance cut-off.

Overall, we found that one can obtain a close agreement between HF and MP2
binding energies obtained within PBC and using MBE with differences around
0.1 kJ/mol. From the users’ perspective the biggest gain results from removing
or reducing the dependence of energy on different parameters. For example, by
using Coulomb real-space cut-off to reduce k-point dependence of HF or MP2
calculations within PBC or by explicit correlation (F12) to reduce basis-set size
dependence. However, some of these approaches might involve approximations
that affect the precision of the result and one needs to be careful and critically
test the obtained values. Moreover, relying on default parameters is also not
recommended and one should also test settings for convergence criteria or integral
screening thresholds. The default parameters might be perfectly fine for a single
calculation but might not be enough for MBE where a large number of small
values are added together.

Finally, our recommendation is to use the Coulomb cut-off technique for pe-
riodic calculations, extrapolate binding energies first with k-points (if needed)
and then with basis-set cut-off. Within MBE, use shell contributions instead of
a radial cut-off to obtain two-body energies and for three-body energies use box
summation both for the mean-field and correlation contributions. The four-body
terms are prone to numerical errors but, as discussed in Chapter 3, can be ob-
tained using small basis sets. The basis-set size can be also reduced for trimer or
dimers with separated molecules.
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Figure 5.7: Convergence of Hartree-Fock three-body energy of methanol with dis-
tance cut-off (black) together with three-body energy obtained from a polarizable
forcefield fitted to reproduce the three-body interaction (red). Green line shows
the fitted data shifted to lie close to the Hartree-Fock results.

5.3 Precision of Projector-augmented wave po-
tentials

We mostly rely on the code VASP for calculations within periodic boundary
conditions. VASP implements the projector-augmented wave (PAW) method to
avoid explicit optimization of core electrons and thus to speed-up the calculations.
One of benefits of VASP is the availability of well tested PAW data sets (pseu-
dopotentials, partial waves, and other data) for essentially all of the elements of
the periodic table. The PAW method and the resulting PAW data sets are also
considered to be quite transferable, that is they should achieve similar precision in
different chemical environments. It is therefore not surprising that VASP is often
used to study molecular crystals or molecular adsorption on solid surfaces [196].
However, when testing the accuracy of, say, different DFT approximations for the
prediction of intermolecular binding energies or binding energies of solids we want
to reach a precision of around one per cent or better. At the same time inter-
molecular interactions are several orders of magnitude smaller than total energies
or even than energies of covalent bonds and thus are very sensitive to the various
computational settings. Therefore, one needs to be careful even when using PAW
potentials for intermolecular interactions so as not to introduce significant errors
into the results. Together with my post-doc Dr. Yourdkhani we assessed the
precision of the PAW data supplied with VASP for intermolecular interactions
and a manuscript about the findings is available on arXiv and under review at
the time of writing [183]. Here I highlight some of the main findings.
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There are several PAW data sets distributed with the VASP code which in
essence differ in the precision they offer. For light main group elements (first and
second period) one can use so-called Soft, Standard, and Hard PAWs, the precision
of which increases from Soft to Hard.2 The Standard PAWs are the most widely
used but we have often found that in many situations their precision for describing
intermolecular binding energies is not sufficient enough. For example, for water
dimer Standard PAW leads to an error in binding energy of around 5 meV. This
might not seem like a lot, but the binding energy is around −215 meV for the
PBE functional, so the relative error is slightly above 2 %. As many dispersion
corrected DFT functionals claim to have an average absolute error of 10 to 15 meV
the PAW error is, in fact, comparable to the error of the method [20].

To understand the error of the PAW potentials we first used the S22 [105] and
S66 [106] data sets and calculated the difference (error) between binding energies
predicted for a given PAW potential and an all-electron reference obtained using
a large aug-cc-pV5Z basis set. The S22 and S66 data sets contain dimers bound
mostly by hydrogen bonds or electrostatics, dispersion, or a mixture of different
interactions. The results can thus show the bonding situations for which the
PAW potentials lead to the largest and the smallest errors. From the results for
the S22 set, shown in Fig. 5.8, we can observe that the errors are marginal for
systems with dominant dispersion interactions (dimers 8 to 11), this holds even
for the least precise Soft PAW. In contrast, the errors are noticeable even for
the Hard PAW for hydrogen bonded systems. This and results obtained for S66
is consistent with previous observations which also showed the largest errors for
hydrogen bonded systems [197].

Deeper analysis of the results shows that the error clearly correlates with
importance of electrostatic interactions for the binding energy. There are not
many options how the use of the PAW method could change the dimer interaction
energy, the difference needs to be caused by errors in the electron density. We
therefore obtained approximate all-electron densities for the different PAWs using
the tag LAECHG=.TRUE. in VASP input. We then used the density obtained
with Hard PAW as the reference and calculated differences for Standard and
Soft PAWs. An example of this density error is shown in Fig. 5.9 for water-
pyridine dimer, both for the Standard PAW (top) and the Soft PAW (bottom).
As expected, the density errors are larger for the Soft PAW. Moreover, one can
see that the errors are mostly localised around each atom and appear to be larger
for oxygen and nitrogen than for carbon and hydrogen. Importantly, using less
precise PAWs doesn’t cause a considerable charge transfer between the atoms,
even though we are working on a more detailed numerical assessment of this
effect. For each atom the density errors can be approximately described as a
sum of p-like functions, each lying in a direction of one covalent bond. As a
consequence, the total density error is large and dipole-like for oxygen in water.
In contrast, for carbons in uracil it resembles more an f orbital, see Fig. 5.9.

The understanding that the PAW potentials lead to density errors allow to
develop several ways that correct either the density error or the subsequent error
of the binding energy. One of the simple such models that we proposed uses the

2The names originate from pseudopotentials and correspond to the plane-wave basis-set cut-
off that is required to obtain converged states. The “harder” the pseudopotential, the larger
the cut-off needs to be.
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Figure 5.8: Errors of interaction energies obtained for different PAW potentials
supplied with VASP for the S22 data set [105].

fact that the errors are dipole-like and large for oxygen and nitrogen. Therefore,
we use a point dipole to represent the density error and put it on all oxygen atoms
and those nitrogen atoms that don’t have three neighbouring atoms lying in the
same plane as the nitrogen. The dipoles then interact electrostatically with the
rest of the system which we represent by partial charges obtained from iterative
Hirshfeld partitioning [21, 198, 199]. This model leads to the following estimate
of the error in the interaction energy of a dimer

∆Edipole =
∑
i∈A

∑
j∈B

[
µi · rijqj

r3
ij

+ µj · rijqi

r3
ij

+ µi · µj

r3
ij

− 3(µi · rij)(µj · rij)
r5

ij

]
,

(5.1)
where A and B are the two monomers and the sums go over all the atoms on each
of the monomers, qi and µi are partial charges and dipoles assigned to atom i,
respectively. In Eq. 5.1 the first two terms represent the interaction of the density
error (dipole) with the density (point charges), the last two terms give the dipole-
dipole interaction between the density errors. The magnitudes of the dipoles
(that is the dipoles of the density errors) can be fitted but we calculated them
from errors of dipoles of isolated water, formaldehyde, and ammonia molecules.
We used water to obtain error for oxygen with two bonds and formaldehyde for
oxygen with a single oxygen bond.

In Fig. 5.10 we show an example of the performance of the correction for bind-
ing curve of water-ammonia dimer. The structure is such that the water oxygen
is hydrogen bond acceptor. One can see that the simple correction substantially
decreases the errors. The predictions obtained with corrected Soft PAW reach
the quality of Standard PAW for almost all of the distances and actually surpass
it above 3 Å. Standard PAW is then within 1 meV from the Hard PAW for O· · · H
distances above 2.4 Å while without correction the error is still 2.5 meV for this
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Figure 5.9: Approximate all electron density difference for Standard and Hard
PAWs (top) and Soft and Hard PAWs (bottom) obtained for water-pyridine dimer.
The isosurfaces are drawn at values of 0.02 Å−3 (blue) and −0.02 Å−3 (red).

distance. Interestingly, the cancellation is not perfect, even though we use the
dipole errors for ammonia and water. This is likely due to change of the density
errors due to polarization or higher-order contributions.

Apart from the long-range error in electrostatic interaction we also observe
an error for short separations which has an exponential decay. This error is likely
to affect atomisation energies but so far we have not tested models to correct for
it. Moreover, our dipole-point charge model of Eq. 5.1 is very simple and there
are many ways how it can be improved, such as adding higher-order moments. If
an accurate correction is developed, it would allow one to use the Soft PAWs or
soft pseudopotentials to perform routine calculations at reduced computational
cost over Standard or Hard PAWs. Such combination would be very helpful in
situations in which the energy of a large number of systems needs to be calculated,
such as for crystal structure prediction, for systems studied in Chapter 4 or to
run molecular dynamics of complex materials [171].

From a broader perspective, we showed that interaction energies of molecular
dimers are very helpful to understand errors of PAW data sets or pseudopotentials.
So far, other tests of PAWs or pseudopotentials focused more on other than non-
covalent interactions and used atomic solids [200, 201] or properties of small
molecules [202]. For solids, one can assess the magnitude of deviation from a
reference binding curve and make a corresponding statement about the quality
of the tested PAW or pseudopotential. However, it is difficult to say more about
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Figure 5.10: Binding curve of water-ammonia dimer obtained for different PAW
potentials. The results of Standard and Soft PAWs were corrected using Eq. 5.1
with iterative Hirshfeld charges employed.

the cause of the deviation or to perform additional analysis on the atomic solid.
Reasons for this are the high symmetry of the solid and the very limited number
of structures that can be analysed. The situation differs for molecular dimers
where we can freely change the orientation of the molecules and modify their
composition so that the number of data that can be analysed is much larger.
Moreover, the relation of the error to the electron density gives the developers a
clear measure how to test or improve their PAW data sets or pseudopotentials. In
this regard, our initial work focused on VASP with which we have a substantial
experience, but we are currently testing data sets within other codes as well.

5.4 Conclusions
I presented two examples of our work that focused on analysis of precision of
binding energies of molecular solids and dimers. While precision of results doesn’t
look like an exciting topic it’s crucial to consider it and analyse it in the phase of
development of novel approaches. I’d say that for calculations of highly accurate
binding energies of molecular solids we are still in this phase. Indeed, the precise
calculation of binding energy of benzene was published only a decade ago [189]
and diffusion Monte Carlo with low uncertainties for several systems appeared
around five years ago [91]. Within this time, there has been a substantial progress
in developing coupled clusters methods for periodic materials which also includes
considerable analysis of how various settings affect the result [203–205]. The
gained understanding will hopefully establish reliable parameters and set-ups
which will help researchers to obtain results with minimised uncertainties.
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6. Outlook
In this thesis I discussed results obtained within two topics of our research: tests
of accuracy and precision of quantum mechanical methods and understanding
of experimental observations via computational techniques. The results illustrate
the set of methods that we can use and that we are, in some cases, also developing.

The tests of accuracy of the random phase approximation (RPA) presented in
Chapter 3 showed that accurate binding energies are obtained when states from
the Perdew-Burke-Ernzerhof (PBE) [6] functional and singles corrections [42, 81]
are used. We also showed that there are substantial error cancellations between
different many-body orders that lead to the good results. However, one should
keep in mind that the errors and the extent of error cancellation is much smaller
for PBE-based RPA than for PBE itself. In this light, the results are probably
expectable, PBE-based RPA is very good but not perfect. In the end, RPA is
an approximate method and the simplifications have to appear somewhere. With
the gained knowledge, what are the systems and properties that we should look
next?

One of the areas where RPA could be useful, even with the PBE input, is
the description of energy differences between polymorphs or phases of molecular
crystals. We have already shown that RPA with or without the singles correc-
tions describes the energy differences between ice phases well [91, 185]. The
reason is that the RPA errors for the many-body terms are likely similar for the
different structures and they thus mostly cancel when calculating energy differ-
ences. Concerning polymorphs, we have so far tested RPA on one system in
the most recent test on crystal structure prediction. The RPA results were good
but qualitatively comparable to results obtained with dispersion corrected density
functional theory (DFT-D) methods. Nevertheless, we plan to test RPA for other
sets of polymorphs to understand more the quality of its predictions and possible
ways to improve it. One such way would be to replace monomer terms with a
higher-level scheme. This scheme is useful when the lower level method predicts
incorrectly energies of different monomer conformations that appear in the dif-
ferent polymorphs. The method was shown to be quite effective for DFT-based
approaches [206, 207].

Our work on the many-body expansion (MBE) of RPA was motivated by
the possibility to use it within the correction scheme. That is, we would like to
correct the periodic RPA binding energy with high level coupled clusters terms in
order to obtain reference binding energies. We found that RPA based on states
from PBE and other semi-local functionals is less suitable for this task due to a
slow convergence of three-body corrections and their substantial dependence on
the basis-set size. The situation improves when Fock (exact) exchange is used in
the mean-field calculation, that is when RPA is evaluated on states calculated by
hybrid functionals or on Hartree-Fock (HF) states. Therefore, in the subsequent
work we want to follow this direction for the development of the correction scheme.

The number of calculations that one needs to do within MBE is very large
and can be time consuming. We are thus testing how well can be the different
contributions calculated by simple models that are based, e.g., on point charges
or multipole expansion. These models also allow us to understand the physics
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that governs the behaviour of the different methods. In this regard, the three-
body errors of RPA are rather intriguing, it’d be very useful to develop a model
for the errors that we observed for the short hydrocarbons in P5. Finally, we
found it very difficult to converge the four-body terms. An accurate model for
these interactions would help to understand how far we were from the converged
values in P5 and, especially, for methanol and ammonia in P8.

Our work on accuracy of theoretical methods lead us to recognise the impor-
tance of precision of the calculated properties [183]. As part of precision analysis
we identified issues that appear when using less hard PAW data sets to calculate
interaction energies. In the future, we want to develop a more general correction
for these errors that would allow researchers to improve the precision of their cal-
culations or reduce their computational cost. Our plan is to expand our data set
with reference binding curves of molecular dimers to cover more elements, assess
the predictions of more computational packages, and make it widely available,
in a similar way to what’s available for atomic solids [208, 209]. Hopefully, this
could become a very useful resource for users interested in calculation of cohesive
properties of molecular clusters, solids, and other systems.

Overall, I hope that within this thesis I demonstrated our contributions to
the development of quantum mechanical methods and to understanding of their
reliability as well as illustrated some of the possible applications to analyse ex-
perimental observations.
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(178) Řezáč, J.; Dubecký, M.; Jurečka, P.; Hobza, P. Extensions and applica-
tions of the A24 data set of accurate interaction energies. Physical Chem-
istry Chemical Physics 2015, 17, 19268–19277.
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