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1 Introduction

Motile active matter is a vibrant multidisciplinary field that brings together physicists,
biologists, and even social engineers. It uses tools from theoretical and experimental
physics to understand the dynamics of self-propelling particles in various environments,
interactions among them, and emergent behaviors in their large assemblies4–7. As shown
in Figure 1.1, systems of interest range from self-propelled colloids8–10, over motile cells,
filaments, tissues and bacteria11,12, flocking insects13–15 and birds16, and schools of fish17

to the coordinate motion of ants18 and the crowding of pedestrians19.
Active matter systems at all scales share three characteristic features. First, they are

driven out of equilibrium on the level of single particles, which irreversibly transform
some fuel into a directed motion. The nonequilibrium state is thus sustained by the

~ 10-6 – 10-3 m ~ 10-4 – 10-1 m ~ 10-2 m and larger

Kingdom Animalia (mensaforkids.org)

(Israel Defense Forces)

PTI

Figure 1.1: Motile active matter. Examples of natural (top) and artificial (bottom) active
matter systems across length scales. Except for the chemically propelled Janus
particles1, the optically steered symmetric active particles2 (both bottom left), and
the ‘vibrobots’3 (bottom middle), the sources are given inside the individual figures.
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inflow of the fuel or food into the system, rather than, e.g., heating and cooling the
walls as in a boundary-driven nonequilibrium system. The second important ingredi-
ent of active matter is that its effective dynamics can disobey standard thermodynamic
limitations, such as the fluctuation-dissipation theorem, or even more universal symme-
tries, such as reciprocity. This is because the ‘social’ or ‘feedback’ interactions result
from a complicated coarsegraining of the microscopic degrees of freedom far from ther-
modynamic equilibrium. The third characteristic feature of active matter is that the
interactions often involve a time delay. Intuitively, these delays result from limited
speeds of information transfer between and inside the individuals, decision-making, and
body transformation of the individuals. Mathematically, the delays derive from the
coarsegraining of time-local dynamics of the microscopic degrees of freedom.

The ultimate goal of the field of active matter is to provide an understanding of
evolutionary mechanisms which lead to the variety of behaviors observed in nature.
A technical part of this task is to theoretically describe behaviors observed in nature
by developing suitable generalizations of the tools of equilibrium statistical physics.
Another more practical objective is to create well-controlled (not necessarily artificial)
counterparts of natural active particles, able to, e.g., perform medical tasks on the level
of individual cells20 or to form distributed collectively communicating sensorial networks
on the macroscale21.

This habilitation thesis is divided into two major parts summarizing the author’s con-
tributions to understanding the dynamics and energetics (or thermodynamics) of active
matter. Chapter 2 investigates how to utilize the activity of single active particles or
their ensembles to perform useful work or induce transport. Chapter 3 is devoted to
the study of the effects of time-delayed interactions in active matter systems. Both these
chapters are conceived as overviews of the corresponding parts of active matter research
with a summary of the author’s contributions, reprinted in the Chapter 7 of this thesis
in the same order in which they appear in the text.

Most of the papers discussed in the thesis were written or conceived during the post-
doctoral stay of the author in the group of Prof. Klaus Kroy at Uni. Leipzig. Therefore,
up to a few exceptions, the presented work aims to describe overdamped active particles,
such as bacteria or driven colloids, which are investigated experimentally in the group of
Prof. Frank Cichos from Uni. Leipzig. The thesis contains only works where the author’s
contribution was significant. With a single exception, it does not contain the authors’
contributions to the study of noise-induced coherence22,23, maximum efficiency at fixed
power24–28, unstable stochastic systems29–32, classical Brownian ratchets29–32, optimal
driving of stochastic heat engines33,34, and work fluctuations in small systems35–46.



2 Active matter engines

Microscopic active particles such as artificial active colloids or bacteria have been em-
ployed to perform useful work in two conceptually different ways. The first one, exem-
plified in Figure 2.1a, aims to treat the system of active particles as a non-equilibrium
heat bath and to transform the disordered energy from this bath into useful work via
so-called active Brownian heat engines47,51. The second approach, depicted in Figure
2.1b-d, aims to harvest the energy of the active motion more directly by rectifying the

c)

b)

a)

d)

Figure 2.1: Extracting energy from active matter. Panel a) shows a colloidal particle
confined by a harmonic potential in an active bath composed of living bacteria in
water47. In this setup, energy is extracted from the active bath by varying in time
the bath’s activity (e.g., by reducing food content in the solvent) and the stiffness of
the potential. The remaining panels show various ways to rectify (or directionalize)
erratic motion of bacteria. In panel b), the bacteria are trapped between a cog
wheel’s asymmetric tooth to rotate it48. In panel c), a similar asymmetry of channel
walls induces a directed (average) motion of bacteria49. Panel d) shows how to
create a likewise directed motion of active particles by making the particle speed
position-dependent instead of using potentials or walls50.
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direction of self-propulsion of otherwise randomly turning active Brownian particles via
obstacles48,49 or other ratchet-like mechanisms50.

Of course, in both these cases, the energy of the autonomous motion of the active
particles is transformed into work. Based on the mechanism underlying the autonomous
motion, this energy conversion can be identified as heat-to-work conversion (for ther-
mophoretically propelled swimmers) or as work-to-work conversion (for chemically pro-
pelled swimmers). The conceptual distinction between active heat engines and other
engines is thus motivated rather theoretically than practically. The energy extracted
from active matter systems can be identified as heat only in special cases when one can
identify an effective temperature of an equilibrium bath that would yield the same en-
gine’s performance, which allows attributing the energy flux from the bath with a valid
(second law) entropy production. The effective temperature then replaces thermody-
namic temperature in standard upper bounds on the engine performance, such as the
Carnot’s efficiency, which still limit active heat engines’ performance. When the effective

Engine
Active
matter
system

Equilibrium
heat

reservoir

Work
reservoir

q̇neq

q̇eq
q̇hk

q̇hk + q̇neq

ẇ

Figure 2.2: Energy fluxes during energy extraction from active matter. An engine
transforming the heat flux q̇ = q̇neq + q̇eq from a non-equilibrium active matter
system (neq) and perhaps also an equilibrium (eq) heat reservoir into usable power
ẇ. The corresponding energy fluxes relevant for the engine’s operation are depicted
by arrows. The dashed arrow depicts the housekeeping heat flux, q̇hk, flowing from
the active bath to the infinite equilibrium reservoir, which prevents the active bath
from overheating. This energy flux and also q̇neq are sustained by the energy influx
q̇hk+q̇neq into the non-equilibrium bath, which keeps it in a non-equilibrium “active”
steady state. Template for the figure was taken from Ref.51 (Publication 7.1).



temperature does not exist, the active engines’ efficiency is limited only by the trivial
first law bound on the efficiency of work-to-work conversion, i.e., by one.

Figure 2.2 shows a diagram of energy fluxes involved in any energy extraction from
an active matter system in a steady state. To stay active or, in other words, alive, the
active matter system consumes per unit time the amount of energy q̇hk + q̇neq. If no
energy is extracted from the active matter system, all this power has to be dissipated
in a heat reservoir (or heat sink). Otherwise, the active matter system would overheat.
Assuming that the power q̇neq is extracted from the active matter system, the power
delivered to the heat sink is q̇hk. The energy transferred into the engine from the active
matter system is thus q̇neq and, in its operation, the engine in general also dissipates a
heat flux q̇eq into the equilibrium reservoir. In majority of active matter engines, the
energy influx q̇neq depends just on the dynamics of the individual active particles, not
on the type of their self-propelling mechanism. In particular, q̇neq is usually independent
of the efficiency with which the engines in the individual active particles transform the
overall energy influx q̇hk + q̇neq into their activity. Hence, it is reasonable to characterise
the engine performance by the efficiency η = ẇ/q̇neq of conversion of q̇neq into the power
ẇ, rather than the overall efficiency ẇ/(q̇neq+q̇hk) of the engine and active matter system.
The latter efficiency is strongly system-dependent and usually very close to 0. For an
active heat engine, η is in general limited by the Carnot’s efficiency ηC = 1 − T eff

c /T eff
h

with largest and smallest values of the effective temperature T eff
c and T eff

h experienced
by the engine. For an active engine, where an effective temperature cannot be defined,
η < 1.

In the rest of this section, I first briefly introduce periodically driven active heat engines
and review our results for them in Section 2.1. Next, in Section 2.2, I highlight
some of our general results, which hold both for active and standard periodically driven
(heat) engines. Finally, in Section 2.3, I present our results on active ratchets that
autonomously rectify the motion of active particles.

2.1 Active heat engines (Refs.51–56)

As described above, the main theoretical difficulty in deciding whether an active engine
can be treated as an active heat engine, and thus one can assess its performance using
results valid for heat engines in contact with equilibrium heat reservoirs, is to determine
if an effective temperature can describe the active bath. Motivated by the experimental
realization of the ‘Bacteria heat engine’47, depicted in Figure 2.1a, and the claims
made in this work that its efficiency can surpass the second law upper bound on the



efficiency of the corresponding thermodynamic (Stirling) cycle, which is conceptually an
erroneous statement as that would mean that the engine investigated in this work is not
a heat engine ∗, my colleagues and I wrote two papers51,56 studying when the effective
temperature in general exists.

2.1.1 Effective temperature in overdamped active heat engines (Ref.51)

In Publication 7.151 we have shown that effective temperature in general exists for
engines described by Hamiltonian of the form

H = k(t)f(x), (2.1)

where k(t) is an externally controlled parameter periodically varied in time, x denotes
degrees of freedom of the engine, and f stands for a confining potential (such that the
equilibrium partition function

∫
dx exp(−βH) is finite for any positive inverse tempera-

ture β). The Hamiltonian describes the engine part of the compound bath-engine system;
the existence of the effective temperature is, thus, in this case, independent of the details
of the bath and the bath-engine coupling. Furthermore, this result is valid regardless
of the details of the dynamics, which can thus be arbitrary, including non-Markovian,
quantum, or other dynamics (even though the calculation of the effective temperature
might sometimes be challenging). It thus proves that the efficiency analysis presented
in Ref.47 is unavoidably wrong not only conceptually but also numerically as the corre-
sponding Hamiltonian H = k(t)(x2 + y2) is of the form (2.1) and thus there certainly
exists an effective temperature that allows limiting the efficiency of the engine below the
ultimate second law bound. This illustrates how our result can serve as a simple sanity
check of measured or calculated efficiencies of active heat engines.

To understand why an effective temperature can be always found for Hamiltonians
of the form (2.1) but not for more general ones, e.g., containing also a kinetic energy
mp2/2, it is enough to write down expressions for average heat and work fluxes

q̇(t) = k(t)σ̇x(t) +mσ̇p(t) (2.2)

ẇ = k̇(t)σx(t), (2.3)

where σx(t) = ⟨f(x)⟩ and σp(t) = ⟨p2⟩/2 (⟨•⟩ denotes the ensemble average). These

∗Similar claims of beating second law efficiencies by using non-equilibrium ‘heat’ reservoirs (such as
various quantum squeezed baths57) fall into the very same category, pointing to authors’ desire to
sell their research well in high-impact journals rather than deep physics break troughs.



expressions follow from the first law40 by identifying the changes of internal energy
U = ⟨H⟩ = ⟨k(t)f(x) + mp2/2⟩ of the system related to the variation of the control
parameter k(t) as work, and the rest of U̇ as heat. The work and heat fluxes are thus
determined by the ‘response’ functions σx(t) and σp(t). A non-equilibrium bath can
be prescribed an effective temperature Teff (t) if there is an equilibrium setup with the
same time-dependent Hamiltonian H and equilibrium heat bath at a time-dependent
temperature Teff (t), which yield the same heat and work fluxes ẇ and q̇ (and thus the
response functions σx(t) and σp(t)) as the setup with non-equilibrium bath. In general,
the response functions are functionals of the driving parameters determined by details
of the engine and bath dynamics, and the time-dependent effective temperature has
to be such that the functionals for the two setups agree numerically. It is reasonable
to assume that finding such a mapping should always be possible when one needs to
match a single functional, e.g., σx(t). However, matching two or more functionals (such
as when considering momentum degrees of freedom) by modifying the single effective
temperature might not always be possible.

The simplest and most important situation demonstrating this conclusion is quasi-
static driving. Then the distribution for {x,p} at any time t has the Boltzmann form
p(x,p, t) = 1

Z exp
(
−k(t)f(x)

kBTeff

)
exp

(
− mp2

2kBTeff

)
(Z stands for partition function and kB

the Boltzmann constant). The averages σx(t) and σp(t) then follow as integrals over
p(x,p, t). It is always possible to tune the effective temperature Teff to match any
given value of one of these averages. However, the resulting Teff also automatically
determines the other average. Thus, it is generally impossible to find an equilibrium
setup that would match an arbitrary couple σx(t) and σp(t) resulting from the dynamics
with a non-equilibrium bath that defies restrictions imposed by equilibrium dynamics,
and similarly for more complicated settings. For an analysis when Teff exists in settings
with non-negligible momentum, see Subsection 2.1.2.

In Publication 7.151 we have also shown how to calculate the time dependent ef-
fective temperature for the specific dynamics considered in Ref.47 with arbitrary cycle
duration and arbitrary protocols for the potential stiffness k(t) and parameters of the
active bath. Concretely, we considered dynamics described by Langevin equation

ẋ(t) = −k(t)x(t)/γ + η(t), (2.4)

where γ is friction coefficient and η is a zero-mean noise describing effects of the bacteria
bath. For an equilibrium bath, the noise correlation function has to obey the fluctuation
dissipation relation and thus it reads ⟨η(t)η(t′)⟩ = (2kBTeff (t)/γ)δ(t− t′). The relevant



response function σx(t) = ⟨x2⟩ obeys the dynamical equation

σ̇x(t) = 2k(t)/γσx(t) + 2⟨x(t)η(t)⟩ (2.5)

for a general noise η(t), which translates to

σ̇x(t) = 2k(t)/γσx(t) + 2kBTeff/γ (2.6)

for the equilibrium bath. Comparing these two equations, one can conclude that the
active bath can be in the general situation described by the effective temperature

Teff = γ/kB⟨x(t)η(t)⟩. (2.7)

When the non-equilibrium noise is exponentially correlated, Teff (t) can be calculated
explicitly. Interestingly, it strongly depends on the stiffness of the potential, k(t). This
dependence on the dynamics of the engine must be considered when assessing limits
on the engine’s performance using known results. For example, the efficiency can reach
Carnot’s bound with the effective temperature only if the engine is driven quasi-statically
and protocols for k(t) and bath parameters are fine-tuned to yield constant Teff (t)
between the adiabatic strokes.

2.1.2 Effective temperature in underdamped active heat engines (Ref.56)

In Publication 7.256, we studied the existence of effective temperature for engines
with Hamiltonian of the form H = kxn/n + mp2/2. We assumed that the dynamics is
described by the system of Langevin equations

ẋ(t) = p(t)/m (2.8)

ṗ(t) = −kx(t)n + F (t) + η(t), (2.9)

where the ‘friction’ F (t) stands for the systematic force exerted on the particle by the
active bath and noise η(t) for the stochastic component of that force. Since the bath
is out of equilirbium, F (t) and η(t) are not interconnected by a fluctuation dissipation
relation. It turns out that in this setting the existence of effective temperature can be
proven for quasi-static drivings only. Under such conditions, the effective temperature
consistently describing both the work and heat fluxes in Eqs. (2.2) and (2.3) exists if
⟨x(t)(F (t)+η(t))⟩ = 0, i.e., if the total force exerted by the bath at time t is independent
of the position x(t) of the engine at the same time. This condition can be broken if the



interaction between the engine and the active bath is strong enough to correlate the two
subsystems. For example, if the engine is based on a colloidal particle trapped in the
potential xn/n and the active particles in the bath interact with the colloid by a steric
repulsion, slowly rotating active particles will accumulate close to the colloid, leading to
nonzero ⟨x(t)(F (t)+η(t))⟩. This shows that when momentum is taken into account, the
existence of the effective temperature depends not only on the engine Hamiltonian but
also on the engine-bath coupling (cf the discussion in Subsection 2.1.1).

2.1.3 Results (in)valid when effective temperature exists (Refs.52,55)

As discussed above, when the active engine setup allows describing the active bath by
an effective temperature, both finite time and quasi-static performance will be automat-
ically limited by corresponding known results from settings with equilibrium reservoirs.
While the quasi-static limitations on efficiency, such as Carnot’s efficiency, are notori-
ous, available limitations on the finite-time performance of heat engines are much less
known. To give one specific example, when an overdamped Langevin equation describes
the dynamics of the active heat engine, one can immediately write down limitations on
the maximum available efficiency of this engine for any fixed value of its output power
using results of Publication 7.352.

Let δP ≡ (P − P ∗)/P ∗ denote the deviation from the maximum power P ∗ attainable
in the given engine under the conditions that (i) the cycle with the effective temperature
comprises two (effective)isotherms and two adiabats and (ii) the driving is slow (but not
quasi-static) or the probability distributions for position at the ends of the isotherms are
fixed (we will return to this somewhat awkward condition in Section 2.2). Then our
results in Ref.52 shows that the maximum efficiency attainable by the engine for given
δP obeys the inequalities

ηC
2

(
1 +

√
−δP

)
≤ η ≤ ηC

1 +
√−δP

2 − (1 − √−δP )ηC
, (2.10)

where ηC = 1 − Tc/Th and Tc/Th is the ratio of ‘cold’ and ‘hot’ effective temperatures.
The main asset of active baths is that their hot effective temperature (achieved, e.g., by
providing bacteria with a lot of food) can be very large without any danger of evaporating
the lab, and thus ηC can be close to 1. Over the years, we have derived many similar
results for various thermodynamic machines24–28 all of which can find application also
in the field of active heat engines (or refrigerators, etc.), but this thesis contains only
Publication 7.352 as an example.



As a warning, I stress again that the existence of effective temperature just means
that there is a setup with an equilibrium bath that has the same average thermody-
namic performances as the given setup with an active bath, nothing more. When one
studies other features of the active system, there is thus no guarantee of any further
correspondence with the equilibrium system. For example, even though average work
and heat for the equilibrium and active setup are equal, fluctuations of these quantities
can be completely different. Such differences can be studied using Brownian dynamics
simulations. Nevertheless, we have developed an alternative numerical method55 (Pu-
blication 7.4) which can, in some cases, overperform these simulations, in particular,
if one needs to determine with high accuracy higher moments of fluctuating thermody-
namic fluxes. The method can be applied to systems with overdamped dynamics. It is
based on approximating the real dynamics by a thermodynamically consistent hopping
process in the discretized state space. It allows calculating the probability distribution
to find the engine in a given state (position) and characteristic functions for arbitrary
stochastic functionals of that position, such as work and heat. Details of this ‘Matrix
numerical method’ are rather technical and I invite the interested reader to read more
in the attached Publication 7.455.

2.2 General results (Refs.53,54):

There are some results obtained for standard heat engines, which are also valid for
active engines even when the effective temperature does not exist. This generally holds
for results obtained without assuming equilibrium concepts such as detailed balance
or (equivalently) fluctuation-dissipation relation. Here, I present two examples of such
results from our kitchen.

2.2.1 Quasi-static efficiency at finite power (Ref.53)

Publication 7.553 shows that any cyclically driven microscopic engine can operate at
maximum quasi-static efficiency and simultaneously deliver nonzero power with vanish-
ing (or at least limited) fluctuations. For heat engines in contact with an equilibrium
heat bath, this result shows that they can be operated with Carnot’s efficiency while
delivering finite, stable power. This can be interpreted as a Holy Grail of engineers,
which was conjectured to be forbidden by recently discovered thermodynamic uncer-
tainty relations58 before our work was published. Nevertheless, we have shown that
thermodynamic uncertainty relations only limit the performance of steady-state heat



engines, transforming a stationary heat flux from a hot to a cold reservoir into work.
The first main idea of our paper is that the work in cyclic heat engines (e.g., that

in Eq. (2.3)) represents a different stochastic process than work in steady state heat
engines40,53. Cyclic heat engines perform work when the engines’ energy is decreased by
externally modifying the potential. Changes in the engine’s microstate are then related
to heat interchanged with the bath. On the other hand, in steady-state heat engines,
both heat and work are associated with the motion of particles in a fixed potential
landscape, and thus both these quantities qualify as heat from the point of view of cyclic
setups. The heat and work in cyclic engines have very different properties when the
system is driven slowly. For very slow driving, the individual microstates are occupied
according to the quasi-static probability density (Boltzmann distribution when the bath
is in equilibrium), and the probability density for work per cycle is δ(w−Wqs), where Wqs

is the average quasi-static work. The work-type variables, in other words, self-average
with increasing cycle time. According to the first law, heat plus work equals energy
difference per cycle. With δ-distributed work, this implies that heat fluctuations are
those of internal energy, and thus they do not vanish regardless of the driving speed40,53.

With this insight, the only question remains whether one can drive a system quasi-
statically in a finite time. For small systems, all relaxation times are under reason-
able control. Thus one can make them very short (definitely shorter than overdamped
timescales), for example, by increasing the stiffness in the potential (2.1). This is the
second main idea of Publication 7.654, to which I refer for more details.

2.2.2 Maximum efficiency protocol for constrained driving (Ref.54)

Our second general result on performance of cyclic engines is described in Publication
7.654, where we have derived maximum efficiency protocol for any heat engine described
by the Hamiltonian of the form (2.1) under the experimentally relevant conditions that
(i) the stiffness k(t) ∈ [k−, k+], (ii) Teff ∈ [T−, T+], (iii) cycle time is arbitrary but
fixed. Our derivation is based on the definition of heat flux (2.2) with m = 0, and
thus it is completely independent of the details of engine or bath dynamics. Results of
such generality are rare in the field of optimal finite-time control of (stochastic) heat
engines. In fact, this is the only optimal protocol that is valid for arbitrary dynamics
known to the author. All other optimal protocols described in the literature are derived
based on standard functional optimization techniques, such as Euler-Lagrange formalism
(see references in54 for more details), which cannot be applied without prescribing the
dynamical equations.



Our derivation is based on the fact that, at second glance, the heat flux q̇(t) = k(t)σ̇x(t)
resembles the Clausius equality TdS valid in equilibrium thermodynamics. In equilib-
rium thermodynamics, the most efficient cycle operating between temperatures T− and
T+ is Carnot’s cycle, which forms a rectangle in the T − S diagram and has efficiency
ηC = 1 − T−/T+. Hence, the most efficient cycle under our conditions must form a rect-
angle in the k−σx diagram and has efficiency η = 1−k−/k+. An important piece of the
derivation is that the final formula for efficiency is independent of the system response
σx (which cancels out between the nominator and denominator in the definition of ef-
ficiency). For power, this does not happen, and hence the piece-wise constant protocol
for k(t) is not always optimal. Nevertheless, one can prove that the piece-wise constant
k(t) maximizes power for slow enough driving and a small allowed range k+ − k− for k.
For more details, see Publication 7.654.

2.3 Active ratchets (Refs.50,59–61)

Qualitatively (and often even quantitatively), the motion of active Brownian particles
such as bacteria or various active colloids is well described by the so-called active Brow-
nian particle model. In two dimensions, it is described by the system of Langevin
equations

ẋ(t) = v[x(t), y(t)] cos[θ(t)] +
√

2Dηx(t), (2.11a)

ẏ(t) = v[x(t), y(t)] sin[θ(t)] +
√

2Dηy(t), (2.11b)

θ̇(t) =
√

2Drηθ(t), (2.11c)

for position coordinates x(t) and y(t) and orientation θ(t) of the active particle. The
formulae above assume that the particle’s speed v(x, y) can depend on its position. The
mutually independent unbiased Gaussian white noises ηi(t), i = x, y, θ of unit intensity
(⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′)) represent translational and rotational Brownian motion of
the active particle, and D and Dr denote the corresponding diffusion coefficients.

The most important ingredient of the model is that the particles move persistently
until their reorient due to the rotational diffusion. The average reorientation time of the
particles is given by Dr. Thus the average distance a particle travels until it changes
its direction can be estimated as v(x, y)/Dr. Per the same time window, the particles’
average displacement due to the transnational diffusion is

√
D/Dr. The ratio of these

two length scales, v
√
D/Dr, measures the importance of active motion over diffusion

and is often referred to as the Péclet number.



If confined by asymmetric walls (or even potentials), the active particles slide along
walls due to their persistence until they get possibly trapped in wedge-shaped regions, or
pockets, such as in Figure 2.1. The particles can then propel freely movable objects in
the active bath toward the pockets (Figure 2.1b). Alternatively, orienting fixed pockets
in one direction renders a global current of the active Brownian particles in the opposite
direction (Figure 2.1c).

One can ask whether active Brownian particles can render a macroscopic current by
themselves without a necessity for confinement or other complications such as time-
dependent activity62. We have positively answered this question in the series of papers
studying the motion of active particles with space-dependent activity50,59–61.

2.3.1 Active Brownian particles in activity landscapes (Refs.59–61)

We started this program by studying the dynamics of active particles in spatially varying
activity landscapes experimentally in Publication 7.760 and theoretically in Publica-
tion 7.861 for a simple one-dimensional setup and in Publication 7.959 for radially
symmetric two-dimensional geometry. Our main findings are summarized using a piece-
wise constant active-passive activity landscape in Figure 2.3.

Due to their persistence, active Brownian particles accumulate at the active-passive
interface, pointing from the active to the passive region. In the steady state, this ac-
cumulation can be described by a simple approximate model that reduces the complete
Fokker-Planck equation for the probability density for position and orientation, ρ̃(x, θ),
corresponding to Eqs. (2.11), to equations for position density ρ(x) =

∫
dθρ̃(x, θ) and

polarization p(x) =
∫
dθ cos(θ)ρ̃(x, θ). Notably, the resulting approximate equations

ρ′(x) = p(x)v(x)/D, (2.12a)

p′′(x) = D/Drp(x) + ρ(x)v′(x)/(2D), (2.12b)

can be exactly mapped to equations for density and polarization in a model where
the particle can have just two values of θ, so that it points either to the left or to the
right. That the approximate model describes a related model exactly implies that results
obtained by solving Eqs. (2.12) should be qualitatively correct regardless of the chosen
parameter regime. For more details concerning the polarization and density patterns
near active-passive interfaces, particularly for the properties of the corresponding decay
length, we refer to Refs.59–61. The results presented above can be used to construct
an activity ratchet by imposing in the setup of Figure 2.3 instead of photon nudging
boundaries periodic boundaries and letting the activity landscape travel from right to



left. Such time-dependent ratchets have already been described in the literature62.

2.3.2 Activity ratchet (Ref.50)

In Publication 7.1050, we show how the insights described above can be used to con-
struct a ratchet just by a periodic spatial modulation of the particle activity. That such
a ratchet can be constructed is nontrivial because, at long time scales, active Brownian
particles usually behave like common (passive) ones, just with an increased diffusion co-
efficient D + v2/(2Dr) (and thus also correspondingly increased effective temperature).
And one can show that Brownian particles traveling through a bath locally equilibrated
at a spatially modulated temperature can only induce thermophoretic flows from ‘hot

depletion

polarization
(c) 

passive active

Figure 2.3: Density and polarization at active-passive interface. Panel a) shows the
quasi-one-dimensional experimental setup with thermophoretically propelled Janus-
type active particles sketched in panel c. When irradiated by a laser, these particles
propel toward their polystyrene hemisphere. Naturally, the probability of finding
the active particle is much larger in the passive than in the active region. Upon
leaving the active-passive area, particles were steered back by photon nudging (they
were irradiated by the laser only when pointing into the active-passive area with
their polystyrene end). Panel b) shows the density in a) integrated over the y
coordinate, and panel d) depicts the corresponding polarization (average orientation
at a given position) of the active particle. Panel c) gives an intuitive explanation
for the depletion of the active region and behavior polarization at the active-passive
and passive-active interfaces. Symbols in b and d correspond to experimental data,
dashed lines are analytical predictions, and solid lines were computed numerically
using Ref.55 (Publication 7.4). The figure is reprinted from Ref.60 (Publication
7.7).



to cold’ but not a macroscopic transfer under spatially periodic conditions.
Furthermore, one-dimensional static activity landscapes can be proven to generally

fail to produce a global current as follows: (i) Eq. (2.11a) implies that the current
j(x) = ⟨ẋ(t)⟩ is proportional to the polarization. (ii) While activity landscapes can sort
active particles according to their orientations, they can never reorient them and, hence,
total orientation

∫
dxp(x) = 0. Physically, without external torques, polarization is a

continuous function of position. Thus p(x) must be zero at least at a single position to
make the overall polarization vanish. (iii) In a steady state where the ratchet operates,
the one-dimensional continuity condition ∂j(x)/∂x = 0 implies that j(x) is the same for
all positions and, hence, it must vanish for all x.

Even though points (i) and (ii) also hold in two spatial dimensions, this argument
does not apply here because the two-dimensional continuity condition ∂j(x, y)/∂x +
∂j(x, y)/∂y = 0 allows for nonzero global solutions with local zeros, corresponding to
inevitable points of vanishing polarization. Around these points, the two-dimensional
current forms vortices visible in Figure 2.1d. The piece-wise constant activity profile
utilized in the ratchet depicted in this figure (and analyzed in Ref.50) consists of a densely
populated passive region surrounded by an active region, where the particles move with
a constant nonzero speed. The easiest way to understand the ratchet’s operation is
to consider the y dimension as a ‘periodic time modulation’ of the piece-wise constant
profile from the preceding section. An alternative explanation can be based on the
fact that particles get polarized along the whole active-passive interface; however, those
localized inside the wedge region can leave the passive region much harder than those on
the tip side. This leads to an overall ‘leakage’ of particles oriented to the left along the
two edges of the wedge-shaped passive domain and, thus, to a global current to the left.
For more details concerning the performance of this ratchet, we refer to Publication
7.1050.





3 Effects of time delay

To perform a useful task or to interact with a neighbor, both living and artificial agents
must acquire and process information about their surroundings. This cannot be done
instantaneously and thus response of active particles is always delayed after the stimuli
(for delays of various animal specious to various stimuli, see Table 3.1). Consequently,
effects of time delay have already been thoroughly investigated from an engineering
point of view in control theory73, which is a general framework for feedback systems
with applications in life sciences, engineering, and sociology. The main insight is that
time delays may induce oscillations, instabilities, and poor control performances, which
should be familiar to everyone who experienced delayed hot water flow from a shower (see
Figure 3.1). On the other hand, time delays are deliberately used in control theory to
stabilize unstable periodic orbits in chaotic systems using, e.g., OGY or Pyragas control
methods74,75.

Even though active matter research shares some goals (and hence also issues) – such
as precise control of interacting self-propelling particles – with control theory, physical
theories of retarded active matter are scarce: As a notable exception, effects of time
delay are well understood for traffic models76. Besides, time delay was studied with
respect to stability and formation of dynamical patterns in the active Brownian dynamics
model77,78 and in several models of bird flocks, including the Vicsek model79–82 and
CuckerSmale model83. All these studies suggest that moderate time delays foster order
in the dynamics, while large delays induce disorder. The current interest of the active
matter community in dynamics with time delay is mainly driven by the necessity to
describe experiments involving feedback2,84–86 and to adjust existing models to capture
natural instances of retarded dynamics more accurately13,80,87. This has spurred the
theoretical study of analytically tractable toy models capturing the main ingredients of
experiments, and more detailed models to plan and analyze specific measurements and
experiments.

In the rest of this section, I first briefly review stochastic delay differential equations,
which describe the dynamics of feedback-driven active matter systems, and review our
results for their solution in Section 3.1. Then, in Section 3.2, I review our results for
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Animal Stimulus/Response Reaction Time [ms] References
Human auditory 140 − 160 63

visual 180 − 200 63

touch ∼ 155 63

Fruit fly roll perturbation ∼ 5 64

pitch perturbation ∼ 12 65

yaw perturbation 10 − 25 66

Starling startling sound stimuli 64 − 80 67

startling light stimuli 38 − 76 67

Teleost fish startle response 5 − 10 68,69

Calanoida stirring water < 2.5 70

E. coli chemical stimuli ∼ 103 − 104 71

Table 3.1: Typical reaction times measured between a stimulus and the corresponding discrete
response strongly vary among species and the type of stimulus. Delay times com-
parable to the characteristic time scale of the stimulus may be expected to trigger
qualitatively new effects in the dynamical response, similar to those analyzed in the
present work. The table is taken from Ref.72.

feedback-driven systems of active Brownian particles. Finally, in Section 3.3, I review
our findings about the effects of time-delayed interactions in the Vicsek model.

Figure 3.1: Shower delay, a control problem from daily life. Due to the delayed hot
water flow, we usually open the hot water tap too much and get burned once the
hot water finally comes out of the shower. To reach a comfortable temperature,
we regulate the faucet up and down and induce the oscillating behavior typical for
delay systems. The figure was drawn by Daniel Geiss.



3.1 Equilibrium delay (Ref.88)

The dynamics of most active matter systems treated considered in my work is strongly
influenced by environmental noises such as thermal noise. Therefore they are described
by stochastic delay differential equations89. These equations can be in general written
in the form

ẋ(t) = f [t,x(t),x(t− τ)] + g[t,x(t)]ξ(t), (3.1)

where τ stands for the delay time, x(t) describes the stochastic trajectory of the (possi-
bly many-body) system, f [t, x(t), x(t − τ)] and g[t, x(t)] are arbitrary real-valued func-
tions, and ξ(t) represents the noise, which is usually but not necessarily Gaussian and
white. For vanishing noise, stochastic delay differential equations become delay differen-
tial equations, which are notoriously difficult to treat analytically. In fact, up to a few
exceptions such as Eq. (3.7) in Subsection 3.2.1, exact solutions to them are known
only if they are linear (f [t,x(t),x(t− τ)] = a+ bx(t) + cx(t− τ)), where one can derive
the Green’s function for Eq. (3.1) using e.g., Laplace transform90. For the case when the
noise is additive with constant intensity (g[t,x(t)] = g), this result can then be used for
the derivation of exact expressions for the probability distribution for x(t), ρ1(x, t), and
also for all higher joint probability distributions, e.g., ρ2(x, t; x′, t′), etc. However, when
the dynamical equation is nonlinear, it is not even known how to write a closed Fokker-
Planck equation for ρ(x, t). Instead, one obtains an infinite hierarchy of equations for
ρn, n = 1, 2,= . . . 91. How to close this hierarchy is currently an open problem. In fact,
to the best of our knowledge, no exact solutions to nonlinear stochastic delay differential
equations have been known until recently, when we made a moderate breakthrough88 by
deriving a class of (to some extend) exactly solvable nonlinear stochastic delay differen-
tial equation by imposing fluctuation-dissipation relation in Eq. (3.1).

To be specific, in Publication 7.1188, we consider stochastic delay differential equa-
tions (3.1) that can be written in the form of a system of Langevin equations (for
simplicity in one dimension)

ẋ(t) = v(t), (3.2)

mv̇(t) = F (t, x(t)) + FF (x(t), x(t− τ)) + η(t), (3.3)

where F (t, x(t)) is an arbitrary time-local external force, and the friction FF (x(t), x(t−
τ)) and noise η(t) obey the fluctuation dissipation relation. That is, we assume that the



friction can be written using a memory Kernel Γ(t) as

FF (x(t), x(t− τ)) = −
∫ t

−∞
dt′Γ(t′)v(t′), (3.4)

and the noise auto-correlation function fulfills the requirement

⟨η(t)η(t′)⟩ = TΓ(t− t′), (3.5)

with some temperature T . To restrict the analysis to real-valued processes only, we, in
addition, assume that the noise power spectrum is positive:

S(ω) =
∫ ∞

−∞
dt ⟨η(t)η(0)⟩ exp(iωt) > 0. (3.6)

Under these conditions, the stochastic delay differential equation describes the dynamics
of a particle dragged by the external force F through a non-Markovian but equilibrium
bath. Hence, one can use all results valid under these conditions, such as fluctuation
theorems, equilibrium linear response theory, etc. For example, when the external force is
potential, F (x(t)) = −∇U(x(t)), the stationary probability distribution for {x(t), v(t)}
is given by the Boltzmann distribution ρ(x, v) = exp(−βH(x, v)), with the Hamiltonian
H(x, v) = U(x) + mv2/2, and inverse temperature β = 1/T . In Publication 7.1188,
we detail two experimentally motivated examples of such processes. One potential issue
that might constrain the practical applicability of our results is that the noise that fulfills
the fluctuation-dissipation relation (3.5) is nontrivial and might be challenging to realize
in experiments. Nevertheless, our numerical simulations suggest that this should be
possible at least approximately.

Unfortunately, the described dynamical class involves only delay stochastic differential
equations that are linear in the delayed position. Nonetheless, systems when the feedback
is (at least approximately) linear in the time-delayed term are quite commonly used in
practice. One example is the so-called feedback cooling92,93. Furthermore, I believe there
is still untapped potential in using general results and symmetries of physics to derive
solvable nonlinear stochastic delay differential equations. Currently, I am exploring ways
to generalize these results.

3.2 Feedback driven active Brownian particles (Ref.2,72,85,90,94)

Natural microswimmers such as bacteria represent rather complex biophysical systems7.
To better understand their behavior, mimic their functionality, or eventually utilize



them to perform useful tasks, researchers nowadays intensely study experimentally and
theoretically artificial microswimmers. These microswimmers are often spherical parti-
cles made from two hemispheres with different physical properties, called Janus parti-
cles after the homonymous two-faced Roman god. Typical examples are the catalytic
microswimmers in Figure 1.1 and hot (or thermophoretic) microswimmers in Figure
2.3c. However, as discussed in Section 2.3, the Janus microswimmers swim ballistically
until they are reoriented by rotational diffusion, significantly limiting the experimental
control over their trajectories95,96. Therefore, my experimental colleagues developed85,86

a)
b)

c) d)

Figure 3.2: Active particles with delayed attractive interactions. a) When the par-
ticles are further away (closer) than req they swim towards (away from) each
other with a constant speed vth. Due to these two-body interactions, the parti-
cles form dynamical ‘active molecules’ in b). c) The interaction rule from a) with
req = 0 and one of the two particles fixed leads, for large enough delay times, to
rotational motion of the active particle around the pinned one. d) Polar angles
θ =

∫ t

t−δt
dt′ω(t′) = ψ(t) − ψ(t − δt) traveled by the active particle per one delay

time as functions of time for a fixed swimming speed and different delays. Panels
a) and b) are taken from Ref.85 and panels c) and d) from Ref.72.



a new type of symmetric thermophoretic microswimmers shown in Figure 3.2a. These
particles are melamine resin spheres (radius 1 µm) covered by gold nanoparticles (ra-
dius 10 nm). If placed in water and irradiated by laser at their circumference, they
swim with a constant speed proportional to the laser intensity in the direction of the
vector connecting the laser focus with the particle center. The swimming direction can
be controlled simply by changing the position of the laser focus.

This improved experimental control allows steering the microswimmers with unprece-
dented precision, only hindered by the phenomenon that inevitably limits the accuracy
of any feedback control, the delay of the feedback loop, i.e., the time required to mea-
sure the position, process the measurement in the computer, and change the laser focus.
Even though the current (2023) variant of the experimental setup allows for short enough
delays that hardly affect the dynamics, during the development of the experiment, we
uncovered many surprising phenomena occurring for long enough delay times. In short,
it turns out that trivial delayed interactions alone have potential to imply a large part
of the complexity observed in motile active matter.

3.2.1 Active Brownian molecules (Ref.85,90)

In Publication 7.12, we investigated the level of control achievable using the symmetric
active particles by steering them to form active molecules in Figure 3.2b. We achieved
that by implementing the simple rule depicted in Figure 3.2b. When the particles were
further away than a fixed nonzero distance req, we propelled them with a fixed speed vth

towards each other. And when they were closer than req, we propelled them with the
same speed away of each other. As a result the dynamics of the center of mass of the
particles obeyed the nonlinear stochastic delay differential equation

ṙ(t) = −2vth sign (r(t− τ) − req) +
√

4Dη(t). (3.7)

For vanishing delay, this equation describes an overdamped Brownian particle in absolute
value potential U(r) = |r − req|. For nonzero delay, the particles are thus on average
distant req and their distance r exhibits exponentially decaying fluctuations following
from the Boltzmann distribution P (r) ∝ exp[U(r)/2D]. Interestingly, the nonlinear
delay differential equation obtained by neglecting the noise can be solved exactly by
a triangle wave with amplitude 2vthτ and period 4τ . Due to the delay, the distance
r is thus on average still given by req but it oscillates around this value. Due to the
noise, these oscillations have a finite correlation time, which can be predicted by an
approximate solution of Eq. (3.7)85.



Considering more than two particles, the first term on the right-hand side of Eq. (3.7)
is given by the average of two-particle interactions, normalized to vth. For zero delay,
the equation describes the diffusion in a multi-dimensional absolute value potential,
which insight can be used to determine the average structure of the resulting ‘active
molecules’ in Figure 3.2b. Similarly, as for two particles, these molecules are highly
dynamic. They oscillate due to the delay, and due to the noise, the individual particles
in the molecules can even interchange their positions. For more details, I refer to videos
supplementing Ref.85 and to its full text in Publication 7.12.

Since the interactions used in the experiments are strongly nonlinear already for two
particles, the theoretical analysis is limited to highly approximate calculations. To get
more insights, we considered in Publication 7.13 a similar system with linear interac-
tions, i.e., we considered a harmonic potential for vanishing delay instead of the absolute
value potential. The main physical difference between this setup and the experimental
setup of Publication 7.12 is that the latter assumes constant particle speeds while the
‘harmonic potential’ implies that the speed grows linearly with increasing interparticle
distance. As a result, the dynamics can be reasonably linearized even for more than
two particles, and the resulting approximated dynamical equations can be solved ex-
actly. Interestingly, one can even obtain a reasonable analytical estimate for transition
rates between different possible conformations of the molecules formed by the delayed
harmonic interactions. However, this is only possible when neglecting that the usually
used absorbing boundary condition is no longer valid for non-Markovian dynamics. As
a result, the predicted transition rates are reasonably accurate for intermediate delays
only. While this outperforms the usually employed short delay approximation97, deriva-
tion of transition rates for non-Markovian dynamics still represents an interesting open
problem.

The main qualitative difference between the ‘constant-force’ molecules of Publica-
tion 7.1285 and ‘harmonic’ molecules of Publication 7.1390 is that, due to the con-
stant speed, the former are stable for arbitrarily long delay times. On the other hand,
the oscillations in a harmonic potential get amplified for long delay times, leading to
an exponential increase of inter-particle distances. Hence, the harmonic molecules ex-
hibit both hallmark features of delay systems: instabilities and oscillations. Since the
analysis in90 is somewhat technical, I invite the interested reader to read more in the
attached Publication 7.13.



3.2.2 Delay-induced chirality in systems of micro-swimmers (Ref.72,94)

In Publication 7.1472, we investigated what happens if the simple constant speed in-
teraction from the previous subsection is used to propel the particles towards a fixed
target particle. The situation is depicted in Figure 3.2c. The microswimmer detects
the target’s position vector −r(t) at time t and at time t + δt swims in the direction
−r(t)/|r(t)| with a constant speed v0 ∗. As depicted in the figure, this delayed attraction
makes the particle rotate around the target for long enough delay times. Mathemati-
cally, the rotational motion of a single microswimmer is well described by the nonlinear
stochastic delay differential equation

ϕ̇(t) = ω0 sin[ϕ(t) − ϕ(t− δt)] +
√
D/(2a2)η(t), (3.8)

where ϕ(t) is the polar angle (see Figure 3.2c), D the transitional diffusion coefficient of
the microswimmer, a its radius (the target particle is just a pinned, passive microswim-
mer), and ω0 = v0δt/(2a). This equation describes a Kuramoto oscillator98 trying to
synchronize with its own past position. Assuming that, for D = 0, the system eventu-
ally converges into a state with constant angular velocity ω, one can use the formula
ϕ(t) =

∫ t
−∞ dt′ ω to rewrite Eq. (3.8) as ω = ω0 sin(ωδt) and find the stable solutions

as functions of the control parameter ω0δt numerically. It turns out that, for ω0δt < 1,
the only stable solution is ω = 0, while there are two stable rotating states differing in
the sign of ω for ω0δt > 1. For increasing delay (or, equivalently, swimming speed v0),
the system thus undergoes a normal supercritical pitchfork bifurcation99. Alternatively,
approximating ω(t)δt by the delay angle θ(t) ≡ ∫ t

t−δt dt
′ ω(t′), and expanding the sine in

Eq. (3.8) up to the third order in the delay time δt (and neglecting the term
...
θ (t), which

makes the resulting approximate equation unstable100), one arrives at the Markovian
Langevin equation, which describes the diffusion of an overdamped Brownian particle in
a quartic potential. For ω0δt < 1, the potential has a single minimum corresponding to
the non-rotating state. And, for ω0δt > 1, it has two symmetric minima corresponding
to the two rotating states. In addition to this insight, the Markovian Langevin equa-
tions allow one to predict relaxation times to the stable rotating states and, using the
Kramers’ theory101, the transition rates for changes between the two transiently-stable
rotating states attained for ω0δt > 1. This is the simplest version of the theory, which

∗I apologize that the notation throughout the text is not unified. For example, in more experimentally
motivated papers, we denote delay as δt and in the theoretical ones as τ . I decided to reuse the
notation employed in the attached publications in their commentary to help an interested reader to
digest the publications more easily.



explains the behavior observed in experiments qualitatively. In Publication 7.14, we
also developed a refined version of the above-described theory, which considers additional
experimental details (most notably, another type of delay involved in the feedback loop).
The refined theory gives even quantitative agreement with the experiments.

Interestingly, the single particle theory also fits the average angular velocity of mul-
tiple particles rotating around the target when each is attracted to the target by the
same delayed attraction as the single particle. In addition, the individual particles in-
teract sterically, hydrodynamically, and thermophoretically. Due to these interactions,
the particles organize in concentric shells around the target, which rotate in the same
direction for large delays, and can even counter-rotate for intermediate delays. While
the corotation can be explained solely based on steric interactions, the counterrotation
is caused by hydrodynamic coupling between the particles. Simply put, when the laser
propels a particle, it also propels the water in the opposite direction. This backflow
pushes particles in neighboring shells in the opposite direction for intermediate delays.
For more details, I refer to Publication 7.1472.

As our current experimental setup is not capable of controlling more than 20 particles
at once, we decided to study manybody systems with up to 200 particles using Brown-
ian dynamics simulations. In the simulations, we took into account the steric repulsion
between the particles but not the hydrodynamic coupling (taking into account hydrody-
namics for such a large system represents a nontrivial numerical challenge). The results
of these simulation, described in Publication 7.1594, are quite surprising. While the
average angular velocity of the system still qualitatively obeys the single particle theory
described above, the detailed dynamics of the system experiences a series of dynamical
phase transitions. These transitions are induced by shear stress caused by unequal an-
gular velocities of the individual particle layers around the target particle. When v0δt

is increased, the system goes through the following dynamical phases:

1. stable, non-rotating crystallite.

2. homogeneously rotating crystallite.

3. sheared or ‘quaking’ crystallite, where the outermost layers slide over (or lag be-
hind) the inner layers.

4. ring phase, where the innermost layers are no longer in contact with the target
particle.

5. a yin-yang phase, where the radial symmetry of the ring state is broken.



6. a blob phase, where the particles completely detach from the target and form a
densely packed satellite orbiting around it while shaking from the shear stresses.

The shearing of the system is of slip and stick type observed in athermal granular
materials, and thus it is accompanied by the formation of shear bands. For more details
and for a detailed discussion of the individual dynamical phases, I refer to Publica-
tion 7.1594. A very good intuition about the behavior of this beautiful system can be
obtained by watching videos of the individual phases, which can be found either in the
paper’s supplementary material or on YouTube †.

3.2.3 Machine learning with micro-swimmers (Ref.2)

One of the ultimate aims of active matter research is to develop autonomous, perhaps
even self-learning, artificial microswimmers with applications, e.g., in engineering or
medicine. Motivated by this goal and also with the vision that understanding the adap-
tation of artificial microswimmers to real-world conditions might bring new insights into
evolutionary mechanisms at work in the development of bacteria and similar natural mi-
croswimmers, we have investigated in Publication 7.162 how our symmetric artificial
microswimmers can learn to orient in real-world arenas by using reinforcement learning.
To the best of our knowledge, our work represents the first experimental application
of reinforcement learning to a real-world navigation problem in a noisy environment.
Our setup is halfway to the goal of autonomous self-learning microswimmers because
the brain that learns the optimal strategy is not inside the individual particles but in a
computer operating the feedback loop.

In the experiment, the microswimmers are confined between two glass cover slides, and
thus they effectively move in two dimensions. To implement the learning, we divided the
plane into 7×7 equal squares shown in Figure 3.3a. Blue denotes the region through
which the microswimmer can move to reach the green target state. When the swimmer
entered the red absorbing boundary, it was returned back to its initial position at one
of the blue states. To find the optimal policy to steer the swimmer from blue states
to the target state using the set of allowed actions in Figure 3.3b, we implemented
the reinforcement learning method called Q-learning102. In this method, one defines a
Q-matrix where weight is given for performing the allowed actions in each blue state.
Hence our matrix had 9 × (5 × 5 − 1) entries. The policy described by the Q-matrix
imposes the action with the lowest weight in each state.

†One can either click the ‘YouTube’ above in the electronic version or use the link
https://www.youtube.com/watch?v=1Gfgq7FvfaA&list=PLDwaP_kIyigWI4637AQH1upD4seyYOynw.

https://www.youtube.com/watch?v=1Gfgq7FvfaA&list=PLDwaP_kIyigWI4637AQH1upD4seyYOynw


At the beginning of the learning, the Q-matrix is populated randomly, resulting in
a random initial policy depicted in Figure 3.3c, left. During the learning, the Q-
matrix is updated according to an algorithm, which gives a positive reward to actions
leading the swimmer to the target and negative rewards to the actions which end up
in one of the absorbing states (for more details, I refer to Publication 7.162). The
final policy obtained after the learning, depicted in Figure 3.3c, right, represents an
optimal compromise between the fast approach to the target and staying in the blue
arena in the noisy environment. We have tested that learning is more efficient if several
microswimmers update the same Q-matrix.

My main job in this project was to explain why the optimal policy contains some
unintuitive elements (e.g., those pointing to the left while the target is in the up di-

a) b) c)

d)

e)

Figure 3.3: Reinforcement learning with artificial microswimmers. a) shows the grid
world where the swimmer learns to navigate using the set of allowed actions in b).
The red squares in a) are absorbing states, and the green square is the target state.
c) Due to the learning, the initial random policy (left) transforms into an optimal
policy to reach the target as fast as possible (right). d) due to the feedback loop
delay between detecting the microswimmers’ position and imposing the action and
thermal noise, the real displacements ∆r of the particle (blue circles) are symmet-
rically distributed along the desired displacement v∥δte∥ (v∥ is the particle swim
speed, δt the time delay, and e∥ unit vector in a desired direction). This leads to
the optimal swim speed (or delay time) in e) to reach a target position without
being absorbed by the boundary. Figures were taken from Ref.2.



rection). Partially, this can be explained by a weak drift in the experimental sample.
However, there is also a more fundamental reason for such a policy, which should be
considered by any device or animal navigating with time delay in a noisy environment.
Within the delay time between the decision where the particle should swim and taking
the corresponding action, the swimmer performs Brownian motion (and it also perhaps
moves due to the previous action). As a result, its relative position to the target at
the time of actual implementation of the action is stochastic, resulting in the set of
actual displacements depicted in Figure 3.3d, which are randomly distributed around
the desired displacement. The corresponding error increases with the noise intensity D,
delay time δt, and the swimming speed v∥. As a consequence, there is an optimal speed
that guarantees that the target is reached with maximum probability (see Figure 3.3e).
Using a simple model detailed in Ref.2, the optimal speed can be estimated as

vopt
∥ =

√
2D

sinh σθ
2δt

, (3.9)

where σ2
θ is the variance of the aiming error angle θ, depicted in Figure 3.3d. The

variance depends on the previous action, noise intensity, and delay time, and in Ref.2

we take it as a fit parameter.
The above formula also predicts an optimal delay time δt for a fixed swimming speed.

Interestingly, this is in accord with the recent finding that the precision of reaching a
target by the run-and-tumble bacteria also exhibits an optimum as a function of the
run-and-tumble times103,104, which play a similar role for the motion of bacteria as the
single delay time δt in our experiments. For more details, I refer to Publication 7.162.

3.3 Delay Vicsek model (Ref.80–82)

The Vicsek model105 is one of the best-known toy models of active matter. Its original
variant106, is a simple generalization of the XY model (in two dimensions) and Heisenberg
model (in three dimensions) in which the individual spins (agents) move in discrete time
with a fixed speed v0 in their direction. At each time t, the spin of agent i assumes the
value of the average spin of its neighbors closer than an interaction radius R at time
t − 1 modified by a noise (alignment interaction). For low noise intensities, the Vicsek
model exhibits a global order (aligned spins) even in two dimensions, and hence it beats
the equilibrium limitation imposed by the Mermin-Wagner theorem. For an intense
noise, the spins are disordered. The nature of the transition between these two phases
was long debated. The current consensus is that the transition is discontinuous (or



first order), with a microphase separation into dense bands (or sheets) of aligned spins
and low-density bands of disorder traveling through the sample. The bands form only
for large enough systems, where the crossover system size107 increases with decreasing
speed v0. However, even at high speeds, microphase separation only occurs in simulations
involving a significant number of particles. That is why understanding the true nature
of the transition had to wait for sufficiently fast computers.

In fact, not only the original paper106 reported that the transition is continuous (sec-
ond order), as in the Heisenberg model. Nowadays, it seems to be clear that the transi-
tion looks second order whenever the density fluctuations in the simulation are not too
large15. Since these fluctuations grow with the particle number N , the transition can
be considered as smooth for small enough N (for fixed v0). In this regime, the Vicsek
model close to the transition exhibits a finite-size critical behavior13,87 in the sense that
a set of scaling functions and critical exponents describes susceptibility and space and
time correlation functions108,109.

a) b) c)

d) e) f)

Figure 3.4: Finite-size scaling in the delay Vicsek model. a) In the delay Vicsek model,
each agent assumes at time t + τ average orientation of the particles, which were
closer to it than R at time t. The agents move with constant speed v0 in discrete
time (time-step 1) in the direction of their orientation. The static critical exponents
(b-d), the critical nearest neighbor distance (e), and the dynamical exponent z
dramatically change with increasing delay from their values for the classical Vicsek
model towards long-delay asymptotic values. The figures were taken from Ref.80.



When comparing the predictions of the Vicsek model to data obtained for birds or
insects, the finite size results in the region way below the crossover system size are of
the main interest13,87,110. These comparisons show that the Vicsek model fails to predict
the shape of time-correlation functions and scaling exponents found from experimental
data for swarms of midgets13,87, and also information spreading in bird flocks, e.g., when
birds follow a leader or react to a local stimuli110.

The authors of Refs.13,15 argued that these failures of the Vicsek model follow from
the fact that it completely neglects inertia in changing the orientation of the individual
agents. Hence, they introduced an improved model called as inertia spin model, where
the alignment interaction acts on the agent orientation indirectly by an additional ‘spin’
variable controlled by the time derivative of the orientation. The refined model’s pre-
dictions nicely agree with the field observations13,15,110. Nevertheless, we see another
important gap in the Vicsek model: it neglects time delay in the interactions. This is
our main motivation for investigations of delay Vicsek model80, where the alignment
interaction is not based on the particle’s neighbors at time t − 1, but at time t − 1 − τ

(see Figure 3.4a). Below, I present the results we have obtained for finite-size scaling
(Subsection 3.3.1) and information propagation (Subsection 3.3.2) in the delay Vic-
sek model. I consider these results preliminary and am still actively working on their
refinement.

3.3.1 Finite-size scaling in delay Vicsek model (Ref.80)

In Publication 7.1780, we report on our study of finite size scaling in the delay Vicsek
model. In the study, we fixed noise intensity, particle speed v0, and interaction radius
R and considered various particle numbers N ranging from 64 to 2048 particles. We
simulated the delay Vicsek model in a cube with edge L and periodic boundary condi-
tions. Keeping in mind that our results were obtained for a specific set of parameters
is important because it is known that scaling exponents in the Vicsek model are, in
general, parameter dependent.

For each N , we varied L to obtain the susceptibility χ of the system as a function of
the nearest neighbor distance between the particles, r1. Afterward, we computed the
static critical exponents γ and ν and the asymptotic nearest neighbor distance rC by the
best data collapse of the resulting curves by shifting and rescaling the x and y axis as
(r1 −rC)N1/3ν and χN−γ/3ν . We have repeated this procedure for delay times τ ranging
from 0 to v0τ/R ∼ 1. The resulting delay dependences of the critical exponents and
rC are given in Figure 3.4b-e. With increasing delay time, all the parameters converge



from their standard-Vicsek-model values to long delay plateau values. An analytical
argument given in the supplementary information to80 shows that, for long delays, the
delay Vicsek model dynamics depends just on the combination v0τ . Thus, while the
precise form of the delay dependence of the static critical parameters γ, ν, and rC varies
with the particle speed, they should converge to the same plateau values as in Figure
3.4 for arbitrary nonzero v0. I am now working on a numerical check of these results.
Unfortunately, the numerical simulations, mainly calculating susceptibilities and other
correlation functions, are incredibly time-consuming.

The most interesting observations from the static finite size scaling are the unprece-
dentedly large values of the critical exponents γ and ν for intermediate and long delays
and the maximum found in the asymptotic nearest neighbor distance rC . While we
still haven’t understood the meaning of the large scaling exponents, the maximum in
rC reflects the known79,82,83 effect of stabilization of the flocking phase by short delays.
Delayed reactions enhance the system’s stability against random perturbations. On the
other hand, too long delays prevent the agents from efficiently following their neighbors.
The maximum in rC results from a compromise between these two tendencies.

For each set N , v0, R, noise intensity, and delay time τ , the susceptibility exhibits
a maximum that marks the system size (or, equivalently, the nearest neighbor distance
r1) corresponding to the order-disorder transition. For the parameters at the transition,
we have calculated space and time-correlation functions. For each τ , the correlation
functions for different N can again be collapsed to a single master curve by rescaling
time as t/τR = t/ξz, where τR and ξ are the correlation time and length, and z is the
dynamical exponent. The resulting dependence of z on the delay time is given in Fig-
ure 3.4f. For τ = 0, z = 2 as in the standard Vicsek model with a small v0 and in
the Heisenberg model. With increasing delay time, z converges to 1, which is the value
reported for natural swarms in Ref.13, and which is also close to the prediction from the
inertia spin model15. Besides, the shape of time correlation functions obtained from the
delay Vicsek model is also similar to those found for natural swarms and the inertia spin
model (for details, see Publication 7.1780). According to our analysis, time delay thus
represents another way to explain the dynamical scaling observed in natural swarms.
However, this work is still in progress.

3.3.2 Information propagation in delay Vicsek model (Ref.81,82)

When we found that the delay Vicsek model is capable of reproducing dynamical scaling
and time correlations observed in natural swarms, we focused on the study of information



propagation in the model in a similar fashion as it was done for natural bird flocks110.
Even without delay, the study of information propagation in motile systems such as

the Vicsek model is a complicated task, in particular when the source of information is
moving, which is quite a generic situation in flocks following a leader bird. Therefore, we
have started our investigation in Publication 7.1881 with a simple lattice model, where
a scalar field at a given site assumes at discrete time t + 1 average value of itself and
its neighbors at time t. At first glance, the model can be classified as a lattice variant
of the Vicsek model with zero speed of the agents and a vanishing noise. However, it
turns out that its different continuum limits converge to the spin-wave approximations
of either the inertia spin model (when lattice constant is kept proportional to time step)
or the Vicsek model (when lattice constant squared is kept proportional to time step).

Using the lattice model, we studied two types of local information sources called
firm and lax leaders. Firm leaders are meant to describe a leader particle deliberately
trying to influence the whole system and correspond to fixing the field’s value at the
origin during the whole evolution of the system. Lax leader describes the spreading of
a random fluctuation through the system and corresponds to setting the field’s initial
value at the origin to a given value and letting the system evolve freely for t > 0. It
turns out that a reasonable definition of signal speed is (distance from the leader)/(the
time when the field changes most rapidly at that distance). Using this definition, we
found that the information spreading in the lattice model is approximately diffusive for
both types of perturbation, i.e., the distance traveled by the signal is proportional to√
t. Interestingly, this result is obtained regardless of the fact the information spreading

in the inertia spin model is predicted to be linear110.
Next, we considered the Vicsek model with very weak noise and the two types of

perturbations from the lattice model, which, however, traveled through the system at
the same speed as the other agents. For low speeds, the information spreads in the
same way as in the lattice model. However, the information spreading is no longer
purely conductive for larger speeds. As a result, the information spreads diffusively in
the direction opposite to the leaders heading and approximately ballistically (distance
traveled proportional to t) in the direction of the leader.

In Publication 7.1982, we performed an analogous analysis of information spreading
in the delay Vicsek model, together with the analysis of the ability of the system to
follow a moving leader. Concerning the latter, we found in accord with the results
described in the previous Subsection 3.3.1 that delays foster the stability of the aligned
state of the system against random perturbations but hinder the system’s ability to
follow a leader. Concerning information propagation, we found that the information



spreading in the direction opposite to the leader’s motion is still diffusive. However, for
a fixed low (but nonzero) speed of the agents, the information spreading in the leader’s
direction is diffusive for short delays but becomes increasingly linear as the delay is
increased. Furthermore, the delay introduces oscillations into the dispersion relations.
Again, I consider these results preliminary, and we are working intensely to improve our
understanding of information spreading in Vicsek and related models.

Finally, in Ref.82, we have also studied linear response in the delay Vicsek model.
Out of thermal equilibrium, it lacks its general properties as a response is no longer
bound to be given by equilibrium (or stationary) correlation functions, and we indeed
have not found such a general relation. Nevertheless, our analysis suggests that the
response in the Vicsek model to a torque applied to a subgroup of agents is linear only
in the parameter regime when the average polarization of the system is approximately
conserved. For more details, I refer to Publication 7.1982.





4 Final Remarks

This thesis summarizes some of the advances in our understanding of the dynamics
and thermodynamics of active matter, focusing on energy extraction from active self-
propulsion and the effects of time-delayed interactions. These results represent tiny
contributions to the knowledge acquired over the past years in this dynamic field. And
even our results leave more loose ends than answers. For example, we have just started
with investigations of the importance of delay in active matter systems. More impor-
tantly, most of our current models are rather based on observed phenomenology than
on some deeper (bio)physical principles. Hence one of the natural topics for future
investigation is to derive more reliable models of interparticle interactions by using a
bottom-up approach based on the capabilities of the individuals in question. For exam-
ple, our preliminary works show that the Vicsek model can be (approximately) derived
by considering agents moving with a fixed speed and trying to maximize their local ori-
entational correlations with their neighbors. Similarly, other types of agents combined
with other local target functions might result in new models more suitable to a given
situation than our present models. Besides continuing the study of the influence of de-
lay on the dynamics of experimental Brownian active matter systems, studying such a
bottom-up approach to the derivation of active matter systems is my main goal for the
forthcoming years.
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When do nonequilibrium forms of disordered energy qualify as heat? We address this question in the context
of cyclically operating heat engines feeding on nonequilibrium energy reservoirs that defy the zeroth law of
thermodynamics into work. To consistently address a nonequilibrium bath as a heat bath in the sense of the
second law of thermodynamics requires the existence of a precise mapping to an equivalent cycle with an
equilibrium bath at a time-dependent effective temperature. We identify the most general setup for which this can
generically be ascertained and thoroughly discuss an analytically tractable, experimentally relevant scenario: a
Brownian particle confined in a periodically modulated harmonic potential and coupled to some nonequilibrium
bath of variable activity. We deduce formal limitations for its thermodynamic performance, including maximum
efficiency, efficiency at maximum power, and maximum efficiency at fixed power. The results can guide the
design of new micromachines and clarify how much these can outperform passive-bath designs, which has
been a debated issue for recent experimental realizations. To illustrate the practical implications of the general
principles for quasistatic and finite-rate protocols, we further analyze a specific realization of such an active
heat engine based on the paradigmatic active Brownian particle (ABP) model. This reveals some nonintuitive
features of the explicitly computed dynamical effective temperature, illustrates various conceptual and practical
limitations of the effective-equilibrium mapping, and clarifies the operational relevance of various coarse-grained
measures of dissipation.

DOI: 10.1103/PhysRevResearch.2.043262

I. INTRODUCTION

The study of heat engines is as old as the industrialization
of the world. Its practical importance has prompted physi-
cists and engineers to persistently improve their experiments
and theories to eventually establish the consistent theoretical
framework of classical thermodynamics. It allows to quantify
very generally, on a phenomenological level, how work is
transformed to heat, and to what extent this process can be
reversed. Heat is the most abundant but least valuable form
of energy, namely “disordered” energy dispersed among un-
resolved degrees of freedom. And turning it into the coherent
accessible form called work has been a central aim since the
days of Carnot, Stirling, and other pioneers, after whom some
common engine designs have been named.

Recent advances in technology have allowed and also
required to extend this success story into two new major
directions. First, towards microscopic designs that are so small

*viktor.holubec@mff.cuni.cz
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that their operation becomes stochastic rather than determinis-
tic [1–5]. And secondly to cases where the degrees of freedom
of the heat bath are themselves driven far from equilibrium,
which potentially matters for small systems operating in a
biological context, e.g., inside living cells or motile bacterial
colonies [6].

The analysis of small systems requires an extension of
the theory and basic notions of classical thermodynamics to
stochastic dynamics, which goes under the name of stochas-
tic thermodynamics [7–10]. It seeks to define heat, work,
and entropy on the level of individual stochastic trajecto-
ries. The theory recovers the laws of thermodynamics for
ensemble-averaged quantities but allows to additionally quan-
tify the probability of rare large fluctuations [10]. Along these
lines, many experimental [11–16] and theoretical [17–26]
studies have recently been devoted to microscopic thermo-
dynamic cycles. In this field, Brownian heat engines play
a paradigmatic role [14–16,25,26]. They are usually based
on a diffusing colloidal particle that represents the working
substance. Its solvent provides a natural equilibrium heat bath,
and a time-dependent confinement potential can be realized by
optical tweezers [14,15,27].

Over the last few years, increasing effort has also
been devoted to the second mentioned extension of the
classical designs, namely to endow quantum [28,29] and
classical (colloidal) [6,30–32] heat engines with so-called
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“active” (nonequilibrium) baths. Some paradigmatic realiza-
tions of such active baths are provided by suspensions of
self-propelling bacteria or synthetic microswimmers [6,33].
Remarkably, they are driven far from equilibrium on the level
of the individual particles—not merely by externally imposed
overall boundary or body forces. The corresponding “active
heat engines” utilizing such baths can outperform classical
designs by evading the zeroth law of thermodynamics, which
would require interacting degrees of freedom to mutually
thermalize. Engines that exploit this unconventional property
can operate between hugely different (effective) temperatures
and thereby at unconventionally high efficiencies, without
risking the evaporation or freezing of the laboratory. While
technically potentially desirable, the lack of thermalization
jeopardizes the unambiguous distinction of heat from work
(roughly speaking, as the disordered or contagiously spread-
ing versus the concentrated, coherently accessible form of
energy). Which means that one has to resort to the second
law of thermodynamics, alone, for that purpose. But active
heat engines have even prominently been claimed to transcend
the universal performance bounds set by the second law [6], a
notion that is critically examined below.

In the following, we first provide a general discussion
of heat engines in contact with arbitrary nonequilibrium
reservoirs. We simply refer to them as active heat engines,
since active reservoirs represent a paradigmatic example of
a nonequilibrium bath. The main claims are exemplified by
an analytical discussion of a still quite general limiting case:
the linear theory for a Brownian heat engine with a nonequi-
librium bath. In particular, in Sec. IV, we derive the effective
temperature (14) for this class of models, thereby establishing,
as a main result, the explicit mapping of the active-bath en-
gine to a classical engine with an equilibrium bath achieving
the same thermodynamic output and performance. Finally, to
illustrate and further elucidate our general results and con-
clusions, Sec. VI provides a detailed analysis of a specific
realization of such linear active Brownian heat engine based
on the standard minimal model for active particle suspen-
sions, namely the so-called ABP (“active Brownian particle”)
model [34]. To facilitate the distinction between the general
linear theory and the exemplifying model, we refer to the
latter by the reminiscent acronym ABE (“active Brownian
engine”), in the following. It still allows for several alternative
physical interpretations [35,36], detailed in Sec. VII. Their
dissimilar contributions to the entropy production denounce
the nonequilibrium character of the engine that persists dur-
ing nominally reversibly operation. In Sec. VIII, we analyze
the quasistatic and finite-time performance of the model and
highlight some peculiarities of the effective temperature. For
better readability, various technical details have been deferred
to an Appendix.

II. ACTIVE HEAT ENGINES

A. Work-to-work versus heat-to-work conversion

Speaking of nonequilibrium heat baths that defy the ze-
roth law, an important qualification needs to be made as to
how their energy is accessed, if it is no more obliged to
spread indiscriminately by itself. Any thermodynamic entity

that can qualify as a nonequilibrium bath should be in a
nonequilibrium steady state while being able to exchange
some disordered form of energy with the so-called system or
working medium. Importantly, the exchanged energy should
not entirely be work in disguise. In other words, the internal
nonequilibrium structure of the bath should not entirely be
resolved by the device that feeds on it, in order to allow us
to speak of an engine that operates by heat-to-work conver-
sion. Yet, to exploit the advantages of active baths relative to
conventional equilibrium baths, practical designs often rectify
at least some of the bath energy by directly tapping some of
the internal thermodynamic fluxes that are responsible for the
nonequilibrium character of the bath. Typical examples are
provided by so called steady-state designs, such as various fly-
wheels and ratchet-like devices in active suspensions [37–41].
They geometrically rectify the persistent motion of active par-
ticles and thereby extract work from their (collective) motion
against an external load [42,43]. Such rectification is remi-
niscent of the action of a Maxwell demon, but can be less
sophisticated, since it feeds on palpable nonequilibrium fluxes
rather than equilibrium fluctuations, which average to zero.
Yet, it is not immediately obvious whether to classify it as
heat-to-work conversion or work-to-work conversion. Espe-
cially if the rectified nonequilibrium flux in the active bath
is driven mechanically or chemically, one is tempted to argue
that the rectification should be addressed as a form of work-to-
work conversion. However, any heat engine ultimately draws
its power from a nonequilibrium thermodynamic flux, namely,
a heat flux. So, in particular if the rectified flux in the active
bath is ultimately caused by a temperature gradient, such
as in hot Brownian motion or hot microswimmers [44–47],
the notion of heat-to-work conversion in the spirit of two-
temperature (Feynman-Smoluchowski) ratchets [48–53] also
seems very justifiable.

In the following, we focus on the operational scheme of
traditional heat engines, which cannot extract work from a sin-
gle bath with time-independent parameters, and are therefore
operated cyclically. We assume that the working medium of
the engine is a small (i.e., Brownian) system described by an
(overdamped) Hamiltonian H(k, x), which depends on a set
of stochastic coordinates x = (x1, . . . , xNx ) and a set of ex-
ternally controlled parameters k = (k1, . . . , kNk ), measuring,
for example, height of a weight in a gravitational field. These
parameters are used to extract work (“ordered” energy in the
sense of the external handling) from the engine or to feed
it from an external work source. Examples from this class
of cyclic engines are various colloidal engines immersed in
active fluids such as bacteria suspensions (see Ref. [6] for an
experiment and Refs. [30,32,54–56] for theoretical works).
We argue that, for these machines, there is a well-defined
regime, where energy extracted from the nonequilibrium bath
and transformed to work can unambiguously and quantita-
tively be interpreted as (a generalized form of) heat—namely,
if there exists a precise mapping to an equivalent setup with an
equilibrium bath at a suitable (finite) time-dependent effective
temperature Teff(t ). Due to the nonequilibrium character of
the bath, such engines can still exploit similar “rectification
loopholes” as the mentioned steady-state ratchets. But the
effect is then fully quantified by Teff(t ), which can, in a precise
sense, interpolate between the limits of pure heat-to-work and
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work-to-work conversion, attained for Teff(t ) ≡ T = constant
and max Teff(t ) − min Teff(t ) → ∞, respectively.

B. Energetics and efficiency of cyclic heat engines

For arbitrary dynamics, the instantaneous internal energy
H(t ) = H(k(t ), x(t )) of the working medium of the engine
changes as

d

dt
H(t ) = ẇ(t ) + q̇(t ) (1)

with

ẇ(t ) =
Nk∑

i=1

∂

∂ki
H(t )k̇i(t ), (2)

q̇(t ) =
Nx∑

i=1

∂

∂xi
H(t )ẋi(t ) = d

dt
H(t ) − ẇ(t ). (3)

The contribution ẇ corresponds to a change of the exter-
nally controlled parameters k = k(t ) and thus it is naturally
identified as work delivered to the working medium from
the external work reservoir [6,9,10,14,15,25,26,56,57]. The
remaining part of the energy change, q, is then acquired from
what are the heat reservoirs according to standard heat-engine
nomenclature. With the above-mentioned potential caveats in
mind, one might speak more generally of energy influx into
the working medium from these reservoirs. Conditions when
this influx has thermodynamic properties of heat, namely
when an effective temperature Teff exists such that Ṡeff

R (t ) =
q̇(t )/Teff (t ) is a reasonable second-law entropy change in the
bath, are discussed in the next section. From here on, we
assume that such an effective temperature can be defined and
simply call q̇(t ) the heat flux.

The above defined work and heat transfers are stochastic
quantities that fluctuate due to the stochastic nature of the
coordinates x. One is often interested in their mean values
both over a certain span of time and over the stochastic en-
semble. Upon integration over time and ensemble averaging,
the average total work exchanged between the system and its
environment during the time interval (ti, tf ) is given by

W (ti, tf ) =
∫ tf

ti

dt Ẇ (t ) =
∫ tf

ti

dt 〈ẇ(t )〉 (4)

and the corresponding total heat by

Q(ti, tf ) =
∫ tf

ti

dt Q̇(t ) =
∫ tf

ti

dt 〈q̇(t )〉 (5)

From now on, we assume that the parameters of the
Hamiltonian are varied periodically, with period tp. The
(ensemble-averaged) states of the system and the reservoirs
are assumed to eventually attain a time-periodic limit cycle
with the same period. If not explicitly written otherwise, all
variables below will be evaluated on this limit cycle.

The net average work performed or output work by the
engine per cycle is, with the above definitions, expressed as

Wout = −W (0, tp). (6)

As the input heat, Qin, one usually identifies only the heat
acquired during those parts of the cycle during which heat on

average flows from the bath into the system [58], i.e., when
�(〈q̇〉) > 0, where � denotes the Heaviside step function. So
we have

Qin =
∫ tp

0
dt Q̇(t )�[Q̇(t )] , (7)

which may well differ from Q(0, tp). So while the definition
may look a bit awkward, it allows us to write the input heat
in a form that is independent of specific details of the driving
protocol. For standard thermodynamic cycles such as Carnot
or Stirling cycle with a hot and a cold equilibrium heat bath,
it recovers the standard expressions for the heat afforded via
the hot reservoir (irrespective of the amount of heat taken up
by the cold reservoir).

Common measures of performance of a heat engine are its
output power P and efficiency η:

P ≡ Wout

tp
, η ≡ Wout

Qin
. (8)

In accord with earlier works [6,30], the hereby defined ef-
ficiency measures how efficiently the engine transforms the
energy Qin actually acquired from the bath into work Wout.
It doesn’t measure how efficiently it collects energy from
the nonequilibrium bath, which would be important if one
would want to take into account also the housekeeping energy
flux q̇hk that maintains nonequilibrium steady state of the
nonequilibrium bath (see Fig. 1). In most practical settings,
the housekeeping contribution would completely overshadow
Qin—rendering the efficiency tiny and dependent on the tech-
nical realization of the bath, which is usually not desirable.
Moreover, the knowledge about the bath that would allow
us to evaluate the housekeeping heat would also allow us to
design more sophisticated ways to extract the bath energy than
a heat engine. For studies utilizing definitions of efficiency
taking into account dissipation caused by the active motion of
the individual constituents of an active bath (and thus part of
the housekeeping heat), we refer to Refs. [56,59].

If the engine communicates with an equilibrium bath at
temperature T (t ), its efficiency is unambiguously restricted
by the first and second law of thermodynamics to obey η �
1 and η � η∞ < ηC = 1 − min (T )/ max (T ) � 1, respec-
tively. Here, η∞ refers to the value obtained upon infinitely
slow, reversible operation, and ηC is the Carnot efficiency.
On the level of stochastic heat and work transfers, these con-
straints are moreover reflected by various fluctuation theorems
for the corresponding probability distributions [10,60–63].

Allowing for an (additional) active bath, the interpretation
of the conventional formalism may require some extra con-
siderations. First, one can exploit the nonequilibrium state
of the bath to effectively isolate certain degrees of freedom
from the rest of the setup, thereby effectively circumventing
the zeroth law. This allows one to emulate unusually high or
low temperatures (for these degrees of freedom) without con-
taminating many others, and thus to reach exceptionally high
efficiencies. An example would be a hot Brownian swimmer,
which is actually laser heated relative to the solvent by only a
few Kelvin, while executing a random motion as if it had been
heated by thousands of Kelvin, which would technically be
much more difficult to achieve for a conventional equilibrium
bath obeying the zeroth law [47].

043262-3



HOLUBEC, STEFFENONI, FALASCO, AND KROY PHYSICAL REVIEW RESEARCH 2, 043262 (2020)

Heat
engine

Non-
equilibrium

heat
reservoir

Equilibrium
heat

reservoir

Work
reservoir

q̇neq

q̇eq
q̇hk

q̇hk + q̇neq

ẇ

FIG. 1. Cyclic heat engine transforming the heat flux q̇ = q̇neq +
q̇eq from a nonequilibrium (neq) and equilibrium (eq) heat reservoir
into usable power ẇ. The corresponding energy fluxes relevant for
the engine’s operation are depicted by arrows. The dashed arrow
depicts the housekeeping heat flux, q̇hk, flowing from the active bath
to the infinite equilibrium reservoir, which prevents the active bath
from overheating. This energy flux and also q̇neq are sustained by the
energy influx q̇hk + q̇neq into the nonequilibrium bath, which keeps it
in a nonequilibrium steady state. In this paper, we discuss the setup
where the energy H[k(t )] of the working medium of the engine (e.g.,
a single trapped colloid) is periodically modulated by an external
control parameter k(t ) and the temperature/activity (technically: the
noise intensities) of the two heat reservoirs.

Secondly, one can extract net work from a single steady-
state heat bath at constant activity, thus apparently beating the
second law [56]. For this, one needs at least two control pa-
rameters, though, since quasistatically operating engines with
a single control parameter k = k allow the output power to be
integrated 〈ẇ(t )dt〉 = 〈∂H/∂k〉dk = f (k)dk. Here, f (k) de-
pends solely on k since all other parameters are held constant.
A physically sensible one-dimensional function f (k) can al-
ways be written as a derivative f (k) ≡ dg(k)/dk. The output
work per cycle then reads Wout = ∫ tp

0 dt 〈ẇ(t )〉 = g(k(tp)) −
g(k(0)) = 0, because of the periodicity of k(t ). This result
is valid regardless of the properties of the steady-state bath,
except that for nonquasistatic protocols the output work will
be negative, due to finite-time losses. For two (and more)
parameters, on the other hand, 〈ẇ(t )〉dt = ∑Nk

i=1 fi[k(t )]dki.
Hence Wout = 0 now only holds if an integrability condition is
satisfied, namely that a function g[k(t )] exists such that fi =
∂g/∂ki is a gradient and thus 〈ẇ(t )〉dt = ∇g · dk. Otherwise,
internal currents may indeed allow the extraction of work from
a single nonequilibrium bath at constant activity [56].

In both of the above examples of how to “beat” classical
constraints on the performance of heat engines an equivalent

of temperature is seen to play a crucial role, namely the one
characterizing the Brownian motion of the microswimmer and
the one characterizing the constant activity of the active bath,
respectively. Indeed, as we lay out in the following paragraph
and in even greater detail in the remainder of this contribution,
this notion can sometimes be made fully quantitative and
then be used to explicitly compute meaningful efficiencies for
active heat engines.

C. Dynamic effective temperature

The crucial step is to construct a mapping for the power P
and efficiency η of a heat engine in contact with a nonequi-
librium bath to that of a heat engine in contact with an
equilibrium bath. This can be achieved if one can define a
temperature in the sense of the second law of thermody-
namics [47,64]. Which is the case if, for a given protocol
for varying the control parameters k(t), the energy fluxes
〈ẇ(t )〉 and 〈q̇(t )〉 for the heat engine in contact with the
nonequilibrium bath agree with those for a virtual heat engine
in contact with an equivalent equilibrium bath maintained at
a time-dependent temperature Teff (t ). This then allows the
application of known results for heat engines with equilibrium
baths to meaningfully define and assess the performance of
active engines. Per construction, their efficiencies are then
bounded by the second law. (Further consequences of the
mapping are discussed for a specific example in Sec. IV.)

The most general situation for which an appropriate effec-
tive temperature can always be found is when one can write
the Hamiltonian in the form H = k(t )h(x), with an arbitrary
function h(x) diverging at |x| → ∞. Then we have 〈ẇ〉 =
k̇(t ) f (t ) and 〈q̇〉 = k(t ) ḟ (t ), with f (t ) = 〈h(x)〉. In general,
for a nonequilibrium bath described by a set of functions
b(t ), f (t ) is a functional of the external protocol k(t ) and
the bath parameters b(t ), say f (t ) = fneq[{k(t ), b(t )}tp

t=0]. If
the equilibrium mapping exists, this functional can be writ-
ten as f (t ) = feq[{k(t ), Teff (t ), γ (t )}tp

t=0], where all relevant
effects of the bath parameters have been subsumed into the
dynamic effective temperature Teff (t ) and possibly also a time-
dependent friction γ (t ).

These two quantities are implicitly given by the functional
identity feq(t ) ≡ fneq(t ), which has to be solved to derive
their explicit form. In the next section, we discuss a spe-
cific scenario where this can be always achieved analytically.
In general, our physical intuition suggests that the equation
feq(t ) ≡ fneq(t ) has at least one solution. While it may be
difficult to rigorously prove its existence and uniqueness
on such a general level, what matters most with respect to
the thermodynamic performance is the case of quasistatic
driving. In this limit, feq(t ) is only a function of k(t ) and
Teff (t ), which can be determined by calculating the average
feq = 〈h(x)〉 over the Gibbs canonical distribution p(x, t ) =
exp[−k(t )h(x)/Teff (t )]/Z , where Z is the normalization con-
stant, and we have set the Boltzmann constant to unity,
kB → 1, measuring energies in Kelvin. The resulting equation
feq(t ) ≡ fneq(t ) for Teff (t ) can then always be solved, because
any value of the average 〈h(x)〉 (taken over the Gibbs distribu-
tion) can be assigned an effective temperature Teff (t ) varying
between zero and infinity, thereby exhausting all possible
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values of the average obtainable with an arbitrary nonequi-
librium distribution.

For more general Hamiltonians of the form H =
k(t )h1(x) + h2(x), or even more complicated, we have 〈ẇ〉 =
k̇ f1 and 〈q̇〉 = k ḟ1 + ḟ2, with fi = 〈hi(x)〉 again being func-
tionals of the driving and bath parameters. These two
functionals need not consistently determine a single function
Teff , solving fi,eq ≡ fi,neq for both i = 1, 2. Then, equivalent
cycles with equilibrium baths might still exist under specific
circumstances, but they are not generally guaranteed or gener-
ically expected, anymore.

To sum up this introductory section and to answer the
question asked at the beginning of our abstract, we note
that the notion of heat can unambiguously be generalized
to nonequilibrium situations where the zeroth law does not
hold, but it is tied to the operational definition of an effective
temperature in the sense of the second law. In other words,
one has to require that the only energy that can be extracted
from a nonequilibrium heat bath is of the disordered form
that comes with a reduced work efficiency. Otherwise, one
actually deals with some sort of work reservoir in disguise.
Active heat engines coupled to such nonequilibrium baths
and Hamiltonians proportional to a single control parameter
can always be reinterpreted in terms of equivalent engines
in contact with equilibrium baths, at some dynamic effec-
tive temperature. Their thermodynamic properties thus obey
standard-second law bounds, with important consequences for
the interpretation of experimental results.

D. Application to experimental data

A relevant real-world realization of a heat engine in contact
with a nonequilirbium bath is the bacterial heat engine of
Ref. [6]. In this impressive experimental study, a colloidal
particle with Cartesian position {x, y} was trapped in a time-
dependent harmonic potential,

H(x, y, t ) = 1
2 k(t )r2 = 1

2 k(t )(x2 + y2), (9)

and immersed in a bath of self-propelled bacteria. Both the
trap stiffness k(t ) and the bacterial activity were quasistati-
cally modulated to realize a Stirling-type active heat engine
with a cycle composed of two isochoric and two isother-
mal state changes. These were technically implemented by
changing the bacterial activity at constant trap stiffness k and
vice versa, respectively. The ensuing colloid dynamics was
observed to converge to a quasistatic limit cycle transforming
energy absorbed from the disordered bacterial bath into col-
loidal work.

The authors measured the work done per cycle as well
as the energy (heat) obtained per cycle from the bath and
determined the efficiency of the machine as their ratio. From
Eq. (9) the time-dependent average system energy reads

〈H〉 = 1
2 k(t )[σx(t ) + σy(t )] = 1

2 k(t )σ (t ), (10)

where σx = 〈x2〉, σy = 〈y2〉, and σ = 〈r · r〉. Due to the sym-
metry of the potential, the average particle displacements 〈x〉
and 〈y〉 vanish during the cycle, so that the mean square
displacements σx(t ) and σy(t ) also determine the long-time
variances for the x and y coordinates, respectively.

Based on their analysis of the apparent equipartition tem-
perature Teff (t ) ≡ k(t )σ (t )/2, denoted by Ta in Ref. [6], its
authors concluded that they had realized a Stirling cycle that
allowed them to significantly surpass the maximum Stirling
efficiency, [1 + 1/ ln(k>/k<)] attained for equilibrium heat
baths with an infinite temperature difference (k> and k< de-
note maximum and minimum values of k(t ) during the cycle).
This extraordinary result was attributed to large non-Gaussian
fluctuations in the nonequilibrium bacterial reservoir, which,
according to the authors, cannot be captured by an effective
temperature.

These conclusions are plainly at odds with the general
analysis in the preceding paragraph. To see this, notice that
the experimental heat engine corresponds to a Hamiltonian
proportional to a single control parameter, for which one can
always define an effective temperature so that the conven-
tional bounds on the efficiency apply. Using Eqs. (2) and (3)
(employed also in Ref. [6] to evaluate work and heat fluxes
into the system), we obtain 〈ẇ(t )〉 = k̇(t )σ (t )/2 and 〈q̇(t )〉 =
k(t )σ̇ (t )/2. The equivalent heat engine with an equilibrium
bath has the bath temperature Teff (t ). It thus has the same
energy input (heat), as correctly noted in Ref. [6], but also
the same energy output (work). Accordingly, if Teff (t ) evolves
along a Stirling cycle, the efficiency η of the active engine,
determined by the ratio of output work over afforded heat,
is necessarily bounded by the Stirling efficiency. The non-
Gaussian fluctuations in the bath indeed affect the output
work, input heat, and efficiency of the engine, but only via
the mean square displacement σ , hence again via the appro-
priate effective temperature Teff . Assuming that heat and work
were accurately measured (which is supported by the correctly
measured Stirling efficiency in the case of inactive bacteria),
the observation of an efficiency surpassing the maximum
value for Stirling engines calls into question the notion that the
experimental engine realized a Stirling cycle with respect to
Teff (see also Ref. [30]). As we demonstrate next, the dynamic
effective temperature Teff (t ) may generally indeed vary in time
even while the ambient solvent temperature and the activity
remain constant.

III. LINEAR THEORY: DYNAMICS

Up to this point, we have not specified any particular
system dynamics and thus the described results are valid for
arbitrary time-evolution of the degrees of freedom x. To pro-
vide better insight and to show that a nonintuitive behavior
of effective temperatures can be expected, this section investi-
gates a specific (but from the point of view of Brownian heat
engines still quite generic) exactly solvable class of models.
Concretely, we analytically derive the effective temperature
for a class of one-parameter engines inspired by the experi-
mental work described above. We detail the mapping to the
equilibrium model and its consequences for the thermody-
namics of the active heat engine. In particular, we reveal a
nontrivial behavior of the effective temperature. This seems
to be the first explicit result of its type.

From now on, we specialize our discussion to a heat engine
consisting of a colloidal particle confined to a time-dependent
harmonic potential with an externally controlled stiffness k(t ),
as introduced in Eq. (9). We specify the dynamics by further
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FIG. 2. Schematic designs of microscopic heat engines based on
colloids in modulated harmonic traps, playing the roles of the work-
ing substance and the movable piston, respectively. (Left) Active
particle in a “passive” equilibrium bath. (Right) Passive particle in
an “active” nonequilibrium bath composed of energy consuming mi-
croswimmers immersed into a passive background fluid. To operate
the heat engine, the bath temperature and/or activity as well as the
confinement strength are modulated cyclically. Thereby “disordered”
energy dispersed in the bath and randomly propelling the colloid
against its confinement is concentrated in a degree of freedom that
can be externally harnessed to perform (mechanical) work.

requiring that the colloid is immersed in a (possibly) nonequi-
librium bath, which couples to it via a drag coefficient μ−1 and
a zero-mean additive noise η(t ), so that its position r = (x, y)�
obeys the overdamped linear Langevin equation

ṙ = −μk(t )r(t ) + η(t ). (11)

Depending on the noise correlations, which remain to be
prescribed and need not be Markovian, this equation can
describe various experimentally relevant situations. In Fig. 2,
we depict two of them that we discuss further below: namely,
an active particle or “microswimmer” immersed in a pas-
sive equilibrium bath (left) [65,66], and a (passive) colloid
immersed in an active nonequilibrium bath that is itself com-
posed of active particles swimming in a thermal background
solvent (right) [57,67–70]. Further examples are provided by
devices that share the same formal description on a suitably
coarse-grained level, such as noisy electric circuits and similar
Langevin systems [71].

In line with such realizations, the trapping potential (9) has
the harmonic standard form experimentally created with the
help of optical tweezers [6,14,15]. We have also taken advan-
tage of the fact that such experiments are typically designed
in a quasi-two-dimensional geometry, in narrow gaps between
two glass coverslips. For simplicity, the particle mobility is
represented by a constant scalar μ and the two-time correla-
tion matrix

Ci j (t, t ′) ≡ 〈ηi(t )η j (t
′)〉 ∝ δi j (12)

of the noise η = (ηx, ηy) by a diagonal form. Our analysis
can of course straightforwardly be generalized to arbitrary
dimensions and mobility matrices.

If η in Eq. (11) stands for the white noise, the model pro-
vides a good description for existing experimental realizations
of Brownian heat engines [14,15]. Their thermodynamics has
been thoroughly analyzed in the literature [25,72,73]. An ex-
ample for an experimental realization of the nonequilibrium-
noise version is the active Brownian engine with a bacterial
bath [6] discussed in the previous section. The performance

of a quasistatic Stirling heat engine based on the latter de-
sign was already nicely analyzed by Zakine et al. [30].
Its finite-time performance was numerically investigated in
Refs. [32,54,55]. In contrast to these studies, which employ
specific protocols, our approach is valid for arbitrary driving
protocols at arbitrary speeds.

Our first main result, to be derived in the following, con-
cerns the thermodynamics of the system described by Eq. (11)
with arbitrary time-periodic driving k(t ) and with a nonequi-
librium noise η with arbitrary time-periodic intensity. We refer
to it as the (linear) active heat engine, and show that it can
be mapped onto the well-investigated model with a passive
equilibrium bath [25,72,73], to which we refer as the passive
model:

ṙ(t ) = −μk(t )r(t ) +
√

2Deff (t )ξ(t ). (13)

Its bath is characterized by the Gaussian white noise ξ(t )
with zero mean, 〈ξ(t )〉 = 0, the unit correlation matrix matrix,
〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), and a time-dependent (effective)
temperature1

Teff (t ) = Deff (t )

μ
= 1

2μ
〈r(t ) · η(t )〉. (14)

Below, the latter is shown to follow solely from the two-time
correlation matrix C(t, t ′) of the noise η = (ηx, ηy). Since the
passive model (13) and the corresponding temperature (14)
describe the active model only effectively, in terms of its
average thermodynamic properties, (13) and (14) are referred
to as an effective passive model and an effective temperature,
respectively.

The existence of this mapping immediately implies that
the performance of the active heat engine in terms of its
output power and efficiency is precisely that of the corre-
sponding effective equilibrium model. Therefore the known
bounds on (finite-time) performance of cyclic Brownian heat
engines described by Eq. (13), such as the ultimate Carnot
efficiency bound [74], the efficiency at maximum power [25],
the maximum efficiency at arbitrary power [72,75], and the
possibility to almost attain the reversible efficiency at nonzero
power [73], directly carry over to the active heat engine.
Furthermore, the effective equilibrium model also sets bounds
on average thermodynamic variables for noncyclic and even
transient processes. Yet, the nonequilibrium character of the
underlying dynamics reveals itself upon closer inspection, as
detailed in the remainder of the paper.

IV. LINEAR THEORY: EFFECTIVE TEMPERATURE

A. General initial conditions

It is a noteworthy property of the linear theory and the
experiments that motivate it that thermodynamic quantities
like work, heat, and efficiency are all determined solely by
the variance σ (t ) of the colloidal position, see Sec. II D. The

1Here and in the rest of the paper, we use the Stratonovich con-
vention. See Sec. VI D for an explicit calculation of the effective
temperature for the ABE model.
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variance σ (t ) itself obeys the ordinary differential equation

σ̇ (t ) = −2μk(t )σ (t ) + 2〈r(t ) · η(t )〉 (15)

which follows from Eq. (11) by taking the scalar product with
r on both sides and averaging over the noise. For arbitrary
additive noise η, Eq. (11) has the formal solution

r(t ) = r0e−K (t,t0 ) +
∫ t

t0

dt ′ η(t ′)e−K (t,t ′ ), (16)

with K (t, t ′) ≡ μ
∫ t

t ′ dt ′′ k(t ′′) and r0 ≡ r(0) denoting an arbi-
trary initial position of the particle. With the two-time noise
correlation matrix, C(t, t ′) from Eq. (12), the average in
Eq. (15) evaluates to

〈r(t ) · η(t )〉 = 2Deff (t ) ≡ 〈r0 · η(t )〉e−K (t,t0 )

+
∫ t

t0

dt ′ Tr[C(t, t ′)]e−K (t,t ′ ), (17)

where Tr denotes the trace operation. A crucial observation is
that Eq. (15) therefore assumes a form that would also result
from the Gaussian white noise η = √

2Deff (t )ξ(t ) with the
correlation matrix Ci j (t, t ′) = 2

√
Deff (t )Deff (t ′)δi jδ(t − t ′).2

This implies that the average thermodynamic behavior of the
active model (11) with arbitrary additive noise is the same as
that of the passive model (13) with an effective equilibrium
bath temperature

Teff (t ) = Deff (t )

μ
= 〈r(t ) · η(t )〉

2μ
= k(t )σ (t )

2
+ σ̇ (t )

4μ
. (18)

The last expression follows from Eq. (15). It shows that also
the effective temperature is uniquely given by the variance σ .
Notably, the result (18) is valid arbitrarily far from equilibrium
and it does not follow from any close-to-equilibrium linear-
response approximation like in the Green-Kubo formula [76].

Also note that for positive effective temperature Teff (t ) �
0, Eq. (18) establishes the announced mapping between the
active and passive heat engine and thus proves our main result.
Negative effective temperatures can however be obtained, for
example, during transients departing from initial conditions
with 〈r0 · η(t )〉 < 0. At late times, the sign of the effective
temperature is determined by the integral in Eq. (17), which
is positive for standard correlation matrices C(t, t ′) with non-
negative diagonal elements. For a quasistatic process, where
the system parameters vary slowly compared to the intrinsic
relaxation times, one can neglect σ̇ (t ) relative to the other
term in Eq. (18). The effective temperature then reduces to
the well-known form [6]

Teff (t ) = k(t )σ (t )/2. (19)

For slowly driven systems, the effective temperature is thus
always positive, thanks to the positivity of the trap stiffness k
and variance σ .

2This can be seen by substituting this expression for matrix C into
the right-hand side of Eq. (17) and evaluating the integral therein.
We further assume that the initial condition is not correlated with the
equilibrium noise, 〈r0 · ξ〉 = 0, which is quite natural.

B. Cyclic heat engines

The definition (18) of the effective temperature applies
both under transient and stationary conditions. Cyclic heat
engines operate time periodically by virtue of their periodic
driving. Accordingly, we assume that the potential stiffness
k(t ) is a periodic function with period tp and that the noise
correlation matrix is of the form

Ci j (t, t ′) = 2δi j I (t )I (t ′) fi(t − t ′), (20)

where I (t ) stands for a tp-periodic intensity of the noise, and
fi(t ) are arbitrary functions obeying fi(0) = 1 and decaying
towards zero as t → ∞. The system dynamics then settles
onto a time-periodic attract or, independent of the initial
condition r0, at late times. From now on, we assume that
the engine operates in this “steady state” regime, to which
we refer as the limit cycle. During the cycle, the effective
temperature Teff (t ) takes the form [see Eqs. (17) and (18)]

1

μ
I (t )

∫ t

−∞
dt ′ I (t ′)[ fx(t − t ′) + fy(t − t ′)]e−K (t,t ′ ). (21)

Importantly, for positive diagonal elements of the correlation
matrix, the effective temperature is then manifestly positive,
as required to map the active onto the passive model.

C. (Im)possible generalizations

The simplifying power of the present approach crucially re-
lies on two main features. Firstly, on the linearity of Eq. (11),
and secondly on the fact that thermodynamics is predomi-
nantly concerned with average energetics.

For the active heat engines discussed in the present con-
tribution, the pertinent microscopic degree of freedom is the
position of the colloid. Its thermodynamics is contained in
the variance σ = 〈r · r〉, which controls the complete average
energetics (work and heat) of the engine through Eqs. (4)
and (5). However, the described mapping to a passive-bath
model cannot be extended beyond such average energetics,
since the active (11) and passive (13) heat engines differ in
variables which depend on higher moments of the position
r or its complete distribution. This is for example the case
for the total entropy or the fluctuations of work, heat and en-
tropy. Without further investigation, one thus cannot take for
granted the results obtained under the assumption of a perfect
contact with an equilibrium bath, such as the Jarzynski equal-
ity [60], the Crooks fluctuation theorem [63], the Hatano-Sasa
equality [77,78], and various inequalities containing higher
moments of work, heat, and entropy, such as thermodynamic
uncertainty relations [79–82].

Also note that, for a true equilibrium noise η, the (effec-
tive) temperature Teff in Eq. (14) would agree with all other
possible definitions of temperature, thereby tying together
many a priori unrelated dynamical quantities (e.g., by their
structurally identical Boltzmann distributions or fluctuation-
dissipation theorems, etc.). However, for a nonequilibrium
noise, differently defined temperatures can (and generally
will) have different values. We refer to Refs. [45,83–90] for
various (complementary) approaches to effective tempera-
tures and Refs. [47,64,91,92] for some reviews. Moreover, as
illustrated by the ABP results (42) and (43) in Appendix D,
typical nonequilibrium distributions deviate strongly from
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Boltzmann’s Gaussian equilibrium distribution, such as
the one characterizing the long-time limit of the equilib-
rium process, Eq. (13), at constant Teff —namely, ρ(r) ∝
exp[−kr2/2Teff ]. Therefore, in order to build an effective
thermodynamic description from a nonequilibrium statistical-
mechanics model, one generally has to calculate precisely the
effective temperatures corresponding to the relevant degrees
of freedom, under the prescribed conditions.

This leads to the mentioned second limitation of the pre-
sented effective-temperature mapping, namely that it hinges
on the linearity of the model. To make the point, let us con-
sider a one-dimensional setting with the potential H(x, t ) =
k(t )xn/n when the Langevin equation for position x reads

ẋ(t ) = −k(t )[x(t )]n−1 + η(t ) (22)

and the internal energy, work, and heat (per unit time) are
given by 〈H(t )〉 = k(t )〈[x(t )]n〉, Ẇ (t ) = k̇(t )〈[x(t )]n〉, and,
Q̇(t ) = k(t )d〈[x(t )]n〉/dt , respectively. In order to describe
the average thermodynamics, we thus have to consider the
dynamics of the nth moment 〈[x(t )]n〉. Multiplying Eq. (22)
by xn−1 and averaging the result over the noise, we find that

d

dt
〈[x(t )]n〉 = −nk(t )〈[x(t )]2n−2〉 + n〈[x(t )]n−1η(t )〉. (23)

Thus, in order to get an exact closed dynamical equation for
〈[x(t )]n〉, we also need a dynamical equation for 〈[x(t )]2n−2〉
which, in turn, depends on the moment 〈[x(t )]3n−4〉, and so
on. However, out of equilibrium each degree of freedom (and,
also each moment 〈[x(t )]n〉) has, in general, its own effective
temperature, if such a set of effective temperatures can con-
sistently be defined at all.

Recall that the development of a useful (finite-time) ther-
modynamic description based on a time-dependent effective
temperature requires a system with equilibrium noise that
yields the same (time-resolved) dynamics of the relevant mo-
ments, for which our above discussion of the variance of the
linear model (11) provides the paradigm. This means that we
would have to develop a passive model with an equilibrium
noise that gives rise to precisely the same dynamics of all the
moments in Eq. (23) as the original nonlinear active model.
Even though our general discussion in Sec. II C shows that
for the considered one-parameter potential (Hamiltonian) this
should always be possible, this can get very difficult to achieve
analytically [90] if the moments represent independent effec-
tive degrees of freedom so that their effective temperatures
differ.3 Nevertheless, in this case it should be possible to
find the effective temperature numerically. As discussed in
Sec. II C, for Hamiltonians that are not proportional to a
single control parameter we are not able to give any general
conclusions.

Despite these limitations, there are also many important
properties that can successfully be captured by the effective-
temperature mapping. In the next section, we review its
consequences for the performance of active heat engines.

3A way to overcome this limitation, leading to an approximate
analytical effective temperature, might be based on finding a suitable
(approximate) closure for Eq. (23), so that it would only depend on a
finite number of moments.

Experts in stochastic thermodynamics may wish to continue
directly with Sec. VI, where we derive and discuss more spe-
cific analytical results based on the so-called active Brownian
particle (ABP) model with an exponential correlation matrix.

V. LINEAR THEORY: THERMODYNAMICS

A. Effective entropy production

As described above, the dynamics of the variance in the
active model (11) can be mimicked exactly by the effective
passive model in (13) with an equilibrium bath at the time-
dependent temperature Teff (t ), as long as the latter does not
transiently turn negative. The noise intensity Deff (t ) and the
mobility 1/μ in Eq. (13) are thus related by the fluctuation-
dissipation relation Deff = μTeff . Recall that the variance
determines the average thermodynamics of the active engine
in terms of work, heat, and efficiency. In particular, due to our
interpretation of the thermodynamic variables, the (average)
performance of the active heat engine is the same as that
of a passive heat engine based on Eq. (13) and can thus be
taken over from the known thermodynamics of classical heat
engines [9,25,26]. In fact, such a (partial) thermodynamic
framework based on the first and second law of thermody-
namics is a crucial requirement for a consistent extension of
the conventional notion of efficiency to conditions far from
equilibrium.

For pedagogical reasons and for completeness, we gather
the explicit expressions that summarize the thermodynamics
of the linear active heat engine, here. The work reads

W (ti, tf ) = 1

2

∫ tf

ti

dt k̇(t )σ (t )︸ ︷︷ ︸
Ẇ (t )

= 1

2

∫ k(tf )

k(ti )
dk σ, (24)

and the exchanged total heat is given by

Q(ti, tf ) = 1

2

∫ tf

ti

dt k(t )σ̇ (t )︸ ︷︷ ︸
Q̇(t )

= 1

2

∫ σ (tf )

σ (ti )
dσ k. (25)

The cycle output work and input heat are still given by Eqs. (6)
and (7). Since k > 0, the latter now explicitly reads

Qin(tp, 0) = 1

2

∫ tp

0
dt kσ̇�(σ̇ ) (26)

A main result (to be derived below) is the explicit formulation
of the second law of thermodynamics in terms of the mapping
to the passive model. It states that the active engine has a
nonnegative total effective (in the sense of the mapping to the
passive model) entropy-production rate

Ṡeff
tot (t ) = μTeff(t ) σ (t )

[
2

σ (t )
− k(t )

Teff(t )

]2

� 0. (27)

Thermodynamically, the entropy production can always be
decomposed into the contributions

Ṡeff
tot (t ) = Ṡeff(t ) + Ṡeff

R (t ) (28)

due to the working substance itself and due to the entropy
change in the (effective) heat bath, respectively. Since, by
definition, the heat flow from/into an equilibrium heat bath is
reversible, the entropy change of the bath obeys the Clausius
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equality,

Ṡeff
R (t ) = − Q̇(t )

Teff (t )
= −k(t )σ̇ (t )

2Teff (t )
. (29)

For the system entropy, one merely has the weaker Clausius
inequality

Ṡeff (t ) � −Ṡeff
R (t ) = Q̇(t )/Teff (t ) . (30)

It can be turned into an equality if a quasistatic driving
protocol is employed, which then also optimizes the thermo-
dynamic efficiency of the active heat engine.

We now show how these results follow from the statistical-
mechanics description. First and foremost, note that the
linearity of Eq. (13) ensures that the stochastic process r(t )
is a linear functional of the Gaussian white noise ξ(t ). The
probability density for the particle position r = (x, y) at time
t is therefore also Gaussian, namely

peff (x, y, t ) = 1

πσ (t )
exp

[
− (x2 + y2)

σ (t )

]
, (31)

and can easily be seen to solve the Fokker-Planck equation

∂ peff

∂t
= ∇r · [μ∇rV (r) + Deff∇r]peff (32)

with ∇r = (∂x, ∂y). The corresponding Gibbs-Shannon en-
tropy

Seff(t ) = −
∫ ∞

−∞
dx

∫ ∞

−∞
dy peff ln peff = ln σ (t ) + ln π + 1

(33)

is thus solely determined by the variance σ (t ) of the PDF (31),
and therefore changes with the rate

Ṡeff(t ) = σ̇ (t )

σ (t )
. (34)

The second law in the form given in Eq. (27) now follows
by inserting Eqs. (29) and (34) into Eq. (28) and using
Eq. (15) for the time derivative of the variance in the form
σ̇ = 4μTeffσ (1/σ − k/2Teff ), after rearranging the resulting
terms.

To make the entropy production vanish, which corresponds
to the equal sign in Eqs. (27) and (30), one has to drive
the engine quasistatically. This amounts to setting σ̇ = 0 in
Eq. (18), which yields

σ (t ) = σ∞(t ) ≡ 2Teff (t )/k(t ) . (35)

For a quasistatic driving, the rates of change (29) and (34) of
the reservoir and system entropies also both vanish, since they
are proportional to the vanishing time derivative σ̇ = 0. How-
ever, this feature alone might not be enough for concluding
that the entire entropy

�Seff
tot (tp) =

∫ tp

0
dt ′Ṡeff

tot (t ′) (36)

throughout the whole cycle vanishes as tp → ∞, since it de-
pends on how large tp must be to ensure quasistatic conditions,
which in turn depends on the intrinsic relaxation behavior of
the working substance (in our case the trapped colloid) [52].

It is a consequence of the fluctuation-dissipation relation ful-
filled by the effective equilibrium model that the rates of
change (29) and (34) of the reservoir and system entropies
converge to each other fast enough that the whole quasistatic
cycle is reversible and (36) vanishes for large tp. We come
back to this issue in Sec. VI, where we analyze an explicit
model realization.

B. Efficiency bounds

For an arbitrary cycle, the Clausius inequality (30) can,
via standard manipulations [58], be rewritten in terms of the
quasistatic (qs) bounds for the output work Wout and efficiency
η, respectively,

Wout � W qs
out, (37)

η � ηqs � ηC = 1 − min(Teff )

max(Teff )
. (38)

According to the discussion in the previous section, these
conditions identically constrain the active heat engine. Given
any driving protocol for the variation of the control parameters
k(t ) and Teff (t ), etc., along the cycle, the largest output work
per cycle and the largest efficiency are thus attained for qua-
sistatic driving with tp → ∞. The ultimate (Carnot) efficiency
limit ηC for the active engine is thus reached in a quasistatic
Carnot cycle composed of two “isothermal” branches, with
constant Teff , interconnected by two “adiabatic branches,”
with constant entropy (33) and variance σ∞.

Similarly, the mapping to the passive model (13) implies
that the finite-time performance of the active heat engine is
the same as that of its effective passive replacement. For
convenience, we summarize some consequences of this ob-
servation, here. The quasistatic conditions, needed to reach
the upper bound ηC on efficiency exactly, imply infinitely
slow driving and thus vanishing output power. Naturally,
such powerless heat engines are uninteresting for practical
purposes [72], where only finite-time processes are relevant,
and, thus, other measures of engine performance have been
proposed. A prominent role among them plays the maxi-
mum power condition. Schmiedl and Seifert [25] showed that
overdamped Brownian heat engines deliver maximum power
if they operate in the so called low-dissipation regime [93].
Their analysis implies that the efficiency at maximum power
of the active heat engine is given by

ηMP = 1 −
√

min(Teff )

max(Teff )
. (39)

This result applies if the engine is driven along a finite-time
Carnot cycle composed of two isotherms of constant Teff and
two infinitely fast adiabatic state changes at constant σ , with
a suitable protocol for the trap stiffness k(t ) that minimizes
the work dissipated during the isothermal branches. We also
note that the maximum-power condition was investigated for
a specific class of active colloidal heat engines in Ref. [31].

Actual technical realizations of heat engines are usually
designed for a certain desired power output. Thus, even more
useful than the knowledge of the efficiency at maximum
power is the knowledge of maximum efficiency at a given
power. Like the former, the latter is, for a Brownian heat
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engine of fixed design, attained when operating in the low-
dissipation regime along a finite-time Carnot cycle [75,94,95].
The exact numerical and approximate analytical value of
the maximum efficiency at arbitrary power for our setting
can be obtained using the approach of Ref. [75]. Another
universal result, applicable to the active Brownian heat en-
gine, is that, for powers P close to the maximum power
P�, the efficiency increases infinitely fast with decreasing
P (i.e., |dη/dP|P→P� | → ∞) [50,75]. Therefore it is usu-
ally advantageous to operate heat engines close to maximum
power conditions [small δP = (P� − P)/P�], rather then ex-
actly at these conditions (δP = 0) [94]. Moreover, the results
of Refs. [75,94,95] show that ηC can be attained only in the
limit δP → 1, where either the power P completely vanishes,
or it is negligible with respect to the maximum power P�.
Recently, this insight led to a proposition of protocols yielding
very large maximum power, thus allowing Brownian heat
engines to operate close to (and practically with) Carnot’s
efficiency at large output power [72,73]. As discussed in the
following paragraph, active Brownian heat engines offer an
alternative route for achieving this.

In the following sections and in Appendix D, we explicitly
analyze a specific realization of an active heat engine to illus-
trate the merits and limitations of the mapping to the “passive
dynamics” (13), with an equilibrium bath.

VI. WORKED EXAMPLE: THE ABE MODEL

A. Model definition

To exemplify the above findings for a specific model, we
now consider the so-called ABP model. It is the standard
minimal model for a particle embedded into an equilib-
rium bath at temperature T but actively propelling with
velocity v(t ) = v(t )n(θ ) in the direction determined by the
diffusing unit vector n(θ ) at angle θ (t ). Encouraged by
experimental evidence [6,57,67] and in accord with the-
oretical studies based on a rigorous elimination of (fast)
active degrees of freedom [96,97], the ABP model with har-
monic confinement [Fig. 2(a)] has recently also been used
to model passive Brownian colloids embedded in an active
bath [Fig. 2(b)] [30,32,68–70]. Indeed, within the formalism
for a general additive noise outlined above, the ABP model
provides us with a simple realization of Eq. (11) in terms of a
trapped colloid driven by the nonequilibrium noise

η =
√

2D(t )ξ + v(t ) . (40)

Here the components of ξ = (ξx, ξy) are mutually indepen-
dent zero-mean unit-variance Gaussian white noises, but the
velocity term v prohibits a straightforward equilibrium inter-
pretation. It contributes an exponential term to the total noise
correlation matrix

Ci j (t, t ′) = 〈ηi(t )η j (t
′)〉 = δi j

[
2
√

D(t )D(t ′)δ(t − t ′) + 1

2
v(t )v(t ′) exp

{
−

∫ max(t,t ′ )

min(t,t ′ )
dt ′′ Dr(t

′′)
}]

. (41)

Such exponential memory has indeed also been found in
a weak-coupling model for a passive tracer in an active
bath [96,98]. Besides, it is often employed as a tractable model
for the complex correlations arising in strongly interacting
systems.

For the following, we assume that the translational dif-
fusion coefficient D(t ) obeys the Einstein relation D(t ) =
μT (t ), but do not constrain the rotational diffusion coefficient
Dr(t ) in the same way. The latter describes the free diffusion
of the particle orientation n on a unit circle and is incorporated
into the ABP equations of motion [65,99,100] through yet
another independent zero-mean unit-variance Gaussian white
noise ξθ , 〈ξθ (t )ξθ (t ′)〉 = δ(t − t ′). The ABP equations then
read

ṙ(t ) = −μkr(t ) + v(t ) +
√

2D(t )ξ(t ) (42)

θ̇ (t ) =
√

2Dr(t )ξθ (t ) . (43)

That the ABP model provides a proper nonequilibrium active
noise, as desired for Eq. (11), is not only apparent from
the two-time correlation matrix (41), which fixes the average
thermodynamics of the model in a way that is not consistent
with a fluctuation-dissipation relation. It is further manifest in
higher order correlation functions [101] that are sensitive to
the non-Gaussian character of the noise (40). As illustrated
in Appendix D, this for example allows for a bimodal dis-
tribution of the coordinates x and y, so that the ABP model
captures some of the generically non-Gaussian character of

nonequilibrium fluctuations, lost in another widely employed
active-particle model that represents the active velocity as an
Ornstein-Uhlenbeck process [66]. We note that these proper-
ties are essentially caused by the variable rotational noise ξθ

and persist in a constant-speed (v = const. �= 0) version of the
model.

To emphasize the paradigmatic character of the heat engine
described by the ABP Eqs. (42) and (43) with perdiodically
driven parameters k(t ), T (t ), v(t ), Dr (t ), we refer to it as the
ABE model. It involves three ingredients that can potentially
drive it far from equilibrium: (i) If the stiffness k(t ) changes
on time-scales shorter than the intrinsic relaxation time, the
particle dynamics is not fast enough to follow the protocol
adiabatically. (ii) If the rotational diffusion coefficient Dr is
not constrained by the Einstein relation, the rotational degree
of freedom can be considered connected to a second bath at a
temperature distinct from T . In general, connecting a system
to several reservoirs at different temperatures drives it out of
equilibrium. (iii) Finally, the velocity term in the Langevin
system is formally identical to a nonconservative force giving
rise to persistent currents that prevent equilibration.

B. Cyclic driving protocol

Our driving protocol involves a periodically modulated
stiffness k, reservoir temperature T , rotational diffusion co-
efficient Dr, and active velocity v. We let the system evolve
towards the limit cycle, where we analyze its performance.
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FIG. 3. The driving protocol of the ABE [(a)–(d)] and the ef-
fective temperature (e) that maps it to a passive model: (a) trap
stiffness, (b) bath temperature, (c) rotational diffusion coefficient,
and (d) active velocity, all as functions of time during the limit cycle.
The full blue line in (e) depicts the effective temperature Teff(t ) of
Eq. (51), the dashed line its limit (52) for a quasistatic (infinitely
slow) driving. Parameters used: tp = 1, k< = 5, k> = 5.5, T> = 2,
T< = 1, D>

r = 0.055, D<
r = 0.05, v> = 4, v< = 0, and μ = 1.

While the following theoretical discussion applies to arbitrary
periodic driving, we exemplify our results with a specific
Stirling-type protocol that mimics the experimental setup of
Ref. [6] (see Fig. 3). It consists of four steps of equal duration
(tp/4):

(i) “Isothermal” compression A → B: the stiffness k
increases linearly from k< to k> at constant noise strength cor-
responding to the temperature T = T< and activity {Dr, v} =
{D<

r , v<}.
(ii) “Isochoric” heating B → C: the noise strength

{T, Dr, v} increases linearly from {T<, D<
r , v<} to

{T>, D>
r , v>} at constant stiffness k = k>.

(iii) “Isothermal” expansion C → D: the stiffness de-
creases linearly from k> to k< at constant noise strength
{T>, D>

r , v>}.
(iv) “Isochoric” cooling D → A: the noise strength de-

creases back to its initial value at constant stiffness k = k<.
Note that the “isothermal” state changes are characterized

by constant bath temperature and activity, which in general
corresponds to a varying effective temperature [see Fig. 3(e)].
As explained in Secs. II B and V A, the engine consumes (per-
forms) work when k̇ > 0 (k̇ < 0), i.e., from A → B (C → D)
as a standard Stirling engine. On the other hand, heat is ab-
sorbed (emitted) from (to) the reservoir when σ̇ > 0 (σ̇ < 0)

and the corresponding portions of the cycle might be different
than for the standard Stirling engine, depending on the behav-
ior of the variance σ .

C. Variance dynamics in the limit cycle

During the limit cycle, which is attained at late times, the
dynamics of the variance σ (t ) = 2σx(t ) = 2σy(t ) [due to the
symmetry of Eq. (42)] is for arbitrary time-periodic driving
governed by the two coupled ordinary differential equations

Ḣ (t ) = −[μk(t ) + Dr(t )]H (t ) + v(t ), (44)

σ̇ (t ) = −2μk(t )σ (t ) + 4D(t ) + 2v(t )H (t ) . (45)

Here, the term 2D(t ) + v(t )H (t ) determines the long-time
time-periodic behavior of the average 〈r(t ) · η(t )〉. See
Appendix A for details of derivation of Eqs. (44) and (45).
Their general solution reads

H = H0e−F (t,0) +
∫ t

0
dt ′ v(t ′)e−F (t,t ′ ), (46)

σ = σ0e−2K (t,0) + 4
∫ t

0
dt ′ Deff(t

′)e−2K (t,t ′ ) (47)

with functions K (t, t0) = μ
∫ t

t0
dt ′k(t ′), F (t, t0) = K (t, t0) +∫ t

t0
dt ′Dr(t ′), and Deff(t ) = D(t ) + v(t )H (t )/2. The constants

H0 =
∫ tp

0 dt ′ v(t ′)e−F (tp,t ′ )

1 − e−F (tp,0) , (48)

σ0 = 4

∫ tp
0 dt ′ Deff(t ′)e−2K (tp,t ′ )

1 − e−2K (tp,0) (49)

secure the time-periodicity of the solution and thus they are
fixed by the conditions H (tp) = H (0) and σ (tp) = σ (0).

Quasistatic conditions correspond to slow driving relative
to the relaxation times τH = 1/(μk + Dr ) and τσ = 1/(2μk)
for H and σ , respectively. That allows the dynamics of the
functions H and σ to be regarded as relaxed, Ḣ = σ̇ = 0,
from which one gets the quasistatic variance

σ (t ) → σ∞(t ) ≡ 2

k

(
T + v2

2μ

1

kμ + Dr

)
. (50)

The leading correction in the driving speed is derived in
Appendix B. Conversely, if the driving is fast relative to the
relaxation times τH and τσ , the colloid cannot respond to the
changing parameters k, T , v and Dr, and its variance is given
by Eq. (50) with time-averaged parameter values.

At intermediate rates, the complete expression (47) has
to be used. To make sure that we calculate the nested inte-
gral correctly, we cross-check the obtained results with two
independent methods, Brownian Dynamics (BD) simulations
and numerical solutions [102]. The finite-time variances fol-
low the quasistatic ones like carrot-chasing donkeys, i.e., the
variance decreases (increases) if it is larger (smaller) than the
stationary value σ∞ corresponding to the given value of
the control parameters, cf. Figs. 4(b)–4(d). The discrepancy
between the quasistatic and the finite-time predictions in-
creases for faster driving and moreover grows with the activity
ratio v>/v<. As intuitively expected, and suggested by the
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FIG. 4. Positional variance σ (t ) = 〈r · r〉 over time for the pro-
tocol shown in Fig. 3. Increasing activity v> = 0, 2, 4 yields an
increasing variance σ . (a) Brownian dynamics (BD) simulations of
the relaxation to the limit cycle. [(b)–(d)] The dynamics on the limit
cycle in BD simulations (solid green), numerical solutions [102]
(dot-dashed black), and from the analytical formula (47) (dotted
red), shows perfect agreement, despite considerable distance from
the quasistatic limit (50) (broken blue lines).

role of v in Eq. (45), larger active velocities lead to larger
variances.

D. Effective temperature

Comparing Eqs. (15), (18), and (45), we find for the effec-
tive temperature of the ABE on the limit cycle

Teff(t ) = Deff(t )

μ
= T (t ) + v(t )H (t )

2μ
. (51)

Its value is always larger than the bath temperature T . Apart
from the latter, it also depends on the activity v, mobility μ,
trap stiffness k, and rotational diffusion coefficient Dr . All
the parameters, except for T , enter Teff indirectly, and in a
complex way, through the differential equation (44) for H .
The effective temperature thereupon acquires the characteris-
tic relaxation time, τH = (μk + Dr )−1. Its quasistatic limiting
form (19) explicitly reads

Teff (t ) → T ∞
eff (t ) ≡ kσ∞

2
= T + v2

2μ

1

kμ + Dr
. (52)

The effective temperature possesses several counter-
intuitive features. First, in case of periodically modulated
activity or trap stiffness, it varies in time, even if the bath

temperature is held constant. Moreover, due to its dynamical
nature and finite relaxation time, it generally does so even
when the parameters T , v, Dr, and k are held constant. Hence,
to realize a proper (effectively) isothermal process with con-
stant Teff , one has to carefully tune the control parameters.
This is most easily achieved under quasistatic conditions, as
demonstrated in Fig. 3(e). There we plot the effective temper-
ature (51) (full blue line) and also its quasistatic limit (52),
which would be obtained at very slow driving (black dotted
line). For the chosen parameters, the quasistatic effective tem-
perature (52) runs approximately along a Stirling cycle, in
accord with the temperature T (t ) and activity v(t ) [Figs. 3(b)–
3(d)]. Conversely, the finite-time effective temperature (51)
exhibits substantially different behavior.

Before going into more details, we now outline three ther-
modynamically consistent interpretations of the ABE model
and derive the corresponding entropy productions. In the
discussion of quasistatic and finite-time performance of the
engine in Secs. VIII A and VIII B, respectively, we utilize
these entropy productions as examples of variables that are not
captured by the effective-temperature mapping (13). Another
example is the full distribution of the particle position, which
we discuss in Appendix D.

VII. ABE ENTROPY PRODUCTION

As a genuinely nonequilibrium system, any active heat
engine always produces entropy, even if operated infinitely
slowly. However, how much of that entropy we can (or care
to) track depends on our experimental resolution (and inter-
pretation of the engine).

A. User perspective

On the coarsest level of description, which might be
adopted by a user of the heat engine, only the supplied heat
and the harvested output work matter. Their ratio is the natu-
ral measure of efficiency, which is bounded by the optimum
(Carnot) efficiency determined by the effective temperature
Teff. As we have discussed, this temperature can experimen-
tally be measured for the model of a trapped Brownian
particle, namely by a device sensible to the variance σ of the
particle position; see Fig. 5(a). The thermodynamics of the
active heat engine is thereby mapped to that of an ordinary en-
gine with an equilibrium bath and obeys the same limitations.
Accordingly, the user would conclude that the total dissipated
cycle entropy

�Seff
tot =

∫ tp

0
dt Ṡeff

tot =
∫ tp

0
dt Ṡeff

R (53)

is given by the net entropy change per cycle in the bath, which
thus solely controls the degree of irreversibility of the cycle.
To compute the latter, the user would resort to the expression
given in Eq. (29) of Sec. V A, namely,

Ṡeff
R = −Q̇/Teff ≡ Q̇eff

dis/Teff . (54)

Since the particle dynamics is modelled within an overdamped
Stokes approximation, the corresponding “effective” dissipa-
tion Qeff

dis to the effective equilibrium bath is straightforwardly
given by the force acting on the particle times its velocity
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FIG. 5. Different levels of control over the system imply dif-
ferent changes in the bath entropy. (a) Mere “users” of an active
heat engine are only concerned with its thermodynamic input/output
characteristics. They judge reversibility and entropy changes with
respect to an effective equilibrium bath (red particles) at a fictitious
temperature Teff larger than the temperature T of the background
solvent [yellow particles in (b) and (c)]. More detailed knowledge
about the engine’s internal working substance (here the ABP par-
ticle) and its dynamics uncovers the nonequilibrium character of
the system, which depends on the time-reversal properties of its
dynamics [35,36]. If the active velocity v in the ABE results from
dragging or pushing the particle through the liquid by an external
force F (b), the particle behaves like a sailboat and the change in bath
entropy obeys Eq. (59). If the particle is self-propelled or advected by
the surrounding liquid with velocity v like a surfboard (c), the bath
entropy obeys Eq. (60).

(averaged)

Q̇eff
dis = −〈∇rH · ṙ〉 = −k(t )σ̇ (t )/2. (55)

Importantly, the user is not concerned with other details of
the nonequilibrium bath than the variance σ and the effective
equilibrium temperature Teff it provides. He would thus adopt
the above expressions for arbitrary noise in Eq. (11), regard-
less of the underlying physics of the bath. For the specific
ABE realization of the active heat engine, these expressions
can explicitly be evaluated using Eqs. (45), (47), and (51).
This notion of entropy production, directly derived from the
notion of system entropy consistent with the second law for
the supplied heat and the harvested output work, is the only
one to safely yield efficiency bounds compatible with conven-
tional definitions. It is thus arguably the most pertinent one in
the context of active heat engines.

B. Trajectory perspective

In contrast to the above user, a heat engineer would pos-
sibly consider the engine at a higher resolution and have
access to the individual stochastic trajectories of the particle

position generated by Eq. (11). Thereby, she could uncover
the nonequilibrium character of the active heat bath, which
dissipates energy even if the engine operates under quasistatic
conditions. To this end, she could evaluate the dissipation
per cycle in the form 〈ln PF(�)/PR(��)〉, exploiting a rela-
tion often referred to as local detailed balance condition. It
relates the symmetry breaking between the path probabilities
PF(�) and PR(��) for paths � and their time-reversed images
�� to dissipation. (For more details, see Appendix C and
Refs. [103,104].) The method can in principle be applied re-
gardless of the physics underlying the noise term in Eq. (11), if
one can observe or otherwise guess the time-reversed dynam-
ics. See Ref. [104] for an example of a successful application
of such a strategy to biological systems. In general, this will
however technically require assumptions or knowledge of the
time-reversed noise dynamics, i.e., microscopic information
beyond that of the stochastic (forward) trajectories of the
particle position. Such information is seldom available out-
side the realm of detailed models of the mesoscopic physics.
For specificity, we therefore now consider explicitly the ABE
model, based on the concrete ABP model.

C. ABP perspective: sailboats versus surfboards

For ABP’s, the noise η comprises the (time-symmetric)
equilibrium white noise

√
2Dξ together with the active

propulsion v. The colloid could be a randomly (self-) pro-
pelled active particle or a schematically modeled passive
tracer in an active bath [6,30]. In any case, its active velocity
v is due to a dissipative process and admits two alterna-
tive interpretations, depending on its presumed time-reversal
properties [35,36]. Namely, it can be understood as a Stokes
velocity caused by an external (random) force v(t )/μ, the
so-called swim force. This very common interpretation, de-
picted in Fig. 5(b), treats the particle like a sailboat blown
around by erratic winds, which is why we refer to it as the
“sailboat” interpretation. Or, in a second interpretation, de-
picted in Fig. 5(c), the active term v(t ) can be interpreted
as the actual swim velocity of a microswimmer that either
“sneaks” through the quiescent background solvent by an
effective phoretic surface slip v(t ) [46,105,106] or is passively
advected by a local flow field v(t ) [107,108]. We refer to it
as the “surfboard” interpretation. It treats v(t ) as a proper
dynamic velocity as opposed to the disguised force in the
sailboat interpretation. Upon time reversal, forces usually do
not change the sign, while velocities do. The detailed balance
condition then implies that the rate of entropy change in the
bath reads

Ṡ±
R = Q̇±

dis/T , (56)

for sailboats (+) and surfboats (−), respectively [109–111].
The corresponding dissipation rates are

Q̇+
dis = 〈(v/μ − ∇rH) · ṙ〉 = Q̇eff

dis + v2/μ − 〈∇rH · v〉 ,

(57)

Q̇−
dis = 〈−∇rH · (ṙ − v)〉 = Q̇eff

dis + 〈∇rH · v〉 . (58)

We refer to Appendix C for details of the formal derivation,
and discuss these results on a physical basis. In the dissipation
rate Q̇+

dis for sailboats, the swim term is added as an additional
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force (intuitively the wind drag) to the potential force. In con-
trast, for surfboards, it is subtracted from the particle velocity
corresponding to a reformulation of the equation of motion in
a frame that is freely co-moving with the flow velocity v(t ).

Since Q̇+
dis(t ) and Q̇−

dis(t ) have different reference points
(vanishing for sailboats blown against the quay and surfboards
floating freely with the surf, respectively), the two dissipation
rates can not generally be ordered according to their magni-
tude for the ABE, where both situations may (approximately)
be encountered along the cycle. Also note that the detailed
balance condition imposes that the heat is dissipated in the
background solvent at temperature T (t ), which is natural
from the point of view of the ABP model. As a conse-
quence, also different amounts of entropy production will be
assigned to the self-propulsion, dependent on the chosen ABP
interpretation.

They can both be understood as composed of the effec-
tive dissipation Qeff

dis(t ) over the solvent temperature T (t ) �
Teff(t ), plus some extra (manifestly active) entropy production
due to the particle’s excursions off the surf or off the quay,
respectively,

T Ṡ+
R = Q̇eff

dis + v2/μ − 2μk(Teff − T ) , (59)

T Ṡ−
R = Q̇eff

dis + 2μk(Teff − T ) , (60)

were we used 〈∇rH · v〉 = k〈r · v〉 = k〈r · (η − √
2D(t )ξ)〉 =

2μk(Teff − T ), which follows from Eqs. (14) and (40). In
the second case (surfboards), the additional propulsion con-
tribution to the entropy production beyond Ṡeff

R is manifestly
positive, since Teff � T . Intuitively, this is because any failure
to float with the flow gives rise to dissipation. In the first case
(sailboats), the minimum condition for Ṡeff

R can only be guar-
anteed under quasistatic conditions. Intuitively, the “wind”
may otherwise transiently prevent dissipation by “arresting
the sailboat at the quay.”

While the derivation of the expressions (59) and (60) re-
lies on a deeper knowledge of the system dynamics than the
behavior of the variance, it is worth noting that σ (t ) is still suf-
ficient for their evaluation. The dynamics of the variance thus
suffices to evaluate the “total” entropy �S±

tot (tp) = S±
R (tp) =∫ tp

0 dt Ṡ±
R produced per cycle of the operation of the ABE. In

contrast, the change in the system entropy

S(t ) = −
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ 2π

0
dθ p ln p , (61)

which vanishes for a complete cycle but is necessary for eval-
uating the total entropy change within the cycle, �S±

tot (t ) =
S±

R (t ) + S(t ) − S(0), depends on the full probability distribu-
tion p(x, y, θ, t ) for the position of the particle at time t . The
latter obeys the Fokker-Planck equation

∂ p

∂t
=

(
∇r · [μ∇rH(r) − v] + D∇2

r + Dr
∂2

∂θ2

)
p (62)

corresponding to Eqs. (42) and (43). One can calculate the
PDF p(x, y, θ, t ) either numerically, from Eq. (62), or using
BD simulations of Eqs. (42) and (43) (see Appendix D for a
detailed discussion of the results). The system entropy S(t ) is
thus the only variable of our thermodynamic analysis which

generally cannot be calculated using the mean square dis-
placement σ alone.

The above results are suitable to fully quantify the en-
gine’s thermodynamic performance. In the following section,
we evaluate the derived expressions and discuss their generic
properties.

VIII. ABE PERFORMANCE

In this section, we first focus on the quasistatic regime of
operation of the ABE, where we demonstrate in more detail
some peculiarities connected with the unintuitive behavior of
the effective temperature. For vanishing entropy productions
�S±

tot, as defined in the previous section, the nonequilibrium
ABE bath is seen to admit a representation as an equilibrium
bath. Then, we consider finite-time effects onto the perfor-
mance of the ABE, and the additional entropy production due
to the nonquasistatic operation.

A. Quasistatic regime

In the quasistatic regime, the engine dynamics in terms
of the variance σ (t ) and the effective temperature Teff (t ) are
given by Eqs. (50) and (52), respectively. They thus depend
merely parametrically on the driving k(t ), T (t ), Dr (t ), and
v(t ). The effective entropy production �Seff

tot (27) then van-
ishes, and the (effective) efficiency of the ABE is given by
the classical result evaluated in terms of the stiffness k(t ) and
temperature Teff (t ). In particular, a quasistatic cycle consisting
of two branches with constant Teff and two adiabats will thus
operate with Carnot efficiency ηC (38). Equivalently, realizing
a Stirling cycle in terms of k(t ) and the effective temper-
ature Teff (t ) will result in the (effective) Stirling efficiency
ηC ln a/(ηC + ln a) with a = min(k)/max(k) [30]. And one
could deal similarly with other thermodynamic cyclic pro-
tocols. However, using the simplifying analogy with the
effective equilibrium bath, one should make sure to actually
use k(t ) and Teff (t ) as control parameters and not simply rely
on an intuition about the behavior of the effective temperature
based on the background solvent temperature T , activity v and
rotational diffusivity Dr . Indeed, as mentioned in Sec. VI D,
what is a Stirling (or Carnot) cycle in terms of the effective
temperature can be quite different from the one defined in
terms of T , v, and Dr. To quantify the difference, it is useful
to introduce the parameter

K(t ) ≡ kμ/Dr (63)

which compares the characteristic timescales D−1
r and (kμ)−1

for relaxation of the orientation θ and the position r, re-
spectively. The quasistatic effective temperature (52) can be
written as

Teff (t ) = T + v2

2μDr

1

1 + K . (64)

Only in the limiting cases K → 0 and K → ∞, a naive
quasistatic isothermal process (constant temperature T , ac-
tivity v, and rotational diffusivity Dr and variable stiffness
k) corresponds to an effective equilibrium isothermal process
(constant Teff ).
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Despite the equilibrium analogy, the bath actually cor-
responds to a driven system with its apparent equilibrium
characteristics actively maintained by some dissipative pro-
cesses. So even for quasistatic operation of the engine, closer
inspection reveals this nonequilibrium nature of the bath. In
particular, the sailboat/surfboard interpretations of the parti-
cle motion will reveal some of this entropy production, since

T Ṡ±
R = Q̇eff

dis + v2

μ

1

1 + K±1
� Q̇eff

dis (65)

and thus �S±
tot � �Seff

tot = 0.
For strong confinements, K  1, the active dynamics is

highly persistent on the confinement scale, so that the par-
ticle moves quasiballistically in the potential. The effective
temperature Teff is therefore given by the temperature of the
equilibrium solvent T , which is the only remaining source
of noise. Using the sailboat interpretation of the ABP (for
which v is interpreted as as an external force), we find that
�S+

tot = �Seff
tot = 0 since the sailboat is trapped in a quay. The

sailboat interpretation is thus consistent with the notion that
the ABE operates reversibly. In contrast, a trapped surfboard
(for which v is interpreted as a velocity) is inhibited from
moving with the surf, leading to dissipation: �S−

tot = �Seff
tot +∫ tp

0 dt v2(t )/μ = ∫ tp
0 dt v2(t )/μ > 0.

For weak confinements, K � 1, the particle’s active mo-
tion randomizes on the confinement scale so that it can
be subsumed into the δ-correlated noise (40) via the ef-
fective temperature and the corresponding noise correlation
matrix Ci j (t, t ′) = 2

√
Deff (t )Deff (t ′)δi jδ(t − t ′). Its dynamics

mimics Brownian motion in an effective equilibrium bath
maintained at the (stiffness-independent) temperature Teff =
T + v2/(2μDr ). In this case, confinement and random active
motion interfere in such a way that both the sailboat and
surfboard interpretations can detect the positive entropy pro-
duction, �S±

tot > �Seff
tot = 0, and the actual irreversibility of

the operation. Only by imposing the additional limit v2 �
2μDrT , when the rotational motion completely obliterates
the active swimming so that Teff = T , surfboards cease to
be bothered by the confinement and no longer dissipate, i.e.,
�S−

tot = 0. In the sailboat interpretation, the release of the
boat from the tug of war with the quay instead results in
a complete waste of the efforts of the external swim force
to haul the particle around in an enhanced random motion.
The corresponding dissipation of the fully released sailboat
thus precisely matches that of a fully trapped surfboard:
�S+

tot = ∫ tp
0 dt v2(t )/μ > 0.

For intermediate values of K, the effective temperature
depends on the stiffness k(t ) and the (traditional) definition
of heat input along an individual step of the driving protocol
may not actually yield the correct interpretation. It then also
fails to yield a consistent measure of efficiency. Instead, one
should carefully reconsider what is the actual heat input, based
on Eq. (26). Heat thus flows into the system whenever the
variance σ—and thus the effective system entropy (33)—
increases, and vice versa.

To illustrate this point, recall the definition of the Stirling
cycle in Sec. VI B. The standard Stirling cycle consists of
two isochores (constant trap stiffness k) and two isotherms
(constant solvent temperature T ). Therefore it forms a rect-
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FIG. 6. Two quasistatic (generalized) Stirling cycles in terms of
the trap stiffness k(t ) and variance σ (t ) of the particle positions
ABCD and ABB̃CDD̃. (The corresponding energy flows are evalu-
ated in Fig. 7.) (a) In the standard Stirling cycle ABCD, the heat flows
from the bath into the system along the isochor BC and isotherm
CD (Q̇ = kσ̇ /2 > 0), and from the system into the bath otherwise
(Q̇ < 0). (b) In the “nonstandard Stirling” cycle ABB̃CDD̃, the heat
flow reverses (outflow along BB̃, inflow along B̃C) along the iso-
choric branch BC = BB̃C and similarly for the isochor DA = DD̃A.
The output works Wout = ∫ tp

0 σdk/2 of the individual cycles are given
by the areas they enclose. Similarly, heat input and output can be
visualized as areas below the curves.

angle in a k-T diagram, translating to a shape similar to the
ABCD cycle in Fig. 6, in a k-T/k diagram. Actually, Fig. 6 is
slightly more general, as it shows two possible interpretations
of the quasistatic ABE-Stirling cycle in a k-Teff/k diagram.
The “standard” protocol ABCD corresponds to the evolution
of the thermodynamic variables as depicted in Fig. 7(a). Note
that they, in turn, evolve strictly monotonically or remain
constant during the individual steps of duration tp/4. Hence,
during a single step, heat is either only absorbed or only
released by the system, and it is possible to write the input
heat as Qin = QBC + QCD, where QXY is the amount of heat
absorbed between the points X and Y . Which corresponds to
the conventional practice for a Stirling cycle.

Consider next the cycle ABB̃CDD̃ corresponding to
Fig. 7(b). In this case, the system releases heat during the seg-
ment BB̃ (σ decreases from σB to σB̃), but absorbs heat during
the remainder of the state change BC (σ increases from σB̃
to σC). A similar situation occurs also at the end of the cycle.
Hence, the conventional shorthand notion of heat input as heat
exchanged between the system and the reservoir during an
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FIG. 7. Energy flows for the quasistatic Stirling cycles depicted
in Fig. 6. Net work and heat W , Q = Qin + Qout, heat influx and
outflux Qin, Qout, and internal energy change �U ≡ 〈H(t ) − H(0)〉,
as defined in Secs. II B and V A, are traced out as functions of time
during a quasistatic cycle of duration tp = 100 significantly larger
than the relaxation times τH = 1/(μk + Dr ) and τσ = 1/(2μk) for
Teff and σ , respectively. (a) v> = 4. (b) v> = 500, v< = 50, D>

r =
500, and D<

r = 5; other parameters as in Fig. 3.

entire step of the cycle is not appropriate, in this case. Instead,
one has to use the definition (7), also utilized in Fig. 7. The
dashed red, dashed yellow and full blue lines in Fig. 7(b) in
the time interval from t = 25 to 50, also serve to illustrate
the differences in the heat balance. For a further treatment of
efficiency of Stirling engines operating in contact with active
baths in the quasistatic regime, we refer to Ref. [30].

B. Finite-time performance

Let us finally investigate the most complex case of non-
quasistatic cycles for which the protocol from Sec. VI B is
imposed with cycle durations tp significantly shorter than
the internal relaxation times τH = 1/(μk + Dr ) and τσ =
1/(2μk) for Teff and σ , respectively. The ABE model provides
full control over the finite-time thermodynamics. To check
our analytical results for the variance given in Sec. VI C, we
compared it to direct numerical solutions of the equations of
motion via the matrix numerical method of Ref. [102], and
found perfect agreement. We also note that the new features
observed in the analytical results for the toy model are generic,
and should qualitatively also be observed for other heat en-
gines in contact with nonequilibrium reservoirs.

The hallmark of nonquasistatic operation of any thermody-
namic heat engine is the observation of a net entropy increase
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FIG. 8. Evolution of the various entropies discussed in the text
as functions of time during the limit cycle, depicted in Fig. 3, with
v> = 4. (a) “Total” ABE entropy changes �S+

tot for “sailboats”, (red
dashed line), �S−

tot (t ) for “surfboards” (yellow dot-dashed line), both
from Sec. VII C, and the effective entropy change �Seff

tot (t ) from
Eq. (36) (solid blue line). (b) shows corresponding changes in the
reservoir entropy �S+

R (t ) from Eq. (59) (red dashed line), �S−
R (t )

from Eq. (60) (yellow dot-dashed line), and �Seff
R (t ) from integrating

Eq. (29) (solid blue line), and panel c) in the system entropy �Seff (t)
from Eq. (66) (solid blue line) and �S(t ) from Eq. (67) (red dashed
line).

during the cycle. Therefore Fig. 8 depicts the individual en-
tropy changes defined in Secs. V A and VII as functions of
time during the limit cycle. Panel (a) shows that both the total
effective entropy change �Seff

tot (t ), measured by the ABE user,
and the total ABE entropy changes �S±

tot (t ), corresponding to
the sailboat and surfboard interpretations, are nondecreasing
functions of time. They thus meet the expectation for valid to-
tal entropies according to the second law of thermodynamics.
It is noteworthy, that the ABE entropy changes �S±

tot (t ) are
larger than the effective entropy change �Seff

tot (t ), at all times,
even during the first part of the cycle, given by t ∈ (0, 0.25),
where the active velocity v vanishes.

As gleaned from the panel (b), the rates of entropy change
in the bath, with Ṡeff

R given by Eq. (29) and Ṡ±
R (t ) given by

Eqs. (59) and (60), are in that case all equal. The inequal-
ity �Seff

tot (t ) < �S±
tot (t ) is then solely caused by the different

changes of the system entropy

�Seff (t ) = Seff (t ) − Seff (0) = ln
σ (t )

σ (0)
, (66)

�S(t ) = S(t ) − S(0), (67)

shown in the panel c), with Seff (t ) and S(t ) given by Eqs. (33)
and (61), respectively. For the remaining time [t ∈ (0.25, 1)]
of the cycle, even the changes in the bath entropies �S±

R (t )
of the ABE are larger than �Seff

R (t ). While Ṡ−
R (t ) � Ṡeff

R (t )
and Ṡ±

tot � Ṡeff
tot always hold, we find that Ṡ+

R (t ) < Ṡeff
R (t ) is not
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FIG. 9. (a) Efficiency and (b) power output, both from Eq. (8),
and (c) total entropy production as functions of the maximum active
velocity v> for the protocol from Fig. 3. (c) �S−

tot (yellow dashed),
�S+

tot (red dot-dashed), and �Seff
tot (solid blue), all from Eq. (68).

ruled out (detailed data now shown). The figure also corrob-
orates the periodicity of the system entropies Seff (t ) and S(t ),
so that the total entropy changes �Seff

tot (tp) and �S±
tot (tp) per

cycle are solely determined by the (per cycle) entropy changes
�Seff

R (tp) and �S±
R (tp) in the bath, as it should be.

To study the influence of activity on the ABE performance,
in Fig. 9, we fix all the parameters according to Fig. 3 and vary
the maximum active velocity v>. For small values of v>, the
efficiency is decreased by the activity, while for large values
of v> it is increased, and eventually attains a constant maxi-
mum value. This behavior can be understood as follows. The
efficiency of the heat engine quite generally increases with
the largest difference in the effective temperature max (Teff ) −
min (Teff ), similarly as in the Carnot formula. Even beyond the
quasistatic regime one expects that the effective temperature
is qualitatively described by Eq. (52). For small values of
v>, Eq. (52) implies that the temperature difference can be
decreased by variations of the rotational diffusion coefficient,
depicted in Fig. 3(c), while it increases with v> for large v>.
More intuitive behavior is observed for the power [Fig. 9(b)]
and the entropy productions �Seff

tot and �S±
tot [Fig. 9(c)] that

monotonically increase with v>.
Finally, we assess the effect of the finite-time driving on

the ABE operation. Specifically, in Fig. 10, we depict per-
formance of the ABE as function of the cycle duration tp
for three values of the maximum active velocity v>. In panel
(a), the efficiency monotonously increases with increasing tp
and eventually reaches the quasistatic limit (the red line).
Notably, whether the efficiency is increased or decreased by
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FIG. 10. (a) Efficiency, (b) output power, (c) output work, de-
fined in Sec. II B, and (d) total entropy production for v> = 0
(dot-dashed lines), v> = 2 (dashed lines), and v> = 4 (solid lines)
as functions of cycle duration tp. The inset in (c) magnifies the initial
part of the plot for tp ∈ [10−3, 10−1]. (d) �S−

tot (yellow), �S+
tot (red),

and �Seff
tot (blue); all according to Eq. (68). Other parameters as in

Fig. 3.

the bath activity depends on the cycle duration, as evidenced
by the dashed and solid lines wandering above and below
the dot-dashed line. Namely, apart from enhancing the output
work and power [panels (b) and (c)], the activity also pro-
vides an increased heat flow into the system. As expected, the
output power vanishes for large cycle durations and exhibits
a maximum for a certain value of tp. On the contrary, the
output work is, for large cycle times, an increasing function
which converges to the quasistatic value, which monotonously
increases with v>. Interestingly, for 10−2 � tp � 10−1, the
output work exhibits a shallow negative excursion as revealed
by the blowup in the inset. This implies a lower bound tp ≈
10−1 on the cycle duration, below which the system ceases to
operate as a heat engine.

As can be observed in Fig. 10(d), for small and large
cycle durations, the cycle-time dependence of the total en-
tropy productions �Seff

tot (tp) and �S±
tot(tp) exhibits asymptotic

power-law behavior. Taylor expansions of the total entropy
productions in tp and 1/tp, respectively, give �S±

tot ∝ �Seff
tot ∝

tp for short tp and �S±
tot ∝ tp for v �= 0, and �Seff

tot ∝ 1/tp
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regardless of v, for long tp. To be more specific, all the total
entropy productions in question assume the form

�Sz
tot = −

∫ tp

0
dt

1

T (t )
(Q̇ + F )(t ), (68)

where T = Teff and F = 0 for z = eff, T = T and F =
−2μk(Teff − T ) for z = −, and T = T and F = 2μk(Teff −
T ) − v2/μ for z = +. For fast driving of the engine, (tp
much smaller than the intrinsic relaxation times), the col-
loid cannot react to the changing driving and settles on a
time-independent state corresponding to a mean value of the
driving. Hence, Eq. (68) can be approximated for all z by
�Sz

tot ≈ −tp(Q̇ + F )/T , where the integrand is evaluated us-
ing the time-independent state attained for tp → 0.

For slow driving (tp much larger than the intrinsic re-
laxation times), the colloid attains its steady state (50)
independent of the cycle duration tp. Substituting the inte-
gration time t in Eq. (68) by the dimensionless time τ = t/tp
yields

�Sz
tot = −tp

∫ 1

0
dτ

1

T̃ (τ )

(
1

tp

dQ̃(τ )

dτ
+ F̃ (τ )

)
, (69)

where T̃ (τ ) = T (τ tp), Q̃(τ ) = Q(τ tp), and F̃ (τ ) = F (τ tp).
The effective total entropy production �Seff

tot vanishes in the
limit tp → ∞, and thus the leading contribution in Eq. (69)
is expected to be of order 1/tp. Indeed, expanding under the
integral, we obtain (for F = 0)

1

T̃
dQ̃

dτ
≈ d

dτ
ln σ∞ + 1

tp
C. (70)

Since the first term represents a total derivative, the cor-
responding loop integral vanishes and what remains is the
correction C/tp with a tp independent constant C. For z = ±,
the leading contribution to the integral (69) is simply de-
termined by the nonzero value of limtp→∞ F and thus we
find �S±

tot ∝ tp for large tp. For v = 0, all three definitions
of entropy production are equivalent since then T = T = Teff

and F = 0. This proves the scalings found in Fig. 10(d).

IX. CONCLUSION AND OUTLOOK

We argued on a very general basis that energy extracted
from nonequilibrium reservoirs by cyclically operating en-
gines qualifies as heat only if there exists a precise mapping
to an equivalent cycle with an equilibrium bath at a time-
dependent effective temperature, which yields the same power
and efficiency. We have discussed the most general setting
when such a mapping always exists and explained that engines
which do not allow for a consistent definition of effective
temperature should rather be understood as (possibly loss-
making) work-to-work converters than heat engines. A benefit
of the effective-temperature mapping is that conventional
bounds on both the finite-time and the quasistatic thermo-
dynamic performance of machines, especially heat engines,
become applicable to those with nonequilibrium (active)
baths [6,30–32]. As a part of our discussion, we have therefore
been able to provide a new perspective on recent claims of
surprisingly high Stirling efficiencies (surpassing the second
law bound corresponding to infinite temperature steps) in

a bacterial heat engine that was experimentally realized by
Krishnamurthy et al. [6].

To exemplify the general findings, we have derived a sim-
ple strategy to map the average thermodynamics of a linear
Langevin system with arbitrary additive noise to an effective
equilibrium system. The mapping is based on the matching of
the dynamical equations for the second moment of position,
which happens to determine the (average) energetics. It is
valid for arbitrary protocols imposed by the time-dependent
model parameters. In the quasistatic limit, the (generally
time-dependent) effective temperature Teff (t ) (14) that accom-
plishes the mapping recovers the known expression (19).

We have further exemplified these somewhat abstract gen-
eral notions by a fully worked example of a specific engine
design that we call the ABE, since the particle dynamics
is based on the well-known active Brownian particle (ABP)
model. Our qualitative conclusions should carry over to other
designs, though. In particular, we find that the explicitly
computed effective temperature Teff has some nonintuitive
features. (i) During the limit cycle, which is attained by the
ABE at long times, it obeys a first-order differential equation
and thus acquires some time dependence Teff (t ) with a techni-
cally relevant characteristic relaxation time. (ii) It is important
to realize that it can therefore vary in time even during those
parts of the cycle in which the model parameters are held
constant. (iii) Even in the quasistatic limit, Teff depends on
the strength of the potential. This means that realizing spe-
cific thermodynamic conditions, like an “isothermal” process
with respect to the effective temperature, is generally not
trivial.

The ABE model is also instructive with respect to some
limitations of the effective-bath mapping. Namely, by con-
struction, the latter is blind to the potentially rich features
of the nonequilibrium bath beyond the second moment of
the particle position, which we identified as the working de-
gree of freedom of the engine. The effective description thus
misses the non-Gaussian shape of the positional probability
density and the corresponding Shannon entropy, for example,
and also all housekeeping heat fluxes required to maintain
the bath activity. Accordingly, we could demonstrate that the
entropy production in the effective model can be understood
as a lower bound for all conceivable practical and theoretical
realizations. Namely, it vanishes upon quasistatic operation,
whereas any detailed model of the bath dynamics would, like
the explicitly studied ABE, necessarily reveal some of the
housekeeping heat fluxes and their associated entropy produc-
tion.

As an outlook, it would be interesting to study possible
generalizations of our analysis of the linear model for arbitrary
time-dependent friction kernels and correlation matrices, thus
also including under-damped dynamics, which does not be-
long into the class of systems where the effective temperature
always exists. Another possible extension could be the appli-
cation of the presented method to nonlinear systems, e.g., by
deriving approximate time-dependent effective temperatures
via suitable closures of the equations describing the relevant
degrees of freedom. Our general analysis shows that at least
for Hamiltonians of the form H = k(t )h(x), with an arbitrary
function h(x) diverging at |x| → ∞, this should always be
possible.
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APPENDIX A: ANALYTICAL SOLUTION FOR VARIANCE

Inserting the time correlation matrix (41) for the ABP
model into Eq. (17), Eq. (15) yields the following dynamic
equation for the variance σ = 〈r · r〉 = 〈x2 + y2〉:

σ̇ + 2μkσ = 4〈x0ηx(t ) + y0ηy(t )〉e−K (t,t0 )

+ 4D(t ) + 2v(t )
∫ t

t0

dt ′v(t ′)e−F (t,t ′ ), (A1)

where

K (t, t0) = μ

∫ t

t0

dt ′k(t ′) , (A2)

F (t, t0) = K (t, t0) +
∫ t

t0

dt ′Dr(t
′) . (A3)

In order to explicitly evaluate the thermodynamics of the
particular realization of an active Brownian heat engine de-
scribed in Sec. VI, namely, the ABP-based engine that we
refer to as the ABE model, we need the solution of Eq. (A1).
More precisely, we can concentrate onto the time periodic

solution, which is attained by the system at late times, after
transients have relaxed, so that it settles onto a limit cycle (cf.
Fig. 4). Taking the limit t0 → −∞ in the formal solution to
Eq. (A1), we obtain

σ (t ) = 2 lim
t0→−∞

∫ t

t0

dt ′[2D(t ′) + v(t ′)H (t ′)]e−2K (t,t ′ ) (A4)

with

H (t ) = lim
t0→−∞

∫ t

t0

dt ′v(t ′)e−F (t,t ′ ) . (A5)

For the numerical evaluation of Eq. (A4) it is useful to ex-
ploit that H (t ) is a tp-periodic function and to rewrite K (t, t0)
as K (t, t0) = �(t − t0)/tp�K (tp, 0) + K (t, t0 + �(t − t0)/tp�tp)
using the tp-periodicity of k(t ) (the symbol �x� denotes the
floor operation) and similarly for F (t, t0). Interestingly, using
a simple trick, the time-periodic late-time limit can be found
without considering the (numerically inconvenient) limit t0 →
−∞, just as in the case of memoryless dynamics [25,26].
The key insight is that, in the long-time regime, the functions
σ and H obey two coupled ordinary differential equations,
namely Eqs. (44) and (45) in Sec. VI C, which follow from
Eqs. (A4) and (A5) by taking derivative with respect to t .

APPENDIX B: SLOW DRIVING LIMIT OF VARIANCE

For slowly varying driving functions k(t ), D(t ), Dr(t ) and
v(t ), the variance (A4) can be approximated using a simple
formula which follows from the Laplace type approximation
of the integral [112,113]

∫ t

t0

dt f (t ′)e− ∫ t
t ′ dt ′′ g(t ′′ ) =

∫ t

t0

dt f (t ′)e−tp
∫ t/tp

t ′/tp
dt ′′ g(tpt ′′ ) = f (t )

g(t )
− 1

g2(t )

[
ḟ (t ) − f (t )

ġ(t )

g(t )

]
+ o( ḟ , ġ). (B1)

Applying this approximation first on the function H (t ) (A5) and then on the variance σ (t ) (A4), we obtain the approximate result

σ (t ) = σ∞ − v2

kμκ2

(
v̇

v
− κ̇

κ

)
− D

k2μ2

(
Ḋ

D
− k̇

k

)
− v2

2k2μ2κ

(
2
v̇

v
− κ̇

κ
− k̇

k

)
+ o(v̇, Ḋ, k̇, κ̇ ). (B2)

Here, σ∞ is the variance (50) for infinitely slow driving and
κ = κ (t ) = kμ + Dr. For discontinuous driving, the limiting
solution σ∞ is also discontinuous. The first order correction
(B2) may also be discontinuous if the first derivatives of
the driving functions exhibit jumps. In such a case, how-
ever, the assumption on the smallness of the derivatives used
in the calculation leading to Eq. (B2) is not valid. In accord
with the discussion below Eq. (D1) in Appendix D, Eq. (B2)
reveals that activity-corrections are at least second order in v.

APPENDIX C: ENTROPY PRODUCTION
FROM PATH PROBABILITIES

The entropy

�SR,� (t ) = ln(PF/PR) (C1)

delivered to the bath by a particle moving along a trajectory
�(t ) = {r(t ′), θ (t ′)}t

t ′=0 of the stochastic process (42), (43) is
given by the logarithm of the ratio of conditional probabili-
ties PF and PR [103,114], for the trajectory conditioned with

respect to its initial point and its time-reversed image. Up to
normalization, the forward probability is given by

PF ∝ e−2
∫ t

0 dt ′ [ξ·ξ+ξ 2
θ ], (C2)

where the noise terms ξ = [ṙ + μ∇rH − v]/
√

2D and ξθ =
θ̇/

√
2Dr follow from Eqs. (42) and (43) [115]. The backward

probability is given by a similar formula. One just has to
change the sign before quantities which are odd with respect
to time reversal.

Assuming the active velocity v = v(cos θ, sin θ ) to be
time-reversal even, the odd variables in Eqs. (42) and (43) are
only time derivatives, giving

(PF/PR)+ = e− ∫ t
0 dt ′ (∇rH−v/μ)·ṙ/T , (C3)

whereas, for time-reversal odd v, we find

(PF/PR)− = e− ∫ t
0 dt ′ ∇rH·(ṙ−v)/T . (C4)
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The entropy delivered to the reservoir during time interval
(0, t ) follows as

�SR(t ) = 〈�SR,� (t )〉� = 〈ln(PF/PR)〉�, (C5)

where the average is taken over the individual realizations � of
the stochastic process [114]. With Eq. (C3) for the time-even
active velocity, it yields

�S+
R (t ) =

∫ t

0
dt ′ 1

T

〈(
v
μ

− ∇rH
)

· ṙ
〉
, (C6)

and with Eq. (C4), for the time-odd active velocity,

�S−
R (t ) =

∫ t

0
dt ′ 1

T
〈(ṙ − v) · (−∇rH)〉 . (C7)

APPENDIX D: PROBABILITY DISTRIBUTIONS (PDFS)

In the three-dimensional Langevin system [(42) and (43)],
the x-y coordinates are coupled via the active velocity
v. The steady probability distribution (PDF) to find the
particle with orientation θ at position (x, y) thus cannot
generally be written in the separated form p(x, y, θ ) =
χ (x, θ )ι(y, θ ) = χ (x, θ )χ (y, π/2 − θ ), where χ (x, θ ) solves
the two-dimensional Fokker–Planck equation

∂tχ = [
D∂2

x + Dr∂
2
θ + ∂x(μk∂xx − v cos θ )

]
χ . (D1)

Inserting the separation ansatz into the three-dimensional
equation (62) and using the formula (D1) leads to the condi-
tion 2Dr∂θχ (x, θ )∂θ ι(y, θ ) = 0 that cannot be fulfilled in gen-
eral. Nevertheless, one can still reduce the three-dimensional
system to just two degrees of freedom by introducing the polar
coordinates x = r cos φ, y = sin φ. Then, Eq. (42) transforms
to

ṙ = −μkr + v cos(θ − φ) +
√

2Dηr , (D2)

φ̇ = v

r
sin(θ − φ) +

√
2D

r2
ηφ , (D3)

while θ still obeys Eq. (43). The symbols ηr and ηφ de-
note independent, zero-mean, Gaussian white noises. Since
Eqs. (D2) and (D3) only depend on the difference θ − φ,
introducing the relative angle ψ = θ − φ, subject to the zero-
mean, Gaussian white noise ηψ renders them in the form

ṙ = −μkr + v cos ψ +
√

2Dηr , (D4)

ψ̇ = −v

r
sin ψ +

√
2

(
D

r2
+ Dr

)
ηψ . (D5)

The corresponding Fokker-Planck equation for the PDF ρ =
ρ(r, ψ, t ) reads [116]

∂tρ =
[

D∂2
r +

(
D

r2
+ Dr

)
∂2
ψ

]
ρ − cos ψ∂r (vρ)

− D∂r

(
ρ

r

)
+ μk∂r (rρ) + v

r
∂ψ (sin ψρ). (D6)

In general, Eqs. (D1) and (D6) [or equivalently (62)] can
not be solved analytically and thus we solved them us-
ing the numerical method described in Ref. [102]. We

FIG. 11. Probability distribution χ for particle position x and
orientation θ at the end of the hot isotherm (t = 3tp/4, see Fig. 3).
We take v> = 30 and tp = 104. Other parameters are the same as in
Fig. 3.

compared the numerical solution of Eq. (D6) to the sep-
arated ansatz p(x, y, θ ) = χ (x, θ )χ (y, π/2 − θ ) and found
out that, although not exact, the ansatz describes the full
three-dimensional PDF p(x, y, θ ) sufficiently well. Since the
two-dimensional PDF allows for a more intuitive discussion
and exhibits the main qualitative features of p(x, y, θ ), we
restrict the following discussion to χ (x, θ ).

Figure 11 shows a snapshot of the PDF χ (x, θ, t ), solution
of (D1), at the end of the third branch of a quasistatic cycle
introduced in Sec. VI B (the hot “isotherm”). The figure re-
veals the typical shape of the PDF χ , with two global maxima
located at θ = 0 and π , which survives even for rapid driving
protocols. Physically, the shape of the PDF can be understood
as follows: (1) for any fixed orientation angle θ , the PDF can
be expected to exhibit a maximum at the position where the
active velocity [which acts in the Langevin Eq. (42) for x as
a force v cos θ/μ] is balanced by the force kx exerted by the
parabolic potential; 2) the projection v cos θ/μ of v on the x
coordinate changes slowest around its extrema (0 and π ), and
thus most trajectories contribute to the surroundings of these
points, making the extrema for 0 and π largest.

Figure 12 shows snapshots of the marginal PDF ρ(x, t ) =∫
dθχ (x, θ, t ) for the position x at the beginning of the indi-

vidual branches of the cycle, for four values of the maximum
active velocity v>. With increasing v>, the resulting PDFs
become increasingly non-Gaussian and finally even exhibit
two separated peaks. Physically, this behavior can be under-
stood by the wall accumulation effect due to the persistence
of the active motion [117–119], which creates the double
peak during the cycle branches with large v>. (For similar
PDFs, see Refs. [101,120].) Qualitatively similar results are
also obtained in the quasistatic limit, as already apparent from
Fig. 11.

To get some intuition about these results on analytical
grounds, we now present several approximate solutions to
Eq. (D1). Different from the standard diffusion (v = 0) in an
external potential, the quasistatic (∂tχ = 0) solution of the
Fokker-Planck equation (D1) is not given by the Boltzmann
PDF. This is because one cannot subsume the activity into
a generalized potential H̃ which would act as a Lyapunov
functional for the dynamics of x and θ . Nevertheless, there
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FIG. 12. Marginal distribution ρ for the particle position x at the
end of the individual branches of the cycle for different values of
the maximum active velocity (a) v> = 0, (b) 1, (c) 10, and (d) 30.
We have set tp = 1, corresponding to nonstationary driving, other
parameters as in Fig. 3. Note that the curves at t = 0 and t = 1 are
equal, in accord with the time periodic operation.

are several limiting cases where the Boltzmann form χ ∝
exp(−H̃/T ) is still a useful approximation.

The best analytical insight into the described qualitative
properties of the presented numerical solutions to Eq. (D1)
with time-dependent parameters is obtained for rotational dif-
fusion coefficient Dr much smaller than kμ, corresponding
to the limit of large K in Eq. (63). Then, the direction of
the active velocity can be treated as quenched, so that the
activity can be subsumed into a generalized potential H̃ =
kx2/2 − vx cos θ/μ. The corresponding quasistatic solution

of Eq. (D1) then reads

χ = 1

Zχ

exp

(
vx cos θ

μT
− kx2

2T

)
, (D7)

with a normalization constant Zχ . For each fixed value of the
angle θ , the PDF is then Gaussian with its maximum value
exp[v2 cos2 θ/(2T μ2k)]/Zχ at the position v cos θ/(μk). The
PDF thus posses two global maxima located at (x, θ ) =
[v/(μk), 0] and (x, θ ) = [−v/(μk), π ], and is qualitatively
similar to the PDF shown in Fig. 11.

The marginal PDF for x obtained from (D7) then reads

ρ(x, t ) =
∫

dθχ = 1

Zρ

exp

(
−kx2

2T

)
I0

(
vx

μT

)
. (D8)

Here, I0(x) denotes the modified Bessel function of the first
kind and Zρ is another normalization constant. The marginal
PDF is Gaussian for v = 0, and becomes more and more non-
Gaussian with increasing v/(μk). For large values of v/(μk),
it can even become bimodal. This behavior can be traced
back to the shift of the maxima of the PDF χ with increas-
ing v/(μk). For small v/(μk), the two maxima substantially
overlap and the integration over the angle θ yields a single
peak which is nearly Gaussian. For large values of v/(μk),
the two peaks do not overlap any more and the marginal PDF
thus also exhibits two peaks. The behavior of the marginal
PDF obtained in the limit Dr � μk thus shows qualitatively
the same behavior as the solution of Eq. (D1) shown in Fig. 12.

For Dr much larger than kμ, corresponding to the limit
of small K in Eq. (63), the quasistatic PDF is given by
χ ∝ exp(−H/Teff ). This is because the rotational diffusion
obliterates any persistence of the active motion, and the
nonequilibrium bath effectively behaves like an equilibrium
one with the renormalized temperature Teff = T + v2/(2μDr ).
In this limit, the degrees of freedom x and y also become
independent.

Yet another case admitting an analytical solution of
Eq. (D1) is that of quasistatic driving at small active
velocity. Then the quasistatic PDF ρ can be approxi-
mated by the McLennan-type form χ ≈ exp(−H/T )[1 −
W (x)] [121–125]. Without going into details, the function
W (x) is in general proportional to the (average) dissipation
in the driven system [123], which, in our case, is given by
the product of the active “force” μ−1v cos θ and the particle
velocity ẋ. Since the average over the angle θ of the active
force is zero, the correction W (x) to the particle PDF is seen
to be at least second order in v.
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Active Brownian engines rectify energy from reservoirs composed of self-propelling nonequilibrium
molecules into work. We consider a class of such engines based on an underdamped Brownian particle
trapped in a power-law potential. The energy they transform has thermodynamic properties of heat only if
the nonequilibrium reservoir can be assigned a suitable effective temperature consistent with the second law
and thus yielding an upper bound on the engine efficiency. The effective temperature exists if the total force
exerted on the particle by the bath is not correlated with the particle position. In general, this occurs if the noise
autocorrelation function and the friction kernel are proportional as in the fluctuation-dissipation theorem. But
even if the proportionality is broken, the effective temperature can be defined in restricted, fine-tuned, parameter
regimes, as we demonstrate on a specific example with harmonic potential.

DOI: 10.1103/PhysRevE.102.060101

I. INTRODUCTION

The surging field of active matter has recently attracted
significant attention from researchers in various fields [1–7].
It studies the behavior of self-propelling agents ranging from
suspensions of micrometer-sized Janus particles and bacteria
to flocks of birds [8–10]. Besides focusing on dynamics of
these systems [11–13], several studies attempted to put the
active matter on firm thermodynamic footing [14–16]. The
main aim of these efforts, which include investigation of
proper definitions of the entropy production and derivation of
corresponding fluctuation theorems for active matter [17–19],
is to develop a consistent generalization of successful theoreti-
cal framework of stochastic thermodynamics [20,21] to active
matter systems [22].

One of the most intriguing questions in this respect is
when the energy extracted from active baths can be termed
as heat [23]—the problem which never arises for equilibrium
heat reservoirs providing only heat. While it is straightfor-
ward to identify the extracted energy as work for various
ratchets [24–26] rectifying the directed active motion of the
nonequilibrium constituents of the bath, it is not that simple
for cyclically operating machines [23,27–34]. With respect to
the latter, the extracted energy can be unambiguously termed
as heat only if there exists an equivalent setup with an equi-
librium bath and the same average energy currents as the
active engine [23]. If such an equilibrium mapping exists,
the nonequilibrium setups can outperform the equilibrium
ones [15,35–45] only by achieving unnaturally high effective
temperature differences (and thus efficiencies), allowed by the

*viktor.holubec@mff.cuni.cz
†maratherahul@physics.iitd.ac.in

lack of thermalization in the active bath. For example, the
recently realized engine with a bath containing living bacteria
was reported to operate at effective temperatures far beyond
the boiling point of water while the background fluid was still
at the room temperature [27]. If such a mapping does not exist,
the active engines can easily break the second law limitations,
with the most striking example being the cyclic energy extrac-
tion from a single bath reported in Ref. [32]. Such machines
should thus be termed as a (lossy) work-to-work converters.

The most general setting where the equilibrium mapping
generically exists are heat engines with working medium de-
scribed by Hamiltonians of the form H = k(t )h(x, p), where
k(t ) is an externally controlled parameter (e.g., playing the

FIG. 1. Our setup. Left: An externally controlled working
medium of an active Brownian engine (green particle attached to
a spring) extracts energy from a nonequilibrium bath. Right: This
energy can be termed as heat only if the energy fluxes in the
engine can be realized using an equilibrium bath at an effective
temperature Teff .

2470-0045/2020/102(6)/060101(6) 060101-1 ©2020 American Physical Society
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role of the inverse volume in macroscopic heat engines) and
h is an arbitrary function increasing sufficiently fast with the
absolute position |x| and velocity |v| [23].

A typical situation considered in this work is depicted in
Fig. 1. We show when the equilibrium mapping exists for
cyclic machines with the working medium described by the
underdamped Hamiltonian

H(x, v, t ) = V (x, t ) + 1
2 mv2, (1)

where m is a constant mass and V (x, t ) = 1
n k(t )xn, n =

2, 4, . . . , denotes a confining potential with periodically mod-
ulated stiffness k(t ). Existence of the equilibrium mapping in
this case is generally not guaranteed, and we have to consider
an explicit model. Inspired by recent experiments on Brow-
nian heat engines [27,36,40], we assume that the working
medium is an underdamped Brownian particle described by
the system of Langevin equations

ẋ = v, (2)

mv̇ = −kxn−1 + F + η. (3)

The force −kxn−1 = −∂xV corresponds to the potential and
F + η is the total force applied on the particle by the bath. Its
systematic component

F ≡ −
∫ t

−∞
dt ′ �(t − t ′)v(t ′) (4)

is a friction force with a friction kernel �(t ). And the additive
noise with zero mean, η, denotes its stochastic component. We
do not assume that the friction and noise fulfill the (second)
fluctuation-dissipation (FDT) theorem [46–48]

kBT �(|t |) = 〈η(t )η(0)〉 (5)

and thus the bath can be out of equilibrium. The dynamics
(2)–(3) might, for example, describe an underdamped ac-
tive Brownian particle, and thus, from now on, we term the
considered engine the underdamped active Brownian engine
(UABE).

The energy fluxes into the UABE can be identified from the
change of the average internal energy of the working medium
[20]

d

dt
〈H〉 = d

dt

(
1

n
kσx + 1

2
mσv

)
= Ẇ + Q̇, (6)

where the average is taken over realizations of the noise η and
σx ≡ 〈xn〉 and σv ≡ 〈v2〉. The energy per unit time flowing
into the system due to the external driving,

Ẇ = 1

n
k̇σx, (7)

is the input work flux. The rest of the total energy influx,

Q̇ = d

dt
〈H〉 − Ẇ = 1

n
kσ̇x + 1

2
mσ̇v, (8)

originates in the nonequilibrium bath. While we denote it
using the standard symbol for heat flux, it has thermodynamic
properties of heat described by the second law only if there
exists the equilibrium mapping [23], i.e., if there is an engine
with equilibrium bath with the same energy fluxes (7) and (8)

as the UABE. In such a case, the ratio of the output work and
the input heat,

E ≡ Wout

Qin
≡ − ∫ tp

0 dt Ẇ (t )∫ tp
0 dt Q̇(t )θ [Q̇(t )]

, (9)

measuring the efficiency E of the UABE with period tp, is
bounded by the standard second-law bound corresponding to
the given cycle realized by the stiffness k(t ) and the effective
temperature Teff (t ). The Heaviside theta function θ in the def-
inition of the input heat Qin ensures that the integral evaluates
only the average heat flowing into the system [Q̇(t ) > 0] [23].

In this paper, we focus on the upper bounds on thermody-
namic efficiency of UABEs and thus we study existence of
the equilibrium mapping in the quasistatic limit, where the
control parameter k changes on timescales much longer than
the system relaxation time, the frictional losses are minimal,
and the total effective entropy �Stot ≡ − ∫ tp

0 dtQ̇(t )/Teff (t )
produced per cycle vanishes [23]. Then the efficiency (9) can
be evaluated using the standard equilibrium thermodynamics.
Namely, if the effective temperature and the stiffness are
changed in such a way that the resulting cycle is composed
of two branches with a constant effective temperature and two
adiabatic branches when Q̇(t ) = 0, the efficiency of the cycle
is given by the Carnot efficiency EC = 1 − T −

eff/T +
eff , where

T ∓
eff denote the smallest (−) and largest (+) values of Teff

during the cycle. For arbitrary different driving, the efficiency
is smaller than EC. And it is still given by the standard (equi-
librium) formula corresponding to the given cycle (such as
the Stirling cycle), if the effective temperature is substituted
for the real temperature in these formulas. For a more detailed
discussion, see Ref. [23].

For a quasistatic driving, the dynamics of the moments σx

and σv in all equilibrium models is described by the combi-
nation of equipartition 2〈T 〉 ≡ σv = 2Teff and virial 2〈T 〉 =
〈x ∂V

∂x 〉 theorems:

Teff = 1

2
kσx = 1

2
σv, (10)

where Teff denotes the temperature of the corresponding equi-
librium baths. Above and in the rest of the paper, we use
units in which kB = 1 and m = 1. If the noise in Eq. (3) can
be described by an effective temperature allowing the above
described standard equilibrium thermodynamic analysis of the
engine efficiency, it must be given by Eq. (10). In the rest of
this paper, we study when such an effective temperature exists.

II. GENERAL RESULTS

Let us now find the general condition which must be ful-
filled in the dynamics of the UABE so that the quasistatic
equilibrium mapping (10) exists (for an example of an equi-
librium mapping for nonquasistatic protocols, we refer to
Ref. [23]). Multiplying Eq. (2) by v, Eq. (3) by x, taking the
averages, and summing the results, we find that the moments
σx and σv obey the equation

d

dt
〈xv〉 = −kσx + σv + 〈(F + η)x〉. (11)
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In the quasistatic regime, we can neglect the time-derivative
on the LHS obtaining the virial theorem

〈T 〉 = −1

2
〈Ftotx〉 (12)

for the whole system with the total force Ftot = −∂V/∂x +
F + η applied to the particle. The requirement (10) implies
that the equilibrium mapping exists if the contribution from
the bath to the virial vanishes,

〈(F + η)x〉 = 0. (13)

This condition is quite reasonable since it means that the force
exerted on the particle by the bath and the particle position
are uncorrelated, i.e., that the bath is homogeneous. For an
active bath, the condition (13) might be broken if the particle
interacts strongly with the bath. For example, baths composed
of active particles get polarized close to walls potentially
leading to nonzero 〈(F + η)x〉.

The condition (13) is naturally fulfilled when the noise
autocorrelation function and the friction kernel are propor-
tional as in the FDT (5). Even though this situation might
look trivial since it is mathematically equivalent to settings
with equilibrium bath, it still represents an important class
of nonequilibrium situations if T in (5) would be given by
some effective temperature Teff . As an example, consider a
system connected to two independent equilibrium reservoirs,
i = 1, 2, described by friction forces Fi = −γiv and white

noises ηi =
√

2Diγ
2
i ξi, 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), with Di =

Ti/γi, as dictated by Einstein relation following from the FDT
(5). Then the total friction force would be F = −(γ1 + γ2)v

and the total noise η = √
2
√

D1γ
2
1 + D2γ

2
2 ξ , 〈ξ (t )ξ (t ′)〉 =

δ(t − t ′), would be described by the friction kernel �(t ) =
(γ1 + γ2)δ(t ) and noise autocorrelation function 〈η(t )η(t ′)〉 =
2(D1γ

2
1 + D2γ

2
2 )δ(t − t ′). Even though the total noise and the

friction obey the FDT (5) with the effective temperature Teff =
(D1γ

2
1 + D2γ

2
2 )/(γ1 + γ2), the system mediate a nonzero heat

flux between the two baths and thus is out of equilibrium
whenever T1 	= T2.

Besides these equilibrium-like cases, there are also situa-
tions when the noise autocorrelation and friction kernel are not
proportional but can be fine-tuned in such a way that Eq. (13)
holds and thus the effective temperature can be defined. Also
in these special parameter regimes, the effective temperature
(10) can be used to derive upper bounds on efficiency of the
corresponding machines. Thus they can serve as solid points
for checking general solutions to these systems.

III. SPECIFIC MODELS

To provide explicit analytical results, we now set n = 2 in
the general discussion of the previous section and thus we
resort to the harmonic potential V (x, t ) = 1

2 k(t )x2. In such
a case, it was shown in detail in Ref. [23] how to calculate
the effective temperature for one of the key toy models of
the active matter, the active Brownian particle model [49].
We start by showing that in the underdamped version of this
model, the effective temperature in general does not exist.

A. Underdamped active Brownian particle

The underdamped active Brownian particle (or, equiva-
lently, underdamped active Ornstein-Uhlenbeck process) is
described by the Langevin equations

ẋ = v, (14)

v̇ = −γ v − kx + η, (15)

where γ is a friction coefficient, and the stationary zero-mean
noise η is exponentially correlated:

〈η(t )η(t ′)〉 = 1

2
u2 exp(−Dr|t − t ′|). (16)

Here u denotes the swimming velocity of the active particle
and 1/Dr is its orientation decorrelation time. Since the fric-
tion kernel is in this case given by −γ�(t ) = −γ δ(t ), the
noise and the friction are clearly not related by the FDT (5).

The friction force in this case reads F = −γ v. Inserting
it into the condition (13) for the existence of the equilibrium
mapping, we find

−γ 〈vx〉 + 〈ηx〉 = 0. (17)

From Eq. (14) it follows that 〈vx〉 = σ̇x/2 = 0 and thus the
condition for existence of the equilibrium mapping in this
case reads 〈ηx〉 = 0. In order to calculate this correlation, it
is advantageous to rewrite the system (14) and (15) using the
matrix notation as

Ẋ = MX + ηe, (18)

where X = (v, x)ᵀ, e = (1, 0)ᵀ are column vectors and

M =
(−γ −k

1 0

)
. (19)

The long-time solution to Eq. (18) is given by

X(t ) =
∫ t

−∞
dt ′ U (t − t ′)η(t ′)e (20)

with U (t ) = exp [M(t − t ′)]. Multiplying it by η(t ) and tak-
ing the average, we find

〈Xη〉 = lim
t→∞

∫ t

0
dt ′U (t − t ′)〈η(t )η(t ′)〉e

= u2

2
lim

t→∞

∫ t

0
dt ′e(M−Dr )(t−t ′ )e = −1

M − Dr

u2e
2

, (21)

where the scalar terms are meant to be multiplied by the 2 × 2
unit matrix. The second element of this vector is the desired
correlation between the noise and position. It reads

〈xη〉 = u2

2 [k + Dr (Dr + γ )]
, (22)

and it in general does not vanish. The effective temperature
for the underdamped Brownian particle thus exists only in
various special limiting situations when 〈xη〉 → 0. The sim-
plest example is the limit of vanishing swimming velocity of
the particle, u. In such a case, however, the system dynamics
becomes deterministic. Other noteworthy limiting situations
where 〈xη〉 → 0 are the limits of infinitely strong potential,
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2 4 6 8 10
γ1

-1

-0.5

0

0.5

1 <Fx> + <xη>
Teff Condition
kσx - mσv

FIG. 2. The averages 〈(F + η)x〉 and kσx − mσv and the condi-
tion (34) as functions of γ1. Parameters used are γ0 = 4.0, α0 = 0.5,
α1 = 1.0, m = 1.0, k = 0.1, and D = 1.0.

k � u2 and k � Dr (Dr + γ ), and of infinitely fast orientation
decorrelation, D2

r � k and D2
r � u2, when η is a white noise.

B. Exponential friction kernel and arbitrary noise

Let us now consider a slightly more general setup when the
friction kernel is exponential,

�(t ) = γ0 exp(−γ1|t |), (23)

and the noise autocorrelation function is of the form

〈η(t )η(t ′)〉 = α0 exp(−α1|t − t ′|) + 2Dδ(t − t ′). (24)

Also in this case, the proportionality in the FDT (5) is broken.
This situation is quite common in experimental setups with
active particles suspended in an aqueous medium [27], where
the working substance experiences random forces from both
the active and the solvent molecules.

Dynamics of this system is described by Eqs. (2) and (3)
with the friction kernel (23). However, for analytical consid-
erations, it is useful to note that the resulting friction force

F (t ) = −γ0

∫ t

−∞
dt ′ exp [−γ1(t − t ′)]v(t ′) (25)

allows one to rewrite the dynamical equations in the form

ẋ = v, (26)

v̇ = −kx + F + η, (27)

Ḟ = −γ1F − γ0v, (28)

where we assume that all the variables are initialized at t ′ =
−∞.

To find when the condition (13) for the existence of the
equilibrium mapping is fulfilled, we have to calculate the av-
erages 〈Fx〉 and 〈xη〉. To this end, we again rewrite the
system (26)–(28) in the matrix form (18). This time with
X = (F, v, x)ᵀ, e = (0, 1, 0)ᵀ, and

M =
⎛
⎝−γ1 −γ0 0

1 0 −k
0 1 0

⎞
⎠. (29)

2 4 6 8 10
k

1

1.5

2

T ef
f

FIG. 3. The effective temperature (35) as a function of the trap
strength k for parameters γ0 = 4.0, γ1 = 0.5, α0 = 2.0, α1 = 0.1,
m = 1.0, and D = 1.0.

The long-time solution to the resulting matrix equation is
again of the form (20) with U (t ) = exp [M(t − t ′)]. To calcu-
late the averages involved in the condition (13), we evaluate
the whole covariance matrix 〈X(t )Xᵀ(t )〉. Taking its time-
derivative derivative, expressing Ẋ from Eq. (18), and setting
d〈X(t )Xᵀ(t )〉/dt = 0 which follows form the steady-state as-
sumption, we get

M〈X(t )Xᵀ(t )〉 + 〈X(t )Xᵀ(t )〉Mᵀ + 〈ξXᵀ〉 + 〈Xξᵀ〉 = 0,

(30)
where we introduced the shorthand ξ = ηe. The correlation
matrix 〈ξXᵀ〉ᵀ = 〈Xξᵀ〉 can be obtained by multiplying the
formal solution (20) by ξ and taking the average, similarly as
in Eq. (21).

The result is [50]

〈Xξᵀ〉 = lim
t→∞

∫ t

−∞
dt ′ exp [M(t − t ′)]〈η(t )η(t ′)〉eeᵀ

=
( α0

α1 − M + D
)

eeᵀ. (31)

Solution of this linear system is straightforward but the full
result is rather lengthy. For our purposes, it is enough to
explicitly evaluate only the correlation 〈Fx〉, involved in the
condition (13), and the variances σx and σv , defining the
effective temperature (10), if the former condition is fulfilled.
Evaluating also the correlation 〈ηx〉 given by the matrix ele-
ment 3-2 of the matrix 〈Xξᵀ〉 in Eq. (31), we find

〈(F + η)x〉 = kσx − σv = (γ1 − α1)(γ1 + α1)c − D

γ1
, (32)

where

c = α0

γ0α1 + (α1 + γ1) (k + α2
1 )

. (33)

The equilibrium mapping and the equipartition (10) in this
system is thus fulfilled whenever

D − (γ1 − α1)(γ1 + α1)c = 0, (34)
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which can occur even when the FDT is broken. To check
validity of our calculations, we also evaluated the terms
〈(F + η)x〉 and kσx − σv in Eq. (32) using an independent
numerical method. In Fig. 2 we plot the obtained result and
also the explicit condition (34) as functions of the decay rate
γ1. The three lines indeed intersect at zero at the same point,
proving our analytical calculations.

Setting, D = (γ1 − α1)(γ1 + α1)c, we find that the effec-
tive temperature Teff = k〈x2〉/kB = 〈v2〉/kB for the present
model reads

Teff = α0

γ0

[
γ0γ1 + (α1 + γ1) (k + γ 2

1 )

γ0α1 + (α1 + γ1) (k + α2
1 )

]
. (35)

Noteworthy, as shown in Fig. 3, this effective temperature
depends on the trap stiffness k. Since similar dependence has
been found also for the overdamped setting [23], this result
seems quite general. It is thus puzzling why recent experi-
mental work [27], considering a similar setup as ours, reported
effective temperature independent of the trap stiffness.

IV. CONCLUSION

The existence of mapping to an equivalent equilibrium
setup is an important condition for calling machines operating
in contact with a nonequilibrium bath as heat engines. Only if
such a mapping exists, the efficiency of these machines obeys
standard second law limitations. We found that a broad class
of machines based on an underdamped Brownian particle
trapped in a power-law potential, which we called as UABEs,
allows for the equilibrium mapping if the total force exerted

on the particle by the bath and the particle position are not
correlated.

Validity of this condition can be easily checked in exper-
iments. It is always fulfilled if the friction kernel and noise
autocorrelation function in the Langevin equation for dynam-
ics of the particle are proportional so that an effective variant
of the second fluctuation-dissipation theorem holds. Besides
this somewhat trivial case, equilibrium mapping also exists
for special parameter regimes in systems where the propor-
tionality is broken. These regimes may serve as solid points
where the maximum efficiency of UABEs is known.

We have studied an explicit example, where such a special
parameter regime exists and calculated the effective temper-
ature of the corresponding equilibrium bath. This effective
temperature depends on the strength of the applied potential,
which, we believe, is a general feature of effective tempera-
tures.

Our findings can guide theoretical analysis and serve as
a sanity check of results measured for systems in contact
with nonequilibrium reservoirs. As an outlook, it would be
interesting to study extensions of our model to finite time
regimes, where power delivered by the engines does not van-
ish. Furthermore, it would be interesting to extend our results
to higher dimensions and more complicated potentials.
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1. Introduction

Since the dawn of heat engines people have struggled to optimize their performance [1]. 
One of the first theoretical results in the field was due to Carnot [2] and Clausius [3]: 
the maximum eciency attainable by any heat engine operating between the temper-
atures Th and Tc, T Th c> , is given by the Carnot eciency T T1C c h/η = − . In order to 
attain Cη , the engine must work reversibly (infinitely slowly) and thus its output power 
is vanishingly small. Optimization of the power of irreversible Carnot cycles working 
under finite-time conditions was pioneered by Yvon [4], Novikov [5], Chambadal [6] 
and later by Curzon and Ahlborn [7]. Although the result obtained for the eciency 

at maximum power (EMP), T T1CA c h/η = − , is not universal, nor does it represent 

a bound on the EMP [8–10], its close agreement with EMP for several model systems 
[11–24] ignited the search for universalities in performance of heat engines.

Up to the second order in Cη  the EMP, η�, is controlled by the symmetries of the 
underlying dynamics [25–28]. Further universalities were obtained for heat engines 
working in the low-dissipation regime [14], [29–33], where the work dissipated during 
the isothermal branches of the Carnot cycle grows in inverse proportion to the duration 
of these branches. In this regime, a general expression for the EMP has been published 
[14] and, subsequently, Esposito et al derived the bounds 2 2C C C/ ⩽ ⩽ /( )η η η η−�  on the 
EMP [29]. All these results were confirmed within the framework of irreversible ther-
modynamics [34, 35].

Recently, increased attention has been given to the optimization of heat engines 
which do not work at maximum power [24], [36–39]. Such studies are important for 
engineering practice, where not only powerful, but also economical devices should be 
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developed. Indeed, it had already been highlighted [40–42] that actual thermal plants 
and heat engines should not work at the maximum power P �, where the corresponding 
eciency η� can be relatively small, but rather in a regime with slightly smaller power 
P and considerably larger eciency η.

In the present paper, we introduce universal bounds on maximum eciency at a 
given power for low-dissipation heat engines (LDHEs)

2
1

1

2 1
,P

P

P

C
C

C

( ) ⩽ ⩽ ( )
η

δ η η
δ

δ η
+ −

+ −

− − −
 (1)

where

P P P .P ( )/δ = − � �
 (2)

We derive these bounds analytically for small Pδ  and for Pδ  close to 1. For the interme-
diate regime we present strong numerical evidence that the bounds are valid for any 

Pδ . The inequalities (1) represent direct generalization of the bounds on EMP obtained 
for 0Pδ =  by Esposito et al [29]. In the leading order in Cη , the left and the right bound 

coincide and the resulting maximum eciency, 1 2PC( )/η η δ= + − , equates to that 

obtained using linear response theory in the strong coupling limit [43]. Both the bounds 
also coincide for vanishing power ( 1P →δ − ), when they equal Cη , thus verifying Carnot’s 
results.

We also study the maximum relative gain in eciency

( )/δ η η η= −η
� �

 (3)
with respect to EMP of LDHEs [32, 37], [44–46] for arbitrary fixed power and show 
that it scales in the leading order of the relative loss of power Pδ  as

.Pδ δ∝ −η (4)
The slope of the gain in eciency δη diverges at 0Pδ =  and hence LDHEs working close 
to maximum power operate at considerably larger eciency than η�. We show that 
both the diverging slope and the scaling (4) are direct consequences of the fact that the 
maximum power corresponds to 0Pδ =  and that these findings are valid for a broad 
class of systems (see the text below equation (24)). Indeed, the scaling (4) was already 
obtained in recent studies on quantum thermoelectric devices [38, 39], for a stochastic 
heat engine based on an underdamped particle diusing in a parabolic potential [24] 
and also using linear response theory [43].

2. Model

We consider a non-equilibrium Carnot cycle composed of two isotherms and two adia-
bats working in the low-dissipation regime [14, 29, 37, 47–55]. During the hot (cold) iso-
therm the system is coupled to the reservoir at temperature Th (Tc). Let th (tc) denotes 
the duration of the hot (cold) isotherm. In the low-dissipation regime, it is assumed 
that the system relaxation time is short compared to th and tc. Then it is possible to 
assume that the entropy production per cycle equals
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A

t T

A

t T
,tot

h

h h

c

c c

∆ = + (5)
where A A,h c are positive parameters. This means that the engine reaches reversible 
operation when duration of the cycle becomes very large (th,c →∞). Another usual 
assumption, that we also adopt here, is that the duration of the adiabatic branches 
is short compared to t th c+  and thus the cycle duration can be well approximated by 
t t tp h c= + .

The heat absorbed by the system during the hot isotherm, Qh, and the heat deliv-
ered to the cold reservoir during the cold isotherm, Qc, are given by

Q T S A t ,h h h h/= ∆ − (6)

Q T S A t ,c c c c/= ∆ + (7)
where S∆  denotes the change of the system entropy during the hot isotherm. The posi-
tive parameters Ah and Ac thus measure the degree of irreversibility of the individual 
isotherms. They are given by the details of the dynamics of the system and can be 
easily measured [49].

We express th and tc using the duration of the cycle, tp, and its redistribution among 
the two isotherms, α, as t th pα=  and t t1c p( )α= − . Then the engine output power and 
its eciency can be written as [37, 51]

P
Q Q

t

T T S

t

A A

t

1

1
,h c

p

h c

p

h c

p
2

( ) ( )
( )
α α
α α

=
−

=
− ∆

−
− +

− (8)

Q Q

Q T S Pt1
.h c

h

C

c tot p/( )η
η

=
−

=
+ ∆ (9)

In general, interchanging the reservoirs at the ends of the isothermal branches 
brings the system out of equilibrium. During the subsequent relaxation, an additional 
positive contribution to the entropy production (5) arises, which may not vanish in 
the limit th,c →∞. This unavoidably results in a decrease of the eciency at a fixed 
power (9). By considering cycles with a reversible limit, we assume this dissipation to 
be negligible. While this assumption is reasonable for large systems, it might require a 
delicate control of system dynamics in the case of microscopic heat engines [14], [29, 
37, 47–49, 51], [56].

3. Eciency at maximum power

Maximizing the power (8) as a function of tp and α gives [14] (values at maximum 
power are denoted by �)

A A A

A A
,

h h c

h c

α =
−
−

� (10)
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t
T S

A A
2

,p
h C

h c
2( )

η
=

∆
+�

 (11)

P
T S

A A

1

4
,

h C

h c

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

η
=

∆

+
�

 (12)

A A

A A

1

2 1
.C c h

c h C

( / )
( / )η
η

η
=

+

+ −
�

 (13)

Note that the EMP (13) does not depend on the individual parameters Ah and Ac, but 
only on their ratio A Ah c/ .

4. Eciency near maximum power

The operational point of maximum power (10)–(13) can be used to define the coordi-
nate transformation

t

t
1, 1, ,

p

p

[ )τ τ= − ∈ − ∞� (14)

a a1, 1,
1

1 ,[ ]α
α α

= − ∈ − −
� � (15)

which decreases the number of parameters contained in the formulas (8)–(9) for power 
and eciency by 2 [37] and thus makes the maximization of eciency for a given power 
much easier. The point of maximum power corresponds in these coordinates to the ori-

gin, i.e. a 0τ = = . The parameter τ is larger than zero whenever t tp p> � and similarly 

a  >  0 if α α> �.
The relative loss of power (2) and the relative change in eciency (3) in these new 

coordinates read

a

a a A1 1 1
,P

2

2

2

( )( )( )
⎛
⎝
⎜

⎞
⎠
⎟δ

τ
τ
τ

=
+ − +

−
+

 (16)

A

a A

a a A A a a A

a A
1

2 1 2 1 2 1

2 1 1 1
,C

C

( ) ( ) ( )( )
( )( )( )δ

η τ
τ η

= − +
+ −
−

− + − + + −
+ + + −

η (17)
where

A A A .c h/= (18)
Let us here stress that by using the symbol δ in the notation we do not mean that the 
deviations from the maximum power measured by the functions (16) and (17) must be 
small.
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The power exhibits a maximum at a 0τ = =  and thus Pδ  for small τ and a varies 

very slowly. On the other hand, the eciency can change much more rapidly and thus, 
for suitable parameters, the loss of power is much smaller than the gain in eciency 
[24, 37–42]. We will now find the formula which describes this gain.

5. Maximum gain in eciency for a fixed loss of power

For a fixed Pδ , the parameters a and τ are related due to equation (16) as

a a A a

a A a1

1

1 1
.P

P

P

P

2 [( ) ]
( )( ) ( )τ

δ
δ

δ

δ
=
−
+

±
− − + −

+ − +
 (19)

For five values of Pδ  and for A  =  1, the curves defined by equation (19) are depicted by 
black lines in figure 1. Upper (lower) lines correspond to the upper (lower) sign on the 
right-hand side of equation (19). They mark the combinations of coordinates a, τ which 
yield the same value of power. The power is larger the closer the curves are to the origin 
a 0τ= = . In this figure, we also show the relative loss of power Pδ  (panel (a)) and the 
eciency η (panel (b)) as functions of the parameters a and τ.

5.1. Exact numerical results

Due to the algebraic complexity of equations (16) and (17), the analytical derivation of 
the maximum δη for a given Pδ  is in general intractable and we perform this calculation 
only numerically. Examples of the results of such optimization are demonstrated in 
figures 1 and 2. In figure 1 the dashed red line denotes the values of a and τ corresp-
onding to the maximum eciency (and thus also δη) for given values of Pδ , which is 
the parameter of this curve. The dashed line intersects the upper solid black curves. 
Hence the optimal values of eciency are obtained for the upper sign in equation (19). 
In figure 2 we show the maximum gain in eciency for a fixed power (panel (a)), the 
maximum eciency for a fixed power (panel (b)) and the corresponding optimal 1 val-
ues of the parameters τ (panel (c)) and a (panel (d)) as functions of the relative loss of 
power Pδ . The panels (a) and (b) in figure 2 demonstrate that the gain in eciency when 
working close to maximum power ( 0Pδ = ) is indeed significant. The panels (c) and (d) 
in figure 2 and the red dashed line in figure 1 reveal that optimal values of τ are always 

positive (t tp p> �) and the optimal values of a are always negative (α α< �). This result 
is quite intuitive.

For a fixed power, the eciency (9) increases if the average entropy production 

rate during the cycle, S ttot p/∆ , decreases. For a fixed α, the total entropy produc-
tion per cycle Stot∆  (5) decreases with increasing tp (and thus S ttot p/∆  decreases 

even faster). Physically, this is because slower processes are more reversible. On the 
other hand, for a fixed tp, Stot∆  is smaller for α α< � than for ⩾α α�. To see this, 
let us expand Stot∆  into a Taylor series around the point of maximum power α�: 

1 In the following we will use the word ‘optimal’ as a synonym for ‘corresponding to the maximum eciency for a 
fixed power’.
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S S S Otot tot tot
2( ) ( ) [( ) ]α α α α∆ = ∆ + ∆ − + −′� � � � , where S tot∆ �  is the total entropy pro-

duction at maximum power and S A A T T T T t1 0tot
2

h h c c h p( ) ( ) ( )/( )∆ = + − >′ � . We thus 
have S S 0tot tot∆ −∆ <�  whenever α α< �. Although this proof is valid only up to the lin-
ear order in α α− �, the result holds generally. In order to get further physical intuition 
it is helpful to consider the symmetric situation A  =  1. In such case for smaller α (larger 
1 α− ) more work is dissipated in a bath with large temperature Th, where the same 
amount of dissipated work creates less entropy than it would generate in a cold bath 
(entropy produced in a bath is equal to (energy delivered to the bath)/(bath temper-
ature)). For a fixed power, α and tp (a and τ) can not change independently and thus 
a compromise between an increased τ and a decreased α which verify equation (19) is 
chosen. In this compromise, depicted in figure 1 by the dashed red line, increasing τ 
makes the cycle more reversible and decreasing α causes more energy to be dissipated 
in the hot bath, which generates less entropy.

5.2. Approximate analytical results

Although the full analytical optimization of eciency for a fixed power is in general 
beyond our reach, there are two limiting regimes when the analytical calculation is 
possible. The resulting simple analytical formulas (20), (23) and (24) yield the bounds 
(32) and (33) on maximum δη and η for a fixed power. Comparison with exact numerics 
reveals that these bounds are valid also outside the two limiting regimes (see figure 2 
and explanations below).

First, for 1P →δ −  (P 0→ ), equation (19) yields →τ ∞ (tp →∞). Then, we get from 
equation (17) that

Figure 1. The relative loss of power (16) (panel (a)) and the eciency ( )η η δ= +η� 1  
(panel (b)) as functions of the parameters a and τ. In both panels, the upper 
black lines were calculated from equation (19) with the upper sign. Similarly, for 
calculation of the lower black lines we have used equation (19) with the lower sign. 
These lines connect the points with the same value of δP. The red dashed lines 
correspond to the maximum eciency for a fixed power, which is the parameter of 
this curve. In both panels we set A  =  1, η = 0.875C .
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O1
1

,C ⎜ ⎟
⎛
⎝

⎞
⎠δ

η
η τ

= − +η � (20)

and thus O 1C ( / )η η τ= + . This means that, for large τ, the eciency depends on the 
parameter a only via the term proportional to 1/τ, which becomes negligible close to 

1P →δ − .
The second analytically tractable situation, which is more important for practical 

reasons, is the case of small Pδ . Close to the maximum power the parameters a and τ are 
also small. This means that, instead of performing the derivation for a small Pδ , one can 
perform it for a small a. Data from the exact numerical optimization shown in figure 2 
demonstrate that the absolute values of the optimal parameter a are always either 

Figure 2. Panel (a): maximum relative gain in eciency δη (3) as a function of 
the relative loss of power δP (2) for η = 0.875C  and five values of the parameter 
A: =A 0.001 (green dotted line), =A 0.1 (red solid line), A  =  1 (black orange 
line), =A 10 (blue dotted line) and =A 100 (magenta dashed line). The dashed 
(full) black lines depict the lower (upper) bound on the maximum relative gain in 
eciency (32). The corresponding eciencies together with the bounds (33) are 
shown in panel (b). In panels (c) and (d) we show the corresponding optimal values 
of the parameters τ and a. The colored lines are calculated using exact numerical 
optimization of eciency for a fixed power. The thin gray lines are calculated using 
analytical optimization based on the approximate formula equation (21). Although 
the optimal values of the parameter a calculated in this approximation sometimes 
dier from the correct values (panel (d)), the resulting optimal parameter τ (panel 
(c)) and, more importantly, the optimal eciency (panel (b)) and the optimal gain 
in eciency (panel (a)) are predicted so well that the individual gray and colored 
curves overlap.
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small (for moderately small Pδ| |) or close to  −1 (for 1P →δ − , when 1τ� ). This means 
that the optimization using the small a approximation may be close to the exact solu-
tion even for relatively large Pδ . This is because the eect of a on the optimal eciency 
is either well captured by the approximation (for moderate Pδ ) or negligible ( 1P →δ − , 
when 1τ� ). Up to the second order in a, it follows from equation (19) that

τ
δ

δ δ
= ±

−

− −∓
∓

a

A1 2
,

P

P P

2

 (21)

where the upper signs correspond to the upper sign in equation (19) and thus lead to 
the maximum eciency for the fixed power. The rest of the calculation can be per-
formed without any other approximation. The final results are depicted in figure 2 by 
the gray lines, which in the panels (a) (maximum δη for a fixed power), (b) (maximum 
η for a fixed power) and (c) (the corresponding optimal parameter τ) overlap with the 
data obtained using exact numerical optimization. The only dierence between the 
approximate analytical solution and the numerical results can be observed in panel (d), 
where we show the optimal values of the parameter a. Thus, as we have conjectured 
above, the results based on the approximate equation (21) if no other approximations 
are made describe very well the exact optimized values of η and δη. Nevertheless, the 
formulas are quite involved and thus we will write in the rest of this section only the 
results up to the leading order in Pδ .

Substituting τ with the upper signs from equation (21) into equation (17) for δη, tak-
ing the derivative with respect to a and solving the resulting equation d da 0/δ =η  for a, 
we obtain in the leading order in Pδ

a
A

A

1

2 1
0.P

C

C

⩽η
η

δ= −
+ −

− (22)
The resulting optimal parameter a is thus negative (α α< �) in accordance with the 
discussion at the end of section 5.1. Inserting τ from equation (21) and a from equa-
tion (22) into the formula (17) for δη, we get up to the leading order in Pδ

f A, ,PC( )δ η δ= −η (23)
where

f A
A A

A

A A

A
A,

1

4

1

1

4 1 2

2 2
8 .C

C C

( ) ( ) ( )( )⎡

⎣
⎢

⎤

⎦
⎥η

η η
=

+
− +

+
+ +

− + −
+ +

The corresponding maximum eciency 1( )η δ η= +η � reads

A f A, 1 , .PC C( ) ( )⎡⎣ ⎤⎦η η η η δ= + −�
 (24)

Equations (23)–(24) constitutes our first main result. The maximum relative gain in 
eciency (23) and the maximum eciency itself (24) are non-analytical functions of Pδ  
with a diverging slope at 0Pδ = , which clearly indicates that the gain in eciency when 
working near maximum power is much larger than the loss of power, in accord with the 

findings of [37]. Both the diverging slope with 0P →δ  and the scaling Pδ−  are direct 
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consequences of the fact that the power has maximum at 0Pδ =  and thus represent 
generic features of the maximum eciency close to maximum power.

In order to understand how these results arise, assume that both power, P, and 
the corresponding maximum eciency, η, are parametrized by the parameter vec-
tor x, in the present setting tx ,p{ }α= , and that they are analytical functions of 
all these parameters. Taylor expansions of P and η around the point of maximum 

power x x= � (where P P 0x x= ∇ | =′ = �  denotes the gradient and P P 0x x
2″ = ∇ | <= �  

the negative definite Hessian matrix evaluated at the point of maximum power), 
P P Px x x x 2T( ) ( )/″= + − −� � �  and x x T( )η η η= + − ′� � , lead to Pδ δ∝ −η . The scal-
ing (23) is thus universal whenever the Taylor expansions of power and eciency used 
are valid. Indeed, the dependence (23) has already been obtained for quantum thermo-
electric devices [38, 39], for a stochastic heat engine based on an underdamped particle 
diusing in a parabolic potential [24] and also using linear response theory [43]. The 

next two terms in equation (23) are of the order Pδ  and P
3 2( ) /δ−  and can be also accu-

rately predicted if one departs from the approximate formula (21) for τ.

5.3. Maximum δη and η as functions of the parameter A

The optimal relative gain in eciency (23) is an increasing function of A as can be 
proven by showing positivity of the derivative

f A

A

g A

A A
A

, ,

4 1 2 2
.C

C
C

C
2

C
2

( ) ( )
( ) ( )

η
η

η
η η

∂
∂

=
+ − − − + (25)

The sign of this function is determined by the sign of the function g A A, 8 1C
2( ) ( )η = + −  

( )( )η η η+ + + +A A2 1 7 5C C
2

C
3 . The derivative of this expression with respect to A, 

A A16 1 4 1 12C C( ) ( )η η+ − + − , is positive for all Cη , 0 1Cη< < . The function g A, C( )η  is 
thus an increasing function of A and hence we can demonstrate the positivity of g A, C( )η  

by showing that g 0, 0C( )η > . To this end, we obtain g 0, 8 14 5C C C
2

C
3( )η η η η= − + + . 

This expression decreases with Cη  and thus the function g A, C( )η  fulfills the inequality 

g A g, 0, 1 0C( ) ( )η > = , which proves positivity of the derivative f A A, C( )/η∂ ∂ . Therefore, 
for small values of Pδ , the maximum relative gain in eciency for a given power increases 
with A. Furthermore, the same can be observed from the full solution for the optimal δη, 
using the exact numerical optimization and also using the analytical results for 1P →δ −  
(20). This means that the limit A 0→  of δη yields a lower bound on the relative gain in 
eciency for arbitrary Pδ . The upper bound on δη is then obtained in the limit A →∞.

Similar argumentation can be used also for the optimal eciency at a given power. 
For small values of Pδ  the optimal η is a monotonously decreasing function of A as can 
be shown using the equation (24). According to this equation the derivative of the 
maximum eciency with respect to A is given by

⎛
⎝
⎜

⎞
⎠
⎟η η η

η δ
∂
∂
=
∂
∂
+
∂
∂

+
∂
∂

−
� �

�

A A A
f

f

A
.P (26)

As can be seen directly from its definition (13), η� decreases with A, i.e. A 0/η∂ ∂ <� . This 
means that A 0/η∂ ∂ <  and the maximum eciency decreases with A for small values of 
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Pδ . Furthermore, the same behavior, but now for arbitrary Pδ , is obtained using the full 
solution for the optimal eciency and also using exact numerical optimization. Finally, 
for 1P →δ −  the maximum eciency equals to Cη  for any A. The lower bound for the 
optimal eciency is thus obtained for A →∞ and corresponds to the upper bound for 
the optimal Pδ . Similarly, the upper bound for the optimal η is obtained for A 0→  and 
corresponds to the lower bound for the optimal Pδ .

Physically, this behavior can be understood if one realizes how the quantity Ac 
contributes to the total entropy production Stot∆ . At the end of section 5.1 we argued 
that, by decreasing α, a larger part of the total dissipated work is delivered to the hot 
bath, where it produces a smaller amount of entropy than it would produce in the cold 
reservoir. For a fixed power, the parameters Ac and Ah are no longer independent since 
they satisfy equation (8). By changing these parameters one redistributes the total 
amount of dissipated work between the two reservoirs in the same way as by chang-
ing the parameter α. If the parameter Ac is small, larger amount of work is dissipated 
in the hot bath and, similarly, for a large Ac more work is dissipated in the cold bath. 
This means that the eciency decreases (entropy production increases) with increasing 

A A Ac h/=  and vice versa.
Does this also imply that larger A leads to a larger gain in eciency 1/δ η η= −η

� ? 
As we have argued above, both the EMP η� and the maximum eciency at a given 
power η are decreasing functions of A. The fact that δη is an increasing function of A 
means that the decrease of η with A must be slower than the decrease of η�. The EMP 
η� is completely determined by the condition that the corresponding power is maximal 
(parameters a and τ are fixed) and thus it has no freedom to be further optimized when 
the parameter A changes. On the other hand, the maximum eciency η at a given 
power possesses such freedom and thus one may expect, that it will decay with increas-
ing A slower than η�. Our results for behavior of optimal η and δη with A verify this 
conjecture (see figure 1). Now, let us focus on deriving the bounds for maximum gain in 
eciency for a given power and for the maximum eciency for a given power.

6. Bounds on maximum gain in eciency

As we have discussed in section 5.3, the upper bound on δη follows by taking the limit 
A →∞ in equations (16)–(17). The result is

lim
1

,
A

P

2

→
⎛
⎝
⎜

⎞
⎠
⎟δ

τ
τ

= −
+∞

 (27)

lim
1

.
A

P→
δ

τ
τ

δ=
+
= −η

∞ (28)
The lower bound follows by taking the other total asymmetric limit A 0→ . Then 1α =�  
and thus a 1, 0[ ]∈ − . From equation (19) we get

a

a1 1 1
,P

P

P

P( )τ
δ
δ

δ
δ

=
−
+

±
−

+ +
 (29)



Maximum efficiency of low-dissipation heat engines at arbitrary power

12doi:10.1088/1742-5468/2016/07/073204

J. S
tat. M

ech. (2016) 073204
where, for a 1, 0[ ]∈ − , a 0Pδ− >  as can be shown directly from equation (16). Positive 
relative change in eciency

a a a

a a a

2 1 1

2 1 1 1

P P

P P

C

C

( ) ( )( )
( )( ) ( )

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

δ
η δ δ

δ δ η
=

− − + + −

+ + + − − +
η (30)

is obtained for the plus sign before the square root in equation (29). From a 1, 0[ ]∈ −  

and a 0Pδ− >  it follows that a 0/δ∂ ∂ >η  and thus δη monotonously increases with a. 
This means that the maximum

2 1

2 1

P

P

C

C

( )
( )δ
η δ

δ η
=

− −

− − −
η (31)

is obtained for the maximum possible value of a, a  =  0.
We have thus found that the maximum gain in eciency at a given power obeys 

the inequalities

2 1

2 1
.

P

P
P

C

C

( )
( ) ⩽ ⩽η δ

δ η
δ δ

− −

− − −
−η

 (32)
As we have discussed at the end of section 5.3, the upper bound (32) corresponds to the 
lower bound on maximum eciency at a given power, 1( )η δ η= + η

�, and, similarly, 
the lower bound (32) yields the upper bound on η. For A →∞, we have 2C→ /η η�  and 
for A 0→ , 2C C→ /( )η η η−� . The bounds on eciency thus read

2
1

1

2 1
.P

P

P

C
C

C

( ) ⩽ ⩽ ( )
η

δ η η
δ

δ η
+ −

+ −

− − −
 (33)

The bounds (32)–(33) are our second main result. They represent direct generalizations 
of the bounds on EMP derived for 0Pδ =  by Esposito et al [29]. Note that for small 
temperature dierences, i.e. up to the leading order in Cη , the lower and the upper 
bound on the maximum eciency are equal and thus the maximum eciency as a func-
tion of Pδ  is independent of the parameter A, which contains details about the system 
dynamics. It is given by

2
1 .P

C ( )η
η

δ= + − (34)
The same formula for maximum eciency has been recently obtained using linear 
response theory in the strong coupling limit [43].

In figure 2(a) we show the bounds (32) and in figure 2(b) we show the corresp onding 
bounds on the maximum eciency (33). From the figure, one can observe that the 
maximum eciency interpolates between the EMP η� (for 0Pδ = ) and Carnot eciency 

Cη  (for 1Pδ = − ), which is, in accord with the bounds (33), reached irrespectively of the 
parameter A. Similar behavior of maximum eciency was encountered for the under-
damped particle diusing in a parabolic potential [24].
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7. Conclusions and outlooks

It is well known that real-world heat engines should not work at maximum power, but 
rather in a regime with slightly smaller power, but with considerably larger eciency. 
For low-dissipation heat engines, we have introduced lower and upper bounds on the 
maximum eciency at a given power (32) and the corresponding bounds on the maxi-
mum eciency (33). We have also calculated the maximum relative gain in eciency 
for an arbitrary fixed power. Close to maximum power, this gain scales as a square 
root from the relative loss of power Pδ  (23). This scaling is a direct consequence of the 
fact that power has a maximum at 0Pδ =  and thus it is universal for a broad class of 
systems. Indeed, the same scaling of maximum eciency with the relative loss of power 
has been found recently for several models [24, 38, 39, 43]. Our results thus support the 
general statement about actual heat engines with quantitative arguments and reveal 
more practical limits on eciency than the reversible one.

It would be interesting to investigate maximum gain in eciency for a fixed power 
also for other models, such as endoreversible heat engines, or systems described by gen-
eral Markov dynamics, i.e. by a Master equation, to see whether the behavior would 
be qualitatively the same as that obtained here and in the studies [24, 38, 39, 43].  
Furthermore, one can ask if the functional form of the prefactor f in the formula for the 

gain in eciency f Op p( )δ δ δ= − +η  is controlled by similar symmetries of the under-

lying dynamics as the EMP [25–28]. It would be also immensely interesting to find a 
heat engine where the square root scaling of the maximum gain in eciency close to 
maximum power was not valid.
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We present a simple thermodynamically consistent method for solving time-dependent Fokker-Planck
equations (FPE) for overdamped stochastic processes, also known as Smoluchowski equations. It yields both
transition and steady-state behavior and allows for computations of moment-generating and large-deviation
functions of observables defined along stochastic trajectories, such as the fluctuating particle current, heat, and
work. The key strategy is to approximate the FPE by a master equation with transition rates in configuration
space that obey a local detailed balance condition for arbitrary discretization. Its time-dependent solution is
obtained by a direct computation of the time-ordered exponential, representing the propagator of the FPE, by
summing over all possible paths in the discretized space. The method thus not only preserves positivity and
normalization of the solutions but also yields a physically reasonable total entropy production, regardless of
the discretization. To demonstrate the validity of the method and to exemplify its potential for applications, we
compare it against Brownian-dynamics simulations of a heat engine based on an active Brownian particle trapped
in a time-dependent quartic potential.

DOI: 10.1103/PhysRevE.99.032117

I. INTRODUCTION

Many natural phenomena exhibit a timescale separation
between “slow” and “fast” degrees of freedom. The variables
varying slowly in space or time can then be characterized by
a self-contained coarse-grained dynamics, which is—for not
too extreme coarse-graining—perceptibly perturbed by fluc-
tuations arising from the noisy dynamics of the fast variables.

The Fokker-Planck equation (FPE) represents a most com-
prehensive description of such time-separated phenomena [1].
It predicts not only the average dynamics of the slow variables
but directly addresses, in a technically manageable way, their
complete probability distribution, which includes the relevant
information about the fluctuations of the slow degrees of
freedom induced by the fast ones. To achieve this, all of the
slow variables need to be resolved explicitly in a so-called
Markovian description, such that the remaining fast variables
evolve without perceptible memory of the past dynamics.

Over the past century, the FPE has found applications
in various scientific disciplines ranging from physics and
chemistry to biology and ecology and even economy and
finance [1–7]. Needless to say, only in very few special cases
can it be solved analytically, so one usually has to resort to
analytical approximations, computer simulations, and numer-
ical methods [1,8–12]. Both the Fokker-Planck formulation of
stochastic dynamics and efficient techniques for its numerical
solution become particularly relevant for situations far from
equilibrium, where the slow variables are, as a rule, found to

*viktor.holubec@mff.cuni.cz

exhibit non-Gaussian characteristic fluctuations that contain a
crucial part of the information about the system of interest.

For the physical interpretation of this information, it is
moreover crucial to also evaluate functionals defined along
individual trajectories of the underlying stochastic process,
which is one of the main tasks of stochastic thermodynam-
ics. Important examples of such functionals are fluctuating
particle currents and fluctuating heat and work in systems
of Brownian particles, individual proteins, or living bacteria,
which often operate under conditions far from equilibrium
[13–15].

In this paper, we describe a simple thermodynamically
consistent matrix numerical method (MNM) for solving over-
damped FPEs with time-dependent coefficients, also known as
Smoluchowski equations. Not only can the method resolve the
transition and long-time behavior of probability distributions
described by the FPE, but it is also naturally applicable to
computations of moment-generating functions (MGFs) and
large-deviation functions (LDFs) for various types of func-
tionals defined along the trajectories of the stochastic process
described by the FPE. This is achieved by a discretization
that transforms the FPE into a master equation with transition
rates that obey a local detailed balance condition. The time
evolution of its solution is calculated from the time-ordered
exponential, representing the discretized FPE propagator, by
summing over all possible paths in the discretized configu-
ration space. The MNM thus addresses all of the mentioned
functions directly and gives physically reasonable results both
from a probabilistic and from a thermodynamic point of view,
for arbitrary discretization. Namely, the MNM is constructed
to preserve the normalization and positivity of the initial
distribution and to predict the correct entropy production of

2470-0045/2019/99(3)/032117(18) 032117-1 ©2019 American Physical Society
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the discrete models emerging upon discretization, at arbitrary
resolution.

Toward the end of the paper, we test the MNM and illus-
trate its power by focusing on a specific example, namely a
heat engine based on an overdamped active particle trapped in
a time-dependent quartic potential and communicating with
a heat bath at a time-dependent temperature. We investigate
the dynamics of the particle and the fluctuations of work and
heat exchanged with the bath, using both the proposed MNM
and Brownian dynamics (BD) simulations, checking that both
methods give the same results.

II. PRINCIPLES OF THE MNM

For pedagogical reasons, we introduce the MNM for a two-
dimensional stochastic system, parametrized by coordinates
x and y. Although such a system can represent diffusion
of an abstract object in an abstract energy landscape, we
find it helpful to allude, in our description, to the intuitive
paradigmatic example of an overdamped Brownian particle.
Furthermore, we assume that the diffusion matrix D and the
mobility matrix μ are diagonal: D = diag(Dx, Dy) and μ =
diag(μx, μy). An extension to higher dimensions and off-
diagonal matrices D and μ is straightforward. The FPE for
the probability density function (PDF) ρ(x, y, t ) to find the
system at time t in microstate (x, y) is the parabolic partial
differential equation

∂tρ(x, y, t ) = L(x, y, t )ρ(x, y, t )

= ∂x[∂xDx − μxFx]ρ(x, y, t )

+ ∂y[∂yDy − μyFy]ρ(x, y, t ) (1)

with generally time- and position-dependent diffusion coeffi-
cients Dx > 0 and Dy > 0, mobilities μx and μy, and forces
Fx and Fy in the x and y directions, respectively. The force
F = (Fx, Fy) does not need to be conservative, stemming
from some potential U = U (x, y, t ), such that F = −∇U =
−(∂xU, ∂yU ). Below, we show that the most general form
of the FPE that can be solved using the MNM is Eq. (1)
with time-dependent but position-independent diffusion coef-
ficients (11). If one is willing to sacrifice the thermodynamic
consistency of the MNM, its minimal modification moreover
allows one to solve Eq. (1) in full generality, i.e., with all
the coefficients Dx, Dy, μxFx, and μyFy time and position
dependent.

The main idea, exploited in this paper, to solve the com-
plicated time-dependent equation (1) is to approximate the
underlying time-and-space continuous stochastic process by a
time continuous hopping process in a discrete configuration
space. To this end, we approximate the FPE (1) with the
Fokker-Planck operator L(x, y, t ) by a master equation with
a transition rate matrix R:

∂tρ(x, y, t ) = L(x, y, t )ρ(x, y, t ) → ṗ(t ) = R(t )p(t ). (2)

Here, p(t ) is the vector of probabilities of occupation of
the individual discrete states which approximates the PDF
ρ(x, y, t ), and ṗ(t ) denotes its total time derivative. In case
of time-independent coefficients in L, the master equation
is simply solved by matrix exponentiation of the constant

rate matrix R, namely p(t ) = exp [(t − t0)R]p(t0). In the
case of time-dependent coefficients, the strategy is to con-
struct a piecewise time-constant approximation R̃(t ) to the
time-dependent rate matrix R(t ), solve the master equation
in the time intervals where R̃(t ) is constant using matrix
exponentiation, and, finally, employ the Markov property of
the stochastic process to construct an approximate solution by
concatenation, i.e., by multiplying the matrix exponentials.

Simple variants of the MNM have already been used by one
of the authors to investigate several model systems [16–18].
The main merits of the present paper are twofold. First, we
generalize the previously used method to FPEs with time-
dependent coefficients and show how to calculate MGFs and
LDFs for various functionals in such a setting. Second, in the
previous works [16–18] the MNM was always presented only
as a minimal recipe in technical appendices. Here, we provide
a comprehensive derivation and discussion of the method,
including all its important aspects.

The following sections give a detailed description of the
MNM. First, in Sec. II A, we specify the discretization mesh
used throughout the paper. The precise meaning of thermody-
namic consistency and the transition rates obeying the local
detailed balance condition are described in Secs. II B and
III A. In Sec. III B, we discuss several boundary conditions
which can be implemented with the method. In Sec. IV, we
show how to solve the approximate master equation. The long
Sec. V is devoted to computations of MGFs and LDFs for var-
ious functionals defined along the trajectories of the stochastic
process described by the FPE. The general presentation of the
MNM is closed by a discussion of several practical issues and
of its computational efficiency compared to other methods,
in Sec. VI. After that, in Sec. VII, we show how to apply
the general theory by guiding the reader through a solved
example: a heat engine consisting of an active particle trapped
in a time-dependent quartic potential and communicating with
a bath with time-dependent temperature. We conclude in
Sec. VIII. In Appendix A, we show why the (locally) detailed-
balanced master equation, which is at the heart of the MNM,
cannot be used for solving FPEs with position-dependent
diffusion coefficients and what modifications of the MNM are
necessary in order to solve Eq. (1) in full generality.

A. Space discretization scheme

Our goal is to solve the FPE Eq. (1) numerically. In general,
this can be done only within some finite space-and-time do-
main, which allows us to approximate the continuous space-
time with a finite number of discrete points. For simplicity,
we limit our presentation to rectangular domains of the form
[t0, τ ] × [x−, x+] × [y−, y+] only. The generalization to more
complicated domains is straightforward. The time domain is
naturally bounded by the initial time t0, where we impose
an initial PDF ρ(x, y, t0), and the final time of integration
τ . The finite space domain [x−, x+] × [y−, y+] is defined by
the boundary conditions imposed at boundaries x = x± and
y = y±. The boundary conditions which can be handled by
the MNM will be detailed in Sec. III B. Here, we present the
discretization of the (configuration) space domain [x−, x+] ×
[y−, y+] used in the rest of the paper.
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FIG. 1. Sketch of the configuration space discretization used for
the numerical solution of the two-dimensional overdamped Fokker-
Planck equation (1). The black points mark the states inside the do-
main [x−, x+] × [y−, y+], and the colored points form the boundary
(see Sec. III B). The black full arrows depict the allowed transitions
with the “bulk” transition rates (13) or (18) (horizontal transition)
and (14) or (19) (vertical transitions). The red boundary is reflecting
and thus the particles cannot cross the red states (hence no red
arrows). The blue boundary is absorbing and thus particles can
leave the system from these sites (depicted by one-way dashed blue
arrows). The states in the corners of the domain require two boundary
conditions. In the figure, we impose reflecting boundary condition in
the y direction (depicted by red circumferences of the points) and
periodic boundary conditions in the x direction (depicted by green
interiors of the points). The periodic boundary allows the particles to
leave the system in the x direction. The leaving particles reenter the
system at the opposite side of the domain, as depicted by the green
dot-dashed arrows.

For simplicity, we impose a rectangular discrete mesh
with (Nx + 1)(Ny + 1) discrete configurations with coordi-
nates {ix, iy},

ix =
⌊

x − x−
�x

⌋
, �x = x+ − x−

Nx
, (3)

iy =
⌊

y − y−
�y

⌋
, �y = y+ − y−

Ny
, (4)

ix = 0, 1, . . . , Nx and iy = 0, 1, . . . , Ny, as illustrated in
Fig. 1. The symbol �x� denotes the floor function. The gen-
eralization of the method to more complicated discretization
meshes, which might be specifically adapted to some salient
features of the coefficients in the FPE (1), is straightforward.

Let us denote as pix,iy = pix,iy (t ) the occupation proba-
bilities of the individual lattice points ix, iy. Allowing only
transitions between neighboring lattice points (cf. the arrows
in Fig. 1), the counterpart of the FPE (1) on the discrete lattice
is the master equation [19]

ṗix,iy = r
iy
ix+1→ix

pix+1,iy + r
iy
ix−1→ix

pix−1,iy

+ l ix
iy+1→iy

pix,iy+1 + l ix
iy−1→iy

pix,iy−1

− (
r

iy
ix→ix+1 + r

iy
ix→ix−1 + l ix

iy→iy+1 + l ix
iy→iy−1

)
pix,iy ,

(5)

where the symbol r
iy
ix→ix+1 = r

iy
ix→ix+1(t ) � 0 denotes the tran-

sition rate in the x direction from site (ix, iy) to site (ix + 1, iy)
and l ix

iy→iy+1 = l ix
iy→iy+1(t ) � 0 denotes the transition rate in the

y direction from site (ix, iy) to site (ix, iy + 1). These transition
rates must be chosen in such a way that the occupation
probabilities pix,iy determine the correct solution of the FPE
(1) in the limit of an infinitely fine mesh:

ρ(x, y, t ) = lim
�x→0

lim
�y→0

pix (x),iy (y)(t )

�x�y
. (6)

The master Eq. (5) possesses a simple probabilistic inter-
pretation. For example, the expression r

iy
ix+1→ix

(t )pix+1,iy (t )dt
stands for the probability to jump from the site (ix + 1, iy) at
time t to the site (ix, iy) during the infinitesimally short time
interval dt . The time derivative of the occupation probability
in Eq. (5) is thus given by the probability to enter the site from
neighboring sites [positive terms in (5)] minus the probability
to leave it to neighboring sites [negative terms in (5)], during
an infinitesimally short time interval.

B. Thermodynamic consistency

The probabilistic interpretation of the master equation, (5),
implies that solutions produced by the proposed discretiza-
tion are by construction non-negative for any non-negative
initial condition and conserve the normalization in absence of
source- or sink-boundary conditions (cf. Sec. III B), regardless
of the discretization parameters �x and �y.

There are various ways to write the rates for transitions
between the lattice points depicted in Fig. 1 that lead to the
same FPE (1) in the limit of infinitely fine discretization.
Here we want to propose a mapping (2) guided by the aim
to approximate the process described by the FPE (1) in a ther-
modynamically consistent way, for arbitrary mesh resolution.
A discretization scheme with similar properties was proposed
already in 1970 by Chang and Cooper [20]. Compared to their
presentation, our interpretation of the discretization scheme
in terms of master equations provides a clearer physical
interpretation of the transition rates and a natural basis for
studying various functionals, defined on realizations of the
stochastic process, in terms of moment-generating functions
and characteristic functions.

On the level of coarse-grained stochastic models, the time-
reversal symmetry of the (standard) microscopic Hamilto-
nian dynamics manifests itself in a so-called local detailed
balance condition [21–25]. This condition should therefore
be expected to hold for any physically reasonable stochastic
dynamics. In fact, it can be viewed as the most fundamen-
tal tool for devising consistent thermodynamic notions for
a microscopically grounded stochastic system. It states that
the logarithm of ratio of the (conditional) path probability
P(ri → r f ,�) = P(�) for the system to go from ri to r f along
the path � over the probability P�(r f → ri,�

�) = P�(��) to
return from r f to ri along the time-reversed path �� (with
time-reversed dynamics) is proportional to the entropy change
�SR(ri → r f ,�) = �SR(�) in the reservoir to which the
system is connected along the path �, briefly

kB log
P(�)

P�(��)
= �SR(�). (7)
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Let us consider an overdamped diffusion process where
a particle communicates with a single global equilibrium
bath at constant temperature T and is driven by a force F =
(Fx, Fy). The fluctuation-dissipation theorem implies that the
bath temperature is given by T = Dx/(kBμx ) = Dy/(kBμy)
with time-and-space constant diffusion coefficients Dx and Dy

and mobilities μx and μy. The amount of entropy produced
when the particle diffuses from ri = (xi, yi ) to r f = (x f , y f )
along the path � = [x(t ), y(t )] parametrized by t ∈ [ti, t f ] is
given by the energy transferred to the reservoir along this
process divided by the reservoir temperature T . For over-
damped dynamics, the energy dissipated into the bath is given
by the work W (�) = ∫

�
F(�) · d� = ∫ t f

ti
dt F[x(t ), y(t ), t] ·

[dx(t ), dy(t )]/dt done by the force F along �, and thus
�SR(�) = W (�)/T .

This equation can be generalized to situations where we
connect the system at every point (x, y) to one joint reservoir
or even two independent reservoirs with time-dependent tem-
peratures. The bath at temperature Tx(x, y, t ) = Dx/(kBμx )
induces diffusion in the x direction, and the one with tem-
perature Ty(x, y, t ) = Dy/(kBμy) induces diffusion in the y
direction. Here, we again assumed that the diffusion and the
mobility matrices D and μ in Eq. (1) are related by the
fluctuation-dissipation theorem for each coordinate. In this
generalized case, the total amount of entropy produced in all
the reservoirs along the trajectory � reads

�SR(�) =
∫ t f

ti

dt

[
Fx(t )

Tx(t )
,

Fy(t )

Ty(t )

]
·
[

dx(t )

dt
,

dy(t )

dt

]

=
∫ r f

ri

[
Fx(t )

Tx(t )
,

Fy(t )

Ty(t )

]
· [dx(t ), dy(t )]. (8)

In order to find a reasonable form of the transition rates
[transition probabilities P(�) per unit time] based on Eqs. (7)
and (8), we assume that the explicit time dependence of the
forces and temperatures can be neglected for the transition
rates at time ti. If such a timescale separation holds, we
can evaluate the force and temperature fields in Eq. (8) at
time ti, thereby effectively approximating the process with
time-dependent coefficients by a sequence of processes with
time-independent coefficients. For an overdamped diffusion
process with time-independent coefficients, the forward and
reversed dynamics are identical, i.e., P�(�) = P(�). Let us
now use this formula to uncover the functional dependence of
the transition probabilities, fulfilling the local detailed balance
condition (7), on the entropy change �SR(�).

Without loss of generality, we write the transition prob-
ability as P(�) = A(�) exp [B(�)/kB], where A denotes a
symmetric and B denotes an antisymmetric unknown function
with respect to the path reversal, i.e., A(�) = A(��) and
B(�) = −B(��). Inserting this ansatz into Eq. (7) and using
the condition P�(�) = P(�), we find that B(�) − B(��) =
2B(�) = �SR(�). We thus arrive at the expression

P(�)

A(�)
= A(�)

P(��)
= exp

[
�SR(�)

2kB

]
(9)

for the transition probabilities, the validity of which we as-
sume for each transition and, consequently, also for arbitrary
sequence of transitions. The prefactor A(�) depends on the

details of the dynamics and we determine it by inserting the
transition rates fulfilling (9) into the FPE.

III. IMPLEMENTATION OF THE MNM

A. Transition rates

The formulas (9) can be applied to arbitrary discretiza-
tion meshes. Let us now identify the points ri and r f with
neighboring sites of the rectangular lattice defined in Sec. II A
and depicted in Fig. 1. We now take ri = (x, y) and r f =
rx

f = (x + �x, y) for the horizontal transitions and r f = ry
f =

(x, y + �y) for the vertical ones. The probabilities P(ri → r f )
will now determine the transition rates between the individual
lattice points.

The formulas (9) imply that the necessary condition for the
transition rates in the x direction in Eq. (5) to obey the local
detailed balance principle is

rix→ix+1

Aix+1/2
= Aix+1/2

rix+1→ix

= exp

[
�SR

(
ri → rx

f

)
2kB

]
, (10)

where Aix+1/2 is a symmetric prefactor, and similarly for the
rates in the y direction. In Appendix A, we show that the
transition rates satisfying these conditions can (even in one
dimension) yield the FPE (1) only for position-independent
diffusion coefficients. Hence, the most general FPE, which
can be solved numerically using such transition rates, reads

∂tρ(x, y, t ) = L(x, y, t )ρ(x, y, t )

= [
Dx∂

2
x − ∂xμxFx

]
ρ(x, y, t )

+ [
Dy∂

2
y − ∂yμyFy

]
ρ(x, y, t ) . (11)

Nevertheless, in Appendix A, we also show how to modify the
detailed-balanced transition rates in order to address the FPE
(1) in its full generality. The resulting generalized MNM re-
spects the local detailed balance condition in case of position-
independent diffusion coefficients. For position-dependent
diffusion coefficients, the local detailed balance condition and
the underlying microreversibility, valid in the continuous FPE
(1), are thus necessarily broken on the coarse-grained level of
the master equation (5). This anticipates problems of attempts
to mimic effects caused by spatially modulated mobilities
using models with (temporally) diffusing diffusivities; see, for
example, Ref. [26].

1. Equilibrium dynamics

Whenever the quantities Fx/kBTx = μxFx/Dx and
μyFy/kBTy = μyFy/Dy can be written using a dimensionless
potential Ũ (x, y, t ), such that

(
Fx

kBTx
,

Fy

kBTy

)
= −∇Ũ = −(∂xŨ , ∂yŨ ) , (12)

the formula (8) can be written as �SR(�) = �SR(ri → r f ) =
kB[Ũ (ri, t ) − Ũ (r f , t )]. The transition rates satisfying the
condition (9) and yielding the FPE (11) in the limit �x → 0,
�y → 0 of the master equation (5) can then be found without
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any further approximation by inserting the rates of the form
(10) into the FPE, as in Appendix A. They read

r
iy
ix→ix±1 = Dx

�2
x

exp

(
−Ũix±1,iy − Ũix,iy

2

)
, (13)

l ix
iy→iy±1 = Dy

�2
y

exp

(
−Ũix,iy±1 − Ũix,iy

2

)
, (14)

with Ũix,iy = Ũix,iy (t ) = Ũ (x− + �xix, y− + �yiy, t ) and the
symmetric prefactors Dx(t )/�2

x and Dy(t )/�2
y .

We refer to this as equilibrium dynamics because the FPE
(11) with time-independent coefficients fulfilling (12) leads to
the Boltzmann stationary distribution ρ(x, y,∞) = ρ̃(x, y) ∝
exp [−Ũ (x, y)]. This can be verified by the direct substitution
of the Boltzmann distribution into Eq. (11). Similarly, the sta-
tionary solution of the master equation (5) reads pix,iy (∞) =
p̃ix iy ∝ exp (−Ũix iy ), regardless of the discretization.

Physically, the most important feature of the equilibrium
stationary distribution is that in this state all mesoscopic
probability currents in the system vanish. On the level of the
FPE (11), this is reflected by the formulas jx = −Dx∂ρ̃ +
μxFxρ̃ = 0 and jy = −Dy∂ρ̃ + μyFyρ̃ = 0. On the level of
the master equation (5), the probability current in the x direc-
tion reads j

iy
x (ix → ix + 1) = r

iy
ix→ix+1 pix,iy − r

iy
ix+1→ix

pix+1,iy
and similarly for the probability current in the y direction.
That these currents vanish for the Boltzmann distribution
p̃ix iy is usually written in the form of the conventional global
detailed balance conditions

r
iy
ix→ix+1

r
iy
ix+1→ix

= exp
[ − (

Ũix+1iy − Ũix iy

)]
, (15)

l ix
iy→iy+1

l ix
iy+1→iy

= exp
[ − (

Ũix iy+1 − Ũix iy

)]
. (16)

Let us stress that the “equilibrium dynamics” described in this
section can sometimes be observed even though the system is
not in equilibrium, for example, if the coefficients in the FPE
(11) are time dependent and/or if the system relaxes from a
nonequilibrium initial distribution ρ 	= ρ̃.

2. Nonequilibrium dynamics

If the quantities Fx/kBTx = μxFx/Dx and μyFy/kBTy =
μyFy/Dy cannot be written using a single potential, one can
still formally define (different) pseudopotentials for the indi-
vidual degrees of freedom:(

Fx

kBTx
,

Fy

kBTy

)
= −(∂xŨ , ∂yṼ ) . (17)

In this case, it is not possible to get rid of the path de-
pendence of the integral in Eq. (8) as was done for the
equilibrium dynamics. Therefore, we now assume that for the
transitions in the x direction the entropy change can be well
approximated by �SR(�) = �SR[(x, y) → (x + �x, y)] =
Ũ (x, y, t ) − Ũ (x + �x, y, t ). This means that, from all pos-
sible paths � between the points (x, y) and (x + �x, y), we
consider only the one with y coordinate fixed at y. We
use a similar approximation also for the y direction. These

approximations become exact in the limit of vanishing �x

and �y. The transition rates satisfying Eq. (9) under these
approximations and leading to the FPE (5) as the �x → 0,
�y → 0 limit of the master equation (5) read

r
iy
ix→ix±1 = Dx

�2
x

exp

(
−Ũix±1,iy − Ũix,iy

2

)
, (18)

l ix
iy→iy±1 = Dy

�2
y

exp

(
−Ṽix,iy±1 − Ṽix,iy

2

)
, (19)

with Ũix,iy = Ũix,iy (t ) = Ũ (x− + �xix, y− + �yiy, t ) and simi-
larly for Ṽix,iy . While for nonzero �x and �y these transition
rates satisfy the local detailed balance condition (9) for the
FPE only approximately, they satisfy it exactly on the discrete
lattice depicted in Fig. 1, where the neighboring lattice points
are interconnected exclusively by a single transition channel.
On this discrete lattice, the process described by the rates
(18) and (19) is thus perfectly thermodynamically consistent,
yielding the correct entropy produced along the individual
transitions regardless of the discretization.

For the nonequilibrium dynamics, not only is the time-
dependent dynamics in general unknown, but also the char-
acterization of the stationary distribution, attained in case of
time-independent coefficients in the FPE (11) is a nontrivial
task. The presence of persevering probability currents in such
steady states implies that there might be stationary transport
of particles, energy, etc. Formally, the transition rates (18)
and (19) still obey a form reminiscent of the global detailed
balance conditions (15) and (16), namely

r
iy
ix→ix+1

r
iy
ix+1→ix

= exp
[−(

Ũix+1iy − Ũix iy

)]
, (20)

l ix
iy→iy+1

l ix
iy+1→iy

= exp
[−(

Ṽix iy+1 − Ṽix iy

)]
, (21)

but now with different potentials for the two degrees of
freedom x and y. Intuitively, each of these conditions is trying
to draw the system into the Boltzmann equilibrium corre-
sponding to its own potential Ũ or Ṽ , respectively. Globally,
this competition leads to a nonequilibrium stationary state.

B. Boundary conditions

The conditions at the boundaries of the configurational
space domain [x−, x+] × [y−, y+] require some extra care and
give rise to modifications of the transition rates presented in
the previous section. Briefly, while the rates (13) and (14)
and the rates (18) and (19) are determined by the forces, tem-
peratures, and mobilities explicitly appearing in the dynamic
operator in the FPE (11), this is not necessarily true for the
rates at the boundaries. The probabilistic interpretation of the
master equation described below Eq. (6) allows a convenient
implementation of arbitrary boundary conditions, which are
thus also easily introduced into the MNM. We now show how
to implement three basic types of boundary conditions.

(1) Reflecting boundary condition: The particle cannot
cross the boundary.
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(2) Periodic boundary condition: After crossing the
boundary at one side of the domain, the particle returns to it,
usually at its other side.

(3) Absorbing boundary condition: The particle is annihi-
lated once it hits the boundary.

While the reflecting and periodic boundary conditions lead
to the overall conservation of probability (no particles can
leave the system), the absorbing boundary conditions lead to
depletion of the system due to particle losses at the boundary.
Besides using these three types of boundary conditions, one
can use arbitrary combinations thereof (with some probability
the particles can be allowed to leave the system or to appear
at its other side, etc.).

1. Reflecting boundary conditions

Physically, the reflecting boundary condition corresponds
to an infinite potential barrier. Overcoming such a barrier
requires an infinite amount of energy from the reservoir which
corresponds to an infinite change of entropy in Eq. (9) or
potential in Eqs. (13) and (14) and Eqs. (18) and (19). The
crossing rate across a reflecting barrier is thus 0, in accord
with the rates Eqs. (13) and (14) and Eqs. (18) and (19).

Let us, for example, consider the situation depicted in
Fig. 1, where the red points at the boundary obey reflecting
boundary conditions. Specifically, we consider the point with
coordinates (1,0) (the second one in the last line). Realizing
that the transitions over the reflecting barrier are not allowed
and that this point has only a single boundary toward negative
iy, the master equation (5) for this point reads

ṗ1,0 = r0
2→1 p2,0 + r0

0→1 p00 + l1
1→0 p1,1

− (
r0

1→2 + r0
1→0 + l1

0→1

)
p1,0 . (22)

Note that the transitions from (1,0) to (1,−1) and back occur
with zero transition rate (and thus they do not show up in
the equation). For other points with reflecting boundary, the
master equation should be constructed in a similar manner.

2. Periodic boundary conditions

For periodic boundary conditions, the transitions rates are
still given by Eqs. (13) and (14) and Eqs. (18) and (19),
one just needs to make the index periodic at the point where
the periodic boundary condition is imposed. Consider for
example the situation depicted in Fig. 1, where the upper left
and upper right points are connected by the periodic boundary
in the x direction. Then the rate to the right from the site
(Nx, Ny) leads to the site (Nx + �x, Ny) = (0, Ny) and thus it
reads

r
Ny

Nx→0 = Dx

�2
x

exp

(
−ŨNx+�x,Ny − ŨNx,Ny

2

)
. (23)

In the expression for the transition rate, we used ŨNx+�x,Ny −
ŨNx,Ny = ∫ x−+(Nx+1)�x

x−+Nx�x
dxFx/kBTx instead of Ũ0,Ny − ŨNx,Ny ,

because, although the sites (Nx + �x, Ny ) and (0, Ny) co-
incide, the pseudopotential Ũ may be discontinuous at the
boundary for a nonconservative force Fx/kBTx.

Considering that the site (Nx, Ny) also possesses a
reflecting boundary condition toward larger values of iy, the

corresponding master equation reads

ṗNx,Ny = r
Ny

0→Nx
p0,Ny + r

Ny

Nx−1→Nx
pNx−1,Ny

+ lNx
Ny−1→Ny

pNx,Ny−1

− (
r

Ny

Nx→0 + r
Ny

Nx→Nx−1 + lNx
Ny→Ny−1

)
pNx,Ny . (24)

Other transitions across periodic boundaries should be han-
dled in a similar manner.

3. Sources, sinks, and absorbing boundaries

Further examples are source-sink boundary conditions,
meaning that particles can enter and leave the system across
the boundary. They can be realized by connecting the bound-
ary state to a particle reservoir. If the reservoir constantly
feeds particles into the boundary state (the rate to go from the
reservoir to the system is larger than the rate to go back), the
boundary state behaves as a source. Vice versa, if the particles
leave the boundary state toward the reservoir faster then they
return, the boundary behaves as a sink.

The absorbing boundary condition represents a specific
example of the sink condition with diverging rate to the
reservoir and vanishing rate back. Physically, it corresponds
to an infinitely deep potential cliff. When a particle hits such
a boundary, it can be thought to release an infinite amount
of energy that is dissipated to the bath, corresponding to a
negatively infinite entropy change in Eq. (9) or an infinite
change of the potential in Eqs. (13) and (14) and Eqs. (18)
and (19). Under such circumstances, the transition rates (13)
and (14) and rates (18) and (19) diverge.

In order to avoid including such infinite rates in the master
equation, we take as “auxiliary” boundary points those bulk
points next to the actual boundary. The transition rates from
the bulk into this auxiliary boundary and from it to all neigh-
boring grid points are given by Eqs. (13) and (14) or Eqs. (18)
and (19), while the actual boundary points are assigned a
vanishing back rate into the bulk. Consider, for example, the
situation depicted in Fig. 1, where the point (Nx, 2) at the
end of the second row from the top possesses an absorbing
boundary in the x direction. From the discussion above, it
follows that the corresponding master equation reads

ṗNx,2 = r2
Nx−1→Nx

pNx−1,2 + lNx
3→2 pNx,3 + lNx

1→2 pNx,1

− (
r2

Nx→Nx+1 + r2
Nx→Nx−1 + lNx

2→3 + lNx
2→1

)
pNx,2. (25)

Here, the transition rate r2
Nx→Nx+1 for transitions out of the

system is given by Eqs. (13) and (14) or Eqs. (18) and
(19). Since we assume that the absorbing boundary in the
continuous space described by the FPE is located at x+ + �x,
the pseudopotentials ŨNx+1,2 and ṼNx+1,2 needed to evaluate
the rates are well defined. Other transitions across absorbing
boundaries should be handled in a similar manner.

IV. SOLUTION OF THE MASTER EQUATION

Having described the transition rates in the approximate
master equation (5), we will briefly explain how this equation
can be solved in various situations. The key step always
consists in rewriting the master equation (5) in the matrix form

ṗ(t ) = R(t )p(t ) , (26)
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where the (Nx + 1)(Ny + 1) × (Nx + 1)(Ny + 1) matrix R(t )
contains the transition rates (13) and (14) or rates (13) and
(19) in such a way that Eqs. (5) and (26) are equivalent. The
elements of the (Nx + 1)(Ny + 1)-dimensional vector p(t ) are
given by the occupation probabilities pix,iy (t ) One possible
construction is [16]

p(t ) = (
p0,0, . . . , pNx,0, p0,1, . . . , pNx,1, . . . , pNx,Ny

)

, (27)

where 
 denotes the transposition. In this case, the probability
pix,iy is contained in the element j(ix, iy) = iy(Nx + 1) + ix +
1 of the vector p(t ). The inverse transformation reads

ix( j) = j − iy( j)(Nx + 1) − 1, (28)

iy( j) = �( j − 1)/(Nx + 1)�. (29)

The time dependence of the rate matrix R(t ) comes di-
rectly from the time dependence of the coefficients Dx, Dy, μx,
μy, Fx, and Fy in the FPE (11) appearing in the expressions for
the transition rate. For the reflecting and periodic boundary
conditions described in the preceding section, the matrix R(t )
is stochastic (

∑
i [R(t )]i j = 0) and thus Eq. (26) conserves

normalization of the probability vector p(t ). All the following
methods of solution for Eq. (26) in diverse situations are based
on basic algebraic manipulations involving the rate matrix.

A. Time-independent coefficients

Let us start with the simplest situation of time-constant
coefficients in the FPE (11) which leads to a time-independent
rate matrix, R(t ) = R. In this case, the Green’s function (to
which we also refer as the propagator throughout the text) for
Eq. (26) is given by the matrix exponential

U (t, t0) = exp[R (t − t0)] (30)

and thus the time evolution of the probability vector p(t )
departing from the initial condition p(t0) is given by

p(t ) = U (t, t0)p(t0). (31)

If the system state converges to a time-independent steady-
state p∞ at late times, this steady state can be either deter-
mined from Eq. (31) as p∞ = limt→∞ p(∞), or, much more
conveniently, as an eigenvector of the rate matrix correspond-
ing to the eigenvalue 0:

ṗ∞ = Rp∞ = 0. (32)

Because only jumps between the neighboring sites are al-
lowed (see Fig. 1), the time-independent jump matrix R is
sparse. Especially (but not solely) for the computation of the
steady-state vector p∞ from Eq. (32) one can benefit from
fast numerical procedures for sparse matrices (see Sec. VI for
more details).

B. Time-dependent coefficients

The ability to calculate the propagator U (t, t0) for FPEs
with time-constant coefficients eventually allows us to ob-
tain the Green’s function for Eq. (11) with arbitrary time-
dependent coefficients. We discretize the relevant time inter-
val [t0, t0 + τ ) into Nt time slices of length �t = τ/Nt . We
assume that the driving can be approximated by appropriately
chosen constants during all of these intervals and that it

may change only stepwise from one interval to the next. In
other words, we replace the actual time-dependent coefficients
Dx, Dy, μx, μy, Fx, and Fy in Eq. (11) by their piecewise
constant approximations D̄x(t ) = Dx(t0 + it�t ), it = �(t −
t0)/�t�, and similarly for the other coefficients. The propaga-
tors for the individual time intervals, during which the driving
is constant, can be obtained using the procedure described
above. Denoting by Ui, i � 1, the propagator U [t0 + (i +
1)�t , t0 + i�t ] ≡ exp [R(t0 + i�t )�t ] corresponding to the
ith time interval and by U0 ≡ I the unit matrix, we obtain
the approximate Green’s function under continuous driving,
for arbitrary t , t0 + τ > t > t0, as

U (t, t0) = lim
�t →0

it (t )∏
i=0

Ui. (33)

With this Green’s function, the time evolution of the probabil-
ity vector p(t ) follows again from Eq. (31).

Let us note that the presented discretization of time is
just one of many possible choices. While we evaluate the
time-dependent parameters at time t ′ = t in order to compute
the state of the system at time t + �t , one can also use values
of the time-dependent parameters at any other time t ′ in the
interval (t, t + �t ). What value t ′ suits best a specific situation
depends on the relaxation time of the system. If it is long
compared to �t , one should take t ′ = t . On the other hand,
if the relaxation is fast compared to �t , one should rather take
t ′ = t + �t .

V. FUNCTIONALS DEFINED ALONG
THE STOCHASTIC PROCESS

Besides computing the distribution ρ(x, y, t ) and then us-
ing it to evaluate averages, moments, reduced distribution
functions for x and y, and the mesoscopic probability currents
jx and jy, the probabilistic interpretation of the discrete ap-
proximation (5) of the FPE (11) can moreover be employed to
address the statistics of various stochastic variables, other than
position, directly. Useful examples are microscopic currents
or linear combinations thereof, and heat, work, or efficiency,
which are much studied objects in stochastic thermodynamics.

Application of the MNM to probability currents was al-
ready suggested in Refs. [16,17], where it was employed
in the calculation of the diffusion coefficient in a model of
a two-dimensional Brownian ratchet. Here we discuss this
approach in greater generality.

A. Probability currents

The probability current j(x, y, t ) = ( jx, jy) at time t and
position r = (x, y) can be defined in two equivalent ways.
First, one can define it mesoscopically, rewriting the FPE
(11) as ∂tρ(x, y, t ) = L(x, y, t ) = −∇ · j(x, y, t ), leading to
the expression

j(x, y, t ) = −(Dx∂x + μxFx, Dy∂y + μyFy)ρ . (34)

On the level of the master equation (5), these expressions read

ṗix,iy (t ) = j
iy
x (ix + 1 → ix ) + j

iy
x (ix − 1 → ix )

+ jix
y (iy + 1 → iy) + jix

y (iy − 1 → iy) (35)
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and

j
iy
x (ix → ix + 1) = r

iy
ix→ix+1 pix,iy − r

iy
ix+1→ix

pix+1,iy , (36)

jix
y (iy → iy + 1) = l ix

iy→iy+1 pix,iy − l ix
iy+1→iy

pix,iy+1. (37)

The mappings between the probability currents in the contin-
uous space and those on the discrete lattice read

jx(x, y, t ) = lim
�x→0,�y→0

j
iy
x (ix → ix + 1, t )

�y
, (38)

jy(x, y, t ) = lim
�x→0,�y→0

jix
y (iy → iy + 1, t )

�x
, (39)

where x = x− + �xix and y = y− + �yiy. The appearance of
the factors �x and �y follows from discretization of the
formula ∂tρ = −∇ · j = ṗix,iy/�x�y = ∑

j/�x�y, valid in
the limit of infinitely fine mesh, where

∑
j stands for right-

hand side of Eq. (35).
Microscopically, the current can be defined as j(x, y, t ) =

〈δ[r(t ) − r] ṙ(t )〉 = 〈δ[x(t ) − x]δ[y(t ) − y] ṙ(t )〉, where the
average is taken over many trajectories r(t ) of the underlying
stochastic process. The quantity

J(x, y, t ) = J(r, t ) = δ[r(t ) − r] ṙ(t ) (40)

inside the average is what we call a microscopic current. In
measurements, one can obtain not only the average current j,
but its full probability distribution. The MNM can be applied
to investigate this distribution as well as other distributions
of arbitrary variables that arise as linear combinations of the
microscopic currents J(x, y) at different positions. An impor-
tant example of such a variable from the field of stochastic
thermodynamics is heat, as exemplified in the example in
Sec. VII.

The lattice equivalents of the microscopic definitions of
the mesoscopic currents are the formulas j

iy
x (ix → ix + 1) =

〈 dix (t )
t δix (t )ix δiy (t )iy〉 and jix

y (iy → iy + 1) = 〈 diy (t )
t δix (t )ix δiy (t )iy〉.

The x current measures the number of jumps to the right from
the lattice point minus the number of jumps from the right to
the lattice point, and similarly for the y current.

B. Moment-generating functions for observables
proportional to integrated currents

In this section, we calculate the moment-generating func-
tion χA for an observable which is given by an arbitrary linear
combination of the microscopic currents (40)

A(t0 + τ, t0) =
∫ t0+τ

t0

dt
∫

dx
∫

dy c(r, t ) · J(r, t )

=
∫ t0+τ

t0

dt c[r(t ), t] · ṙ(t ), (41)

where c(r, t ) = (∂xg, ∂yh) is a vector of space-
and time-dependent coefficients. The MGF χA =∫ ∞
−∞ dA exp (−sAA)p(A) is defined as a two-sided Laplace

transform of the probability distribution p(A).
In Appendix B, we discuss in detail the computation of the

MGF χJ̄ for the time-averaged probability current J̄(r, τ ) =
1
τ

∫ t0+τ

t0
dtJ(r, t ). The MGF χA can be computed along similar

lines as χJ̄ and thus we here omit the details and present the
main results only.

The key ingredient in the computation of the MGF is
the construction of the so-called tilted matrix R̃sA (t ). In the
present case, the rate matrix R(t ) must be tilted proportionally
to the coefficients ∂xg and ∂yh in the vector c(r, t ). Namely, the

rates r
iy
ix→ix+1(t ) must be multiplied by

exp{−sA[g(x− + (ix + 1)�x, t ) − g(x− + ix�x, t )]}, (42)

the rates rix
iy+1→iy

(t ) by

exp{−sA[h(y− + iy�y, t ) − h(y− + (iy + 1)�y, t )]}, (43)

and similarly for all other transition rates. The MGF for A(t0 +
τ, t0) is then obtained from Eq. (B8) with the only difference
that the tilted matrices R̃sn (t ) involved in the equation are
substituted by the tilted matrices R̃sA (t ) just described above.
Namely,

χA(sA, t, t0) = lim
�t →0

p

+

it (t )∏
i=0

Ũi(sA)p(t0), (44)

where p

+ is a vector of ones effecting the summation

over the final states at time t = t0 + τ , and Ũi(sA) =
exp [R̃sA (t0 + i�t )�t ] if i > 1 and the unit matrix I other-
wise. For problems with a time-independent tilted rate matrix
R̃sA , the product in Eq. (44) simplifies to

∏it (t )
i=0 Ũi(sA) =

exp [R̃sAτ ] = Ũ (sA, t0 + τ, t0) and the moment-generating
function is thus given by

χA(sA, t, t0) = p

+Ũ (sA, t, t0)p(t0). (45)

Some examples of physically relevant observables
of the type (41) are time-averaged probability currents
jx = ∫

dt
∫

dx
∫

dy Jx(x, y, t )/τ flowing through the system
in the x direction [here c(x, y, t ) = (1, 0)/τ ]; time-averaged
probability currents jy = ∫

dt
∫

dx
∫

dy Jy(x, y, t )/τ flowing
through the system in the y direction [here c(x, y, t ) =
(0, 1)/τ ]; the total heat flux Q = ∫

dt
∫

dx
∫

dy ∇U (x, y, t ) ·
J(x, y, t )/τ flowing from the reservoirs into a Brownian
ratchet [16,17] [here c(x, y, t ) = ∇U (x, t )/τ , where
U (x, y) is a potential energy]; and the heat flux
Qx = ∫

dt
∫

dx
∫

dy ∂xU (x, y, t ) · J(x, y, t )/τ flowing into
the ratchet from the reservoirs connected to the x coordinate
only [here c(x, y, t ) = (∂xU (x, t ), 0)/τ ].

For the observables A where the scalar product c(r, t ) ·
J(r, t ) in Eq. (41) can be written in the form of a total time
derivative df [x(t ), y(t ), t]/dt = ∂ f /∂t + ∇ f · ṙ, the formula
(41) can be simplified as

A(t0 + τ, t0) =
∫ t0+τ

t0

dt
d

dt
f [r(t ), t]

= f [r(t0 + τ ), t0 + τ ] − f [r(t0), t0] (46)

and thus depends only on the initial and final times and
positions. Also in this case, the calculation of the MGF for
A can be simplified as in the step from Eq. (44) to Eq. (45).
Now, the matrix Ũ (sA, t0 + τ, t0) = Ũ (sA) has elements

[Ũ (sA)]kl = [U (t0 + τ, t0)]kl e
−sA�c (k,l,t0+τ,t0 ) , (47)
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where �c(k, l, t0 + τ, t0) = f [r f , t0 + τ ] − f [ri, t0],
r f = [x− + �xix(k), y− + �yiy(k)], and ri = [x− +
�xix(l ), y− + �yiy(l )]. Here, the coefficients ix(k) and
iy(k) are given by Eqs. (28) and (29). A typical example
of such an observable is the above-mentioned heat in
case the potential U (x, t ) does not depend on t explicitly.
However, since we treat time-dependent protocols using
a piecewise constant approximation (see Sec. IV B),
this simplification is important also for time-dependent
potentials. If the product c(r, t ) · J(r, t ) can be written as
a total derivative df /dt only for a time-independent vector
c(r, t ) = c(r), the moment-generating function for A with
the explicitly time-dependent c(r, t ) can be calculated from
Eq. (44) with Ũi(sA), i > 1, redefined using Eq. (47) as
Ũ[sA, t0 + (i + 1)�t , t0 + i�t ].

C. Moment-generating functions for observables
not proportional to integrated currents

Above, we have focused solely on observables which can
be written as linear combinations (41) of microscopic prob-
ability currents. The integrand in these observables vanishes
if the particle does not move (ṙ = 0). However, in driven
systems, there are also important observables with nonzero
increments even if the particle stands still. The MNM can also
be used to calculate MGFs and LDFs for observables of the
form

B(t0 + τ, t0) =
∫ t0+τ

t0

dt
∫

dx
∫

dy δ[r(t ) − r]∂t b(r, t )

=
∫ t0+τ

t0

dt ∂t b[r(t ), t]. (48)

The observable B vanishes if the function b is constant in
time. The best-known example of a physically relevant ob-
servable of the type (48) is the stochastic work done on the
system due to a deterministic external driving, which changes
the potential U . Then we have b[r(t ), t] = b[x(t ), y(t ), t] =
U (x(t ), y(t ), t ). Another example is the occupation time for
a position ra, in which case b(r(t ), t ) = δ[r(t ) − ra]t , or the
occupation time for a region 
, in which case b(r(t ), t ) =
I
[r(t )]t , where I
(r) is an indicator function equal to one
if r ∈ 
 and 0 otherwise.

For observables of the above type B, the tilted ma-
trix must be constructed using the time discretization, al-
ready introduced to derive Eq. (33). We define the piece-
wise constant approximation of the function b as b̄(r, t ) =
b(r, t0 + �t it ), it = �(t − t0)/�t�. For this approximate func-
tion, the variable B in Eq. (48) does not change during
the time intervals [t0 + �t i, t0 + �t (i + 1)], where b̄(r, t ) is
constant for constant r, and it abruptly jumps from B(t )
to B(t ) + b[r(t ), t+] − b[r(t ), t−] at time instants t = t0 +
�t i, where b̄(r, t ) changes infinitely fast. Here b[r(t ), t±] =
limε→0 b[r(t ), t ± ε], ε � 0.

Let us now turn to the discrete approximation of the
full process using the discrete lattice of Fig. 1. Using
the notation of Eq. (33) and assuming that the system
is in microstate [ix(l ), iy(l )] at time t0 + �t i and in mi-
crostate [ix(k), iy(k)] at time t0 + �t (i + 1) [see Eqs. (28)
and (29) for definitions of ix(l ) and iy(l )], the PDF for B is

given by

[Ūi(B)]kl = [Ui]klδ[B − �b(k, t0 + �t i)] , i � 1 . (49)

Here we used the shorthand �b(k, t ) = b[r, t+] − b[r, t−],
r = [x− + �xix(k), y− + �yiy(k)] and U0(B) = I. The PDF
for B during the whole time interval [t0, t0 + τ ] is thus given
by a multiple convolution of the form lim�t →0 p


+[Ūi(t ) �

Ūi(t )−1 � · · · � Ū0](B)p(t0). The MGF for B and thus also the
corresponding tilted matrix is obtained by the Laplace trans-
form of the last expression with respect to B:

χB(sB, t0 + τ, t0) = lim
�t →0

p

+

it (t0+τ )∏
i=0

Ũi(sB)p(t0), (50)

where the matrix Ũi(sB) is obtained as the Laplace transform
of the matrix Ūi(B) (we again just substitute the δ functions
δ[B − �b(k, t0 + �t i)] for exponentials exp[−sB�b(k, t0 +
�t i)]).

The MNM can also be applied to variables which are de-
fined as combinations of the variables of the types A and B. An
example of such a variable is the increase of internal energy
�U = W + Q, which consists of heat Q (type A variable) and
work W (type B variable). Let us consider a general variable
C decomposed as C = A + B. Then the corresponding MGF
χC is given by Eq. (50) with the tilted matrices Ũi(sC ) given
by

[Ũi(sC )] = [B̃i(sC )]kl exp[−sC�b(k, t0 + �t i)], (51)

where B̃i(sC ) is the tilted matrix Ũi for A, defined in Eq. (44).
Similarly to the case of the variables of type A, also the
computation of χC may simplify if the variable C has a
suitable structure.

D. Moments and cumulants

The MGF χX (s, t, t0) allows one to access all moments of
the stochastic variable X at time t simply by taking derivatives
with respect to the Laplace variable s:

〈X n(t )〉 = (−1)n dnχX (s, t, t0)

dsn

∣∣∣∣
s=0

. (52)

The zeroth moment is just a normalization χX (0, t, t0) = 1
and it can be used as a first test of the calculated MGF. The
first moment equals the average 〈X (t )〉 of the quantity X and it
can be calculated from the probability distribution for position
ρ(x, y, t ) [or from its approximation p(t )]. For the variable A
defined in Eq. (41), it reads

〈A(t )〉 =
∫ t

t0

dt ′
∫

dx
∫

dy c(x, y, t ′) · j(x, y, t ′), (53)

where the average current j(x, y, t ) is given either by Eq. (34)
or by Eqs. (38) and (39). For the variable B defined in Eq. (48),
we get

〈B(t )〉 =
∫ t

t0

dt ′
∫

dx
∫

dy ∂t b[x, y, t ′]ρ(x, y, t ′). (54)

The formulas (53) and (54) can be used as another test of
calculated MGFs.
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In a manner similar to moments, the MGF can be used for
calculating all cumulants Cn(X, t ) of the variable X at time t :

Cn(X, t ) = (−1)n dn log χX (s, t, t0)

dsn

∣∣∣∣
s=0

. (55)

The cumulants reflect the shape of the probability distribution
for X . First, four of them can be written in terms of moment
as C0 = 0, C1 = 〈X 〉, C2 = 〈X 2〉 − 〈X 〉2 and C3 = 〈X 3〉 −
3〈X 2〉〈X 〉 + 2〈X 〉3 and thus for a centered random variable
with 〈X 〉 = 0 the first three cumulants are equal to the first
three moments. In general, moments and cumulants can be
related by the recursion relation

Cn(X, t ) = 〈X n〉 −
n−1∑
m=1

(
n − 1

m − 1

)
Cm〈X n−m〉. (56)

The numerical computation of the derivatives in Eqs. (53) and
(55) may lead to various problems, especially at higher orders.
Alternatively, the moments and cumulants can be calculated
via the derivative-free method introduced in Ref. [27].

Although the moments and cumulants provide rich in-
formation about the PDF for X , to reconstruct the whole
distribution requires knowledge of all the moments and/or
cumulants and is thus rarely achievable in practice. For long
times τ , however, a very general method for calculating
the (approximate) PDF from the MGF can be applied. This
method is based on the so-called large deviation theory.

E. Large deviation functions

If the time domain τ of the time integrals in Eqs. (41) and
(48) gets very large, the PDFs ρ(X, t0 + τ, t0) = ρ(X, τ ), X =
A, B can assume the so-called large-deviation form [28]

log ρ(X, τ ) ∼ τJ

(
X

τ

)
, (57)

where the function J (x) � 0 is the large deviation function.
The symbol ∼ means that Eq. (57) is an asymptotic repre-
sentation of log ρ(X, t0 + τ, t0) valid for large times τ , where
the terms omitted in the formula are typically proportional to
log τ .

The large deviation function can be calculated from the
MGF by Laplace’s method. Namely, assuming that τ is large
and Eq. (57) holds, the MGF can be written as

log χ (sX , τ ) = log
∫

dX e−sX X ρ(X, τ )

≈ log
∫

dX e−τ [sX X/τ−J (X/τ )]

≈ τ max
x

[J (x) − sX x]. (58)

The large deviation function J (x) can hence be calculated by
a Legendre–Fenchel transform

J (x) = min
sX

[λ(sX ) + sX x], (59)

where

λ(sX ) = lim
τ→∞

1

τ
log χ (sX , τ ) (60)

denotes the so-called scaled cumulant-generating function.
Here, we assume that the scaled cumulant-generating function
is differentiable. Otherwise, the formula (59) does not univer-
sally hold, and one has to resort to a more involved procedure
for calculation of the LDF, if it exists at all [28].

For problems with time-independent coefficients and the
moment-generating function determined by Eq. (45) with the
tilted Green’s function given by Ũ (sX , t0 + τ, t0) = [R̃sX τ ],
the scaled cumulant-generating function (45) can be calcu-
lated as

1

τ
log χ (sX , τ ) = 1

τ
log[p


+ exp(R̃sX τ )p(t0)]

= 1

τ
log

{∑
i

ci(sX ) exp [τλi(sX )]

}

≈ λmax(sX ) . (61)

In the calculation, we used the eigenvalue decomposition
of the matrix R̃sX which allowed us to rewrite the product
p


+ exp (R̃sX τ )p(t0) using the coefficients ci arising from prod-
ucts of the vectors p


+, p(t0) and eigenvectors of the matrix
R̃sX . In the final step, we took the limit τ → ∞ in which
the sum is dominated by its largest term cmax exp(τλmax)
corresponding to the largest eigenvalue λmax. In short, the
LDF J (a) is in this case determined by the largest eigenvalue
λmax(sX ) of the tilted rate matrix R̃sX (sX ) as

J (x) = min
sX

[λmax(sX ) + sX x]. (62)

For problems with time-dependent coefficients, where the
moment-generating function is determined by the product
form (44) or (50), the large deviation principle (57) does not
generally hold, unless the time dependence is periodic and we
are interested in the PDF for the stochastic variable attained
after many cycles N [29]. For a single cycle starting at t0 and
ending at t0 + tc, where tc denotes the duration of a single
period, the moment-generating functions (44) and (50) are
then determined by the propagator

Ũ (s) = lim
�t →0

it (t0+tc )∏
i=0

Ũi(sX ). (63)

Hence, the moment-generating function χ (sXN ) for the vari-
able XN = X (t0 + τ, t0), τ = Ntc [see Eqs. (41) and (48)], is
given by χ (sXN ) = p


+Ũ (sXN )N p(t0). A calculation similar to
the one in Eq. (61) leads to the scaled cumulant-generating
function for XN :

1

τ
log χ (sXN ) = 1

τ
log

[
p


+Ũ (sXN )N p(t0)
]

= 1

τ
log

{∑
i

ci(sXN )[αi(sXN )]N

}

≈ 1

tc
log αmax(sXN ). (64)

Here, αi(sXN ) denote eigenvalues of the propagator for a single
cycle Ũ (sXN ) and the coefficients ci arise from the products of
the vectors p


+, p(t0) and eigenvectors of the matrix Ũ (sXN ).
Now, the LDF J (a) is determined by the logarithm of the
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largest eigenvalue αmax(sXN ) of the matrix Ũ (sXN ) as

J (x) = min
sXN

[
1

tc
log αmax(sXN ) + sXN x

]
. (65)

In the fully solved example given in Sec. VII, we compute this
function for a simple model stochastic heat engine.

VI. DISCRETIZATION AND EFFICIENCY

There are several ways how to determine suitable dis-
cretization parameters Nx, Ny, and Nt and the boundaries x±
and y± without knowing the exact solution. In general, if
not fixed by the physics of the problem in question, these
parameters should be chosen in such a way that their further
refining affects the computed results only negligibly. A second
way of choosing the discretization mesh, pursued in the ex-
ample below, is to compare the numerical results with results
obtained using Brownian dynamics (BD) simulations of the
stochastic process described by the FPE (1). Then the mesh
can be refined until both methods give the same results.

For a given discretization, the efficiency (defined as preci-
sion of calculation over the computation time) of the MNM
is comparable to standard numerical methods based on substi-
tuting finite differences for partial derivatives in the FPE (1)
such as the one described in Ref. [20]. It can be increased
by adapting the discretization mesh to the salient features
of the time-dependent driving, i.e., by putting the time-
discretization parameter �t roughly inversely proportional
to the first derivative of the driving (with some fixed upper
bound) and similarly for �x and �y.

Main merits of the MNM are the following: (1)
Versatility—similar implementations can be used for cal-
culating probability distributions, moment-generating func-
tions, and large deviation functions, both for time-independent
and time-dependent problems. (2) Easy implementation—it
is enough to construct the transition rate matrix using the
expressions (13) and (14) or expressions (18) and (19), and
the rest can be handled using matrix operations, which are
usually well implemented in the current programming lan-
guages used in physics. (3) Thermodynamic consistency—
qualitatively reasonable predictions of the system dynamics
and thermodynamics are obtained with very coarse meshes,
as soon as these meshes capture all qualitative features of the
forces, potentials, and their time dependence. These coarse
meshes can thus be used to find interesting effects for a given
problem quickly, and thus to reserve time-consuming precise
computations for the fraction of model parameters giving the
most interesting results. As an example, we refer to Ref. [17],
where all key effects occurring in a complex model of a two-
dimensional continuous system were captured by a simple
discrete six-level system.

The main limitation of the method concerns its general-
ization to higher dimensional problems. Namely, the avail-
able RAM determines the largest matrix that can swiftly be
handled by the computer. The rate matrix R in Eq. (26)
has at most

∏d
i=1(Ni + 1)(1 + 2d ) nonzero elements, where

d denotes the dimensionality of the problem and Ni + 1
denotes the number of discrete points considered for the ith
dimension. This is because each site in Fig. 2 is connected to

θ, iθ

x, ix

θ− θ− + Δθ θ+ − Δθ θ+

x−

x− + Δx

x+ − Δx

x+

FIG. 2. Sketch of the phase-space discretization used for the nu-
merical solution of the two-dimensional overdamped Fokker-Planck
equation (1) in case of the driven active particle (Sec. VII). The
meaning of the arrows and point colors is the same as in Fig. 1.

at most 2d neighbors and each of the
∏d

i=1(Ni + 1) rows of R
thus contains 2d rates for transitions into the given site and 1
outward rate. On the other hand, the propagators U (t, t0) (30)
already contain

∏d
i=1(Ni + 1)2 nonzero matrix elements. The

largest number of nonzero elements which can be handled by
our computer (8 GB RAM) is approximately 106. In practice,
problems that can be solved solely using the rate matrix
R, such as the computation of a (nonequilibrium) stationary
solution of Eq. (26), can usually be attacked with acceptable
precision in higher dimensions, whereas fully time-dependent
problems require additional resources.

VII. EXAMPLE: DRIVEN ACTIVE PARTICLE

An example of a typical application of the MNM can
be found in Refs. [16,17], investigating a two-dimensional
Brownian ratchet in contact with two reservoirs at different
constant temperatures. In this case, the authors used periodic
and reflecting boundary conditions. Another example of usage
of the MNM is the work [18], where the MNM was used to
calculate probability distributions of a particle surviving in
a constant unstable cubic potential. In this case, the authors
implemented absorbing and reflecting boundary conditions.

In the present section, we consider a FPE with time-
dependent coefficients and show that the MNM can be used
both for describing the dynamics of the probability distri-
bution and for evaluating MGFs and LDFs of stochastic
functionals of the underlying stochastic process. For the sake
of simplicity, all physical quantities in this section are repre-
sented in suitable natural units that render them dimension-
less.

We consider an active particle self-propelling with a veloc-
ity of magnitude v(t ) cos θ (t ) and driven by a time-dependent
quartic potential

U (x, t ) = k(t )x4/4 (66)
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θ

v

x

U(x, t)

v cos θ

FIG. 3. Active particle confined to a single dimension and driven
by the quartic potential (66) of time-dependent strength k(t ).

in the x direction, as shown in Fig. 3. We assume that the
particle motion is overdamped and thus its position x(t ) and
orientation θ (t ) obey the first-order Langevin equations

ẋ = −kx3 + v cos θ +
√

2Dxηx , (67)

θ̇ =
√

2Dθηθ . (68)

Here, ηx and ηθ denote independent, zero-mean unit-variance
Gaussian white noises. If we denote the angular variable θ

as y, the system of (67) and (68) corresponds to the FPEs
(1) and (11) with μxFx = −kx3 + v cos θ , μyFy = 0, Dx, and
Dy = Dθ , i.e.,

∂tρ = [
Dx∂

2
x + Dθ ∂θ,θ − k∂xx3 + v cos θ∂x

]
ρ , (69)

where ρ = ρ(x, θ, t ). Such schematic models of active parti-
cles are often considered as idealized caricatures of artificial
or biological microswimmers [30–32]. In fact, they have
acquired the status of a major new paradigmatic model of
nonequilibrium statistical mechanics. While currently most
studies resort to simulations when analytical approximations
cease to work [12], the MNM could in the future provide
a welcome alternative approach. To illustrate its application
to the above model, we consider a specific nonequilibrium
situation that is of interest for its own sake. Namely, motivated
by recent studies interpreting trapped Brownian particles as
microscopic heat engines [11,14,33–38], we choose the po-
tential stiffness k(t ), the particle active velocity v(t ), and
the diffusion coefficients Dx(t ) and Dθ (t ) to be 1-periodic
functions, as depicted in Fig. 4. This choice of parameters
leads to a positive net work produced by the system per
period.

To understand the thermodynamics of the system, it is
helpful to first assume that the particle is not active (v = 0)
and can thus be understood as a system coupled only to a
single bath with time-dependent temperature Dx(t ). During
some parts of the cycle, the heat flows into the bath, and during
others it flows from the bath to the system. The reservoir with
a time-dependent temperature thus serves as a heat source
during some parts of the cycle and as a heat sink during
the rest of the cycle. Alternatively, one can understand this
setup in such a way that there are many reservoirs at different
temperatures and the system is at each time connected to one
of them. In such a case, we would have many heat sources and
many heat sinks. In both cases, the laws of thermodynamics
allow us to transform heat into work and to operate the system
as a heat engine. More details for heat engines of this type can
be found in Refs. [11,39]. If the particle is active, the basic
principle of the engine operation is the same as described

0 0.25 0.5 0.75 1
5

5.5

0 0.25 0.5 0.75 1
0

1

0 0.25 0.5 0.75 1
1

2

0 0.25 0.5 0.75 1
0.05

0.55

FIG. 4. The parameters of the microscopic heat engine consisting
of the periodically driven active particle depicted in Fig. 3, during
one period of the cyclic driving protocol. Boxes comprise maximum
and minimum values of the corresponding variables during the cycle.

above; nevertheless, there are some significant differences.
Most importantly, the source of the disordered energy (called
heat) is now not only the heat bath itself, but also the active
self-propulsion of the particle. For more details, we refer the
interested reader to Refs. [35,40].

A. Dynamics

To compute the dynamical and statistical properties of
the heat engine using the MNM, we consider the discretiza-
tion depicted in Fig. 2 with θ− = 0, θ+ = 2π − �θ , �θ =
2π/(Nθ + 1), and x+ = −x−, �x = (x+ − x−)/Nx. The po-
sitions x± of the x boundaries of the discrete mesh, where
we impose reflecting boundary conditions, are chosen in such
a way that the probabilities at the boundaries turn out to
be negligible. The discretization parameters Nθ and Nx are
chosen in such a way that their further refinement would
barely affect the solution.

On the discrete lattice, we determine the matrix U (t, 0) in
Eq. (33), which represents the approximate Green’s function
for the FPE (69) of the model, during one driving cycle. For
an arbitrary initial condition p0 = p(0) at time 0, the matrix
U (t, 0) provides us with the distribution at time t as

p(t ) = U (t − N, 0)[U (1, 0)]N p0, (70)

where N = �t� is the number of full cycles done during the
time interval (0, t ). After a transient relaxation period, the dis-
tribution p(t ) becomes independent of the initial condition. As
a consequence of the periodicity of the driving, it converges to
a 1-periodic vector in the long-time limit.

This time-dependent long-time solution plc(t ) of the master
equation (FPE) with periodic transition rates is called the limit
cycle. Using its periodicity, it can be determined using the
eigenvector of the Green’s function U (t, 0) corresponding to
the eigenvalue 1 as plc(1) = U (1, 0)plc(0) = plc(0),

plc(t ) = U (t, 0)plc(0). (71)

From this approximate solution and the relation (6), we com-
pute the approximate probability distribution ρ(x, θ, t ) of the
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FIG. 5. Comparison of observables for the periodically driven
active particle, depicted as a function of time during one limit cycle,
as computed from BD simulations (symbols) and the MNM (lines):
(a) averages 〈x2〉, 〈x cos θ〉, and 〈x4〉 and (b) marginal probability
density ξ (x, t ) for the particle position x at five time instants t during
the cycle. The PDF ξ (x, 0) at the initial time 0 (dashed blue line)
and ξ (x, 1) at the final time 1 (full orange line) in the first panel
of (b) coincide, because the system operates in the limit cycle as
described by Eq. (71).

active particle during the engine’s operation. We use it to
numerically compute the averages 〈x2〉, 〈x cos θ〉, and 〈x4〉
as functions of time and the marginal distribution for the x
position ξ (x, t ) = ∫ 2π

0 dθρ(x, θ, t ) at five time instants t =
0, 1/4, 1/2, 3/4, and 1, during the limit cycle. We also inde-
pendently evaluated these quantities using a BD simulation of
the system of (67) and (68). The comparisons of the averages
and the marginal distributions are shown in Figs. 5(a) and
5(b), respectively. The MNM results, depicted by full lines,
perfectly overlap with those of the BD (symbols). The MNM
results were calculated using the discretization parameters
Nx = 51, Nθ = 21, Nt = 76, and x∞ = 2.4. Already for Nx =
31, Nθ = 15, Nt = 76, and x∞ = 2.4, one obtains curves that
are visually indistinguishable from those depicted in Fig. 5,
while the calculation is approximately 10× faster than with
the finer mesh. For the BD, we generated 106 trajectories with
the integration step 10−3.

Besides checking the correctness of our implementation of
the MNM by BD, we have also tested our numerical results
against analytical results available for the presented model
in two limiting situations. Specifically, we tested that the
computed PDF attains the form ρ(x, θ, t ) ∝ exp[−U (x, t )/
Teff (t )], Teff = T + v2/(2Dθ ) for a quasistatic driving, and

Dθ � 1. In this case, the particle rotates so fast that the term
v cos θ in Eq. (67) becomes equivalent to a further white
noise with the effective temperature v2/(2Dθ ). As a second
benchmark, we considered quasistatic driving with Dθ → 0,
where the active velocity can be treated as constant and thus
ρ(x, θ, t ) ∝ exp {[−[U (x, t ) − vx cos θ ]/T }.

B. Moment-generating functions

Besides computing the distribution ρ(x, θ, t ) to evaluate
averages, moments, and reduced distribution functions for x
and θ , the MNM can also be applied directly to other com-
prehensive representations of the stochastic thermodynamics
encoded in the FPE. In the following, we apply the MNM to
directly compute moment-generating functions (MGFs) and
large-deviation functions (LDFs) of work and heat. From the
point of view of stochastic thermodynamics, these MGFs
and LDFs are of interest in studies of work fluctuations in
microscopic heat engines operating close to the reversible
efficiency [41–43] or of the fluctuating efficiency [36–38],
both intensely investigated during the past few years.

In stochastic thermodynamics of externally driven systems,
work and heat are usually defined from the first law of
thermodynamics, as follows [13,14]. The energy U (x, t ) of the
particle in a fixed microstate (x, θ ) can change in the course
of time in two fundamentally different ways, one called work
w and the other heat q. Formally, we can write dU (x, t )/dt =
ẇ(x, t ) + q̇(x, t ), where

ẇ[x(t ), t] = ẇ(t ) ≡ k̇(t )x4(t )/4 , (72)

q̇[x(t ), t] = q̇(t ) ≡ k(t )x3(t )ẋ(t ) . (73)

The work done on the particle per unit time, ẇ, is thus nonzero
only if the potential is externally changed [k̇(t ) 	= 0]. A heat
exchange |q̇| > 0 occurs if the particle moves in the potential
and either dissipates its kinetic energy or transforms energy
acquired from the bath or from the active self-propulsion
into potential energy. Since the considered particle is active,
there is necessarily also some dissipated energy [mostly much
larger than (73)] related to the self-propulsion mechanism.
This energy is usually called housekeeping heat, and we
neglect it here, treating it as an intrinsic property of the
system.

Work and heat flowing to the particle during the time
interval (0, τ ) are defined as integrals over the respective rates
(72) and (73):

w(τ ) =
∫ τ

0
dt ẇ(t ) =

∫ τ

0
dt ∂tU [x(t ), t] , (74)

q(τ ) =
∫ τ

0
dt ∇U [x(t ), t] · [x(t ), θ (t )]

= [U (x(τ ), τ ) − U (x(0), 0)] − w(τ ) . (75)

They correspond to the cumulative external work performed
on the active particle by the device varying the confinement
strength, and the cumulative heat transferred to it from the
thermal reservoir at the time-dependent temperature T . Addi-
tionally, the energy gained due to the self-propulsion of the
swimmer is counted as (“internal” or “active”) heat supply.
The cumulative work is an example of a variable that is
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FIG. 6. Application of the MNM to moment-generating func-
tions (MGFs): (a) the MGFs χw and χq for work and heat, (b) the
first 11 raw moments, and (c) the first 10 cumulants [c)] of the net
extracted work −w and net supplied heat q per cycle, as calculated
from the MGFs depicted in panel (a) (∗) and from corresponding BD
simulations of 200 × 106 trajectories (box plots).

not proportional to the probability current, with the function
b[x(t ), θ (t ), t] in Eq. (48) given by the instantaneous potential
energy of the particle multiplied by the total time τ , b =
τU [x(t ), t]. The cumulative heat, on the other hand, is an
example of an observable proportional to the current, with the
vector c(x, y, t ) in Eq. (41) given by τ∇U [x(t ), t].

Consider now the driving protocol depicted in Fig. 4 and
the discretized time according to Sec. IV B. Using the formula
(50) of Sec. VII B, we calculated the MGF χw = χw(sw ) for
the work w(1) [Eq. (74)] transferred to the active particle
during one limit cycle. The corresponding MGF χq = χq(sq)
for the heat q(1) [Eq. (75)] follows from formula (44) with
tilted matrices Ũi(sq) = exp [R̃sq (t0 + i�t )�t ] if i � 1 and
Ũ0 = I otherwise. For the parts of the piecewise constant
protocol with time-independent potential, the tilted matrices
can also be computed from the formula (47).

The resulting moment generating functions are shown in
Fig. 6(a). The MGFs were sampled for sw ∈ (−15, 15) with
the step �sw

= 3/5 for work and for sq ∈ (−1, 1) with the
step �sq = 2/50 for heat. To check the results, we computed
the first 11 raw moments using the formula (52) and the
first 10 cumulants using the formula (55). For the numerical
evaluation of the derivatives in these equations, we used the
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FIG. 7. Box plots of relative differences between moments (77)
[panels (a)] and cumulants (78) [panels (b)] for work (left) and
heat (right) as computed using MNM and BD, respectively [see
Figs. 6(b) and 6(c)].

central difference scheme

dn f (z)

dz
≈

n∑
i=0

(−1)i

(
n

i

)
f
[
z +

(n

2
− i

)
�z

]
, (76)

where f is given by χw for moments and cumulants of work
and by χq for moments and cumulants of heat. The parameters
z and �z are given by sw and 2�sw

for χw and sq and 2�sq

for χq.
The resulting moments are depicted in Fig. 6(b) with an

asterisk (∗) together with the corresponding results obtained
from the BD simulations (depicted using box plots [44]).
In order to assess the error of the latter, we simulated each
moment 200 times using 106 trajectories yielding a box plot
for each n in the figure. For the exchanged work, all data ∗
from the MNM and the corresponding box plots from BD
perfectly superimpose so that the box plots are hardly visible,
for all values of n [Fig. 6(b), left]. For heat, the results from
both methods either coincide, or the MNM results lie within
the boxes indicating the 25th and 75th percentiles of the BD
data [Fig. 6(b), right]. The cumulants resulting from the MNM
depicted in Fig. 6(c) (∗) together with the corresponding
results obtained from the BD simulations (box plots) agree
both for work [Fig. 6(c), left] and for heat [Fig. 6(c), right].
Note that the computation of cumulants from BD simulation
is much less demanding than the computation of moments due
to suppressed fluctuations.

To get better insight into the precision of theses results, we
show in Fig. 7 box plots of relative differences

δm
n (x) = 〈xn〉a − 〈xn〉s

〈xn〉a + 〈xn〉s
(77)

of computed and simulated moments for work [x = −w,
Fig. 7(a), left] and heat [x = q, Fig. 7(a), right] and relative
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FIG. 8. Large-deviation limit of heat and work distributions. BD
simulations of the cumulative distributions ρq and ρw of the net
heat q supplied (©) and the net work −w extracted (�) over 100
cycles show that the work distribution has converged to the common
limiting form obtained from the MNM (superimposing lines, with
the vertical line indicating the average), while the heat distribution
has not (left panel). The Legendre-Fenchel transformed logarithms
of the MGF of heat and work (right panel) elucidate the unequal
convergence toward the common large-deviation function (LDF)
Jq(q) ∼ Jw (−w) with the number of cycles N = 30, 50, 100. While
the work distribution (�) has already converged for N = 30, the heat
distribution (©) keeps evolving (top to bottom).

differences

δc
n(x) = Ca

n (x, 1) − Cs
n(x, 1)

Ca
n (x, 1) + Cs

n(x, 1)
, (78)

of computed and simulated cumulants of work [x = −w,
Fig. 7(b), left] and heat [x = q, Fig. 7(b), right]. The relative
differences for work increase with n showing a trend toward
positive relative differences for moments and negative relative
differences for cumulants. These trends are caused by the cho-
sen discretization. For heat, the data from BD are much more
noisy than those for work and therefore no trend in the relative
differences is detectable. Even with the obvious trends in the
relative differences for work, all the data shown in Fig. 7 are
relatively well centered around 0, showing a good agreement
between the results computed using the MNM and the BD.

C. Large-deviation functions

Let us now investigate fluctuations of work w(τN ) = w =∫ τN
0 dt ẇ(t ) and heat q(τN ) = q = ∫ τN

0 dt q̇(t ) integrated over
many cycles N � 1 of duration τ = 1 [see Eqs. (74) and
(75)]. According to the large deviation theory [28] reviewed in
Sec. V E, in such situation the PDFs for work and heat assume
the form (57) with X/τ = w/τN and X/τ = q/τN for work
and heat, respectively, on the right-hand side, i.e.,

ρw(w) ∼ exp
[
τNJw

( w

τN

)]
, (79)

ρq(q) ∼ exp
[
τNJq

( q

τN

)]
. (80)

The LDFs Jw(w) and Jq(q) are determined by the largest
eigenvalues of the tilted propagators used in the previous
section for the MGFs; see Sec. V E and Eqs. (63)–(65) for
details.

In Fig. 8, we show the LDFs Jw(w) and Jq(q) computed
using the MNM. For N � 1, the nonextensive boundary
term U [x(t ), t] − U [x(0), 0] in Eq. (75) can be neglected as

compared to −w(τN ), so that ρx(x) ∼ exp[τNJx (x/τN )] for
x = q,−w, and Jq(q) = Jw(−w), as is verified by our MNM
results (superimposing lines). However, the data obtained
from 106 BD trajectories (symbols) shows that only the work
distribution (�) attains the large deviation limit quickly, while
the heat distribution (©) has not converged, even for N = 100
cycles. This is because, for the parameters considered in our
numerical study, heat fluctuates much more than work, as
already suggested by the moments and cumulants shown in
Fig. 6(b) and 6(c). Let us note that while we have computed
the LDFs using the standard BD, which was much more time
consuming than the evaluation of the MNM, there are various
optimized simulation algorithms [45–47] for computing of
LDFs that can render BD simulations more competitive.

VIII. CONCLUSION AND OUTLOOK

We have presented a numerical scheme for overdamped
FPEs with time-dependent coefficients, based on the map-
ping between the FPE and a master equation with detailed-
balanced transition rates. The resulting numerical method
yields thermodynamically consistent results for arbitrary dis-
cretizations. It can be used for solving the FPE and also for
computing MGFs and LDFs for functionals defined along the
trajectories of the stochastic process underlying the FPE.

The performance of the method for solving the FPE
is similar to other numerical methods relying on approxi-
mating the derivatives by finite differences. However, due
to its thermodynamic robustness, the method predicts well
the qualitative behavior of the studied system already for
coarse meshes that capture merely the salient features of the
force field and potential landscape. Thus, the MNM can safely
be used for a fast scanning of the parameter space if one looks
for interesting effects.

The presented numerical scheme shares basic notions
with so-called Markov-state models of molecular kinetics,
which have been employed for interpreting data from single-
molecule experiments and molecular-dynamics simulations
[48]. Both methods exploit the mapping of stochastic pro-
cesses occurring in continuous space and time to discrete
state-space Markov processes. While the kinetic Markov-state
models are often based on special protocols, such as time-
periodic driving [49], our formulation can in principle handle
arbitrary time-dependent protocols.

Unfortunately, the MNM cannot easily be generalized to
underdamped systems because it relies on the mapping (6)
between the FPE (11) and the master equation (5), which
is restricted to overdamped dynamics. The difficulties with
the underdamped limit can be anticipated from the transition
rates (13) and (14) and rates (18) and (19), which are all
of the form D exp(±A/D). Thus, some of them necessarily
diverge if the diffusion coefficient D goes to zero. The only
variables with vanishing diffusion coefficient (noise) in the
Langevin equation [see, e.g., Eqs. (67)–(68) for variables
with nonzero diffusion coefficients in the Langevin equation]
tractable by the MNM in its present form are variables like
work and heat [see Eqs. (72)–(72)], which do not feed back
onto the dynamics of the noisy variables. For such variables,
the MNM yields MGFs and LDFs. The presented form of the
MNM is thus limited to those underdamped situations where
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the momentum in the underdamped Langevin equation does
not depend on the position. A promising way to generalize
the MNM for general underdamped dynamics could build
on the path integral method suggested in Ref. [50], which
shares with the MNM the important property of summing over
all possible paths of the stochastic process and thus allows
naturally incorporating calculations of various path-dependent
stochastic variables. Another possible pathway to generalize
the MNM to underdamped systems may be to incorporate
into the MNM the ideas used in the formulation of the lattice
Boltzmann method [51,52].

ACKNOWLEDGMENTS

We thank M. Žonda and H. Touchette for valuable com-
ments on a preliminary version of the paper. We also thank
the two anonymous referees whose detailed reports helped us
to improve the readability of the manuscript. V.H. gratefully
acknowledges support by the Humboldt Foundation and by
the Czech Science Foundation (Project No. 17-06716S). S.S.
acknowledges funding by International Max Planck Research
Schools (IMPRS).

APPENDIX A: SPACE-DEPENDENT
DIFFUSION COEFFICIENT

In this Appendix, we will show that the transition rates
obeying the local detailed balance condition (9) can be used
for solving only FPEs with position-independent diffusion
coefficients. For the proof, it suffices to consider the one-
dimensional FPE

∂tρ(x, t ) = [
∂2

x Dx(x, t ) − ∂xμxFx(x, t )
]
ρ(x, t ) (A1)

and the corresponding master equation

ṗix = rix+1→ix pix+1 + rix−1→ix pix−1

− (
rix→ix+1 + rix→ix−1

)
pix (A2)

on the discrete lattice with points indexed by ix = � x−x−
�x

� and

the lattice parameter �x = x+−x−
Nx

. We assume that Dx and
Fx in (A1) depend on time t and position x and we look
for transition rates in (A2) fulfilling the condition (10) and
yielding Eq. (A1) in the leading order in the discretization
parameter �x if we set ρ(x, t ) = lim�x→0 pix /�x.

In one dimension, the entropy production �SR(x → x +
�x ) = �SR = ∫ x+�x

x dx′ Fx (x′ )
Tx (x′ ) along the transition from x to

x + �x can be written as

�SR/kB = −[Ũ (x + �x, t ) − Ũ (x, t )] , (A3)

where Ũ is a dimensionless potential such that Fx/kBTx =
μxFx/Dx = −∂xŨ . The transition rates satisfying the detailed
balance condition (9) can thus in general be written as

rix→ix+1 = Aix+1/2

�2
x

exp

[
−Ũix+1 − Ũix

2

]
, (A4)

rix+1→ix = Aix+1/2

�2
x

exp

[
Ũix+1 − Ũix

2

]
, (A5)

where Ũix = Ũ (x− + �xix, t ) and Aix+1/2 = A[x− + �x(ix +
1/2), t] is some space- and time-dependent function deter-

mining the prefactor of the transition rates. Inserting the rates
(A4) and (A5) in the master equation (A2), we obtain up to
the leading order in �x a partial differential equation of the
form

∂tρ = A′(ρŨ ′ + ρ ′) + A(ρ ′Ũ ′ + ρ ′′ + ρŨ ′′) , (A6)

where ρ ′ ≡ ∂xρ(x, t ). The first nonzero correction to Eq. (A6)
is of order �2

x . Comparing Eq. (A6) with the desired Eq. (A1)
and using Ũ ′ = −μxFx/Dx, we find that it is not possible to
choose A(x) in such a way that the two equations are identical,
unless the diffusion coefficient is position independent (D′

x =
0) and A = Dx.

The main problem of why the transition rates of the
forms (A4) and (A5) cannot yield the FPE (A1) with space-
dependent coefficients are the prefactors Aix+1/2, which must
be the same for the transitions ix → ix + 1 and ix + 1 → ix. If
we relax this assumption [and thus we do not consider only
the rates strictly fulfilling the local detailed balance condition
(9)], it is not difficult to find transition rates which can be used
for solving the FPE (A1) in its full generality. They read

rix→ix+1 = Aix

�2
x

exp

[
−Ũix+1 − Ũix

2

]
, (A7)

rix+1→ix = Aix+1

�2
x

exp

[
Ũix+1 − Ũix

2

]
, (A8)

with Ũix = Ũ (x− + �xix, t ) and Aix = A(x− + �xix, t ), where
Ũ ′ = −μxFx/Dx and A(x, t ) = Dx(x, t ). Inserting these tran-
sition rates into the master equation (A2), we obtain up to
the leading order in �x the FPE (A1). The first nonzero
correction is of the order of �2

x . Although the rates (A7) and
(A8) do not obey the strict local detailed balance condition
(9), they still describe dynamics that conserves positivity and
normalization. Furthermore, for position-independent diffu-
sion coefficients, the detailed-balanced rates (A4) and (A5)
and the rates (A7) and (A8) are identical. The generalization
of the transition rates (A7) and (A8) to higher dimensions is
straightforward.

APPENDIX B: MOMENT-GENERATING FUNCTION
FOR TIME-AVERAGED CURRENT

In this Appendix, we calculate the moment-generating
function χJ̄(ra )(sJ̄, τ ) = χJ̄(ra )(sJ̄x

, sJ̄y
, τ ) for the time-

averaged particle current trough the position ra = (xa, ya) at
time t0:

J̄(ra, τ ) = J̄(ra, τ, t0) = 1

τ

∫ t0+τ

t0

dtJ(ra, t ) . (B1)

In the limit τ → 0+, this random variable converges to
the microscopic current J(ra, t ) defined in Eq. (40). The
following strategy for calculating χJ̄(ra )(sJ̄, τ ) can be easily
generalized to more complex random variables discussed in
Sec. V B.

The MGF χJ̄(ra )(sJ, τ ) is defined as the two-sided Laplace
transform

χJ̄(ra )(sJ̄, τ ) =
∫

dJ̄x

∫
dJ̄ye−sJ̄·J̄ pJ̄(ra )(J̄, τ ) (B2)
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of the probability distribution pJ̄(ra )(J̄, τ ) for J̄(ra). To calcu-
late an approximation to χJ̄(ra )(sJ̄, τ ) using the discrete model
of Fig. 1, we count the number nr

x of jumps to the right from
the site (ixa , iya ) during the time interval (t0, t0 + τ ) and also
the corresponding number nl

x of jumps to the left from the site
(ixa + 1, iya ) to get the net transport

nx = nx(τ, t0) = nr
x − nl

x = lim
�x→0,�y→0

(τ�yJ̄x ). (B3)

Here, the factor �y comes from Eq. (38). Similarly, the
numbers nu

y and nd
y of jumps up from (ixa , iya ) and down

from (ixa , iya + 1), respectively, determine ny = nu
y − nd

y =
lim�x→0,�y→0 (τ�xJ̄y).

Let us now consider a time interval dt so short that only
a single jump can occur and investigate the PDF for n =
(nx, ny), which can be mapped to the PDF for the time-
averaged current J̄. At the initial time t0, the distribution of
the particle position is described by the vector p(t0), and
the number of jumps is nx = ny = 0. The joint PDF that the
particle dwells in a specific site and that the current has a
certain value is thus initially given by p̄(n, t0, t0) = p(t0)δ(n).
After time dt , the number of jumps attains nonzero values
solely by jumps described by the transition rates:

(1) r
iya
ixa →ixa +1(t0), nx increases by 1,

(2) r
iya
ixa +1→ixa

(t0), nx decreases by 1,

(3) l ixa
iya →iya +1(t0), ny increases by 1,

(4) l ixa
iya +1→iya

(t0), ny decreases by 1.
Using the master equation (26), the vector of occupation

probabilities at time t0 + dt can, for short dt , be written
as p(t0 + dt ) = U (t0 + dt, t0)p(t0), where U (t0 + dt, t0) =
[I + dtR(t0)] and I denotes the identity matrix. The joint
PDF for the dimensionless current and position at time t0 + dt
can be written as

p̄(n, t0 + dt, t0) = Ū (t0 + dt, t0, n)p(t0) . (B4)

Here, all the matrix elements of Ū (t0 + dt, t0, n) are given by
the matrix elements of U (t0 + dt, t0), which are multiplied by
δ(nx )δ(ny) except for the four elements containing the above-
mentioned transition rates. The corresponding nonvanishing
currents nx,y 	= 0 are represented by shifted δ functions. For

example, the element of U containing the rate r
iya
ixa →ixa +1 is in

Ū multiplied by δ(nx − 1), the element of U containing the
rate r

iya
ixa +1→ixa

is in Ū multiplied by δ(nx + 1), and similarly
for the other two elements.

Using the definitions (27)–(29) of p(t0), the matrix
element [Ū (t0 + dt, t0, n)]mndnxdny stands for the joint
probability that a particle starting at time t0 from site
[ix(n), iy(n)] will arrive to site [ix(m), iy(m)] at time t + dt
given that the numbers of jumps nx and ny at site [ixa , iya ]
during the interval [t0, t0 + dt] assume values from the
intervals (nx, nx + dnx ) and (ny, ny + dny). The matrix
Ū (t0 + 2dt, t0 + dt, n) allows us to construct the joint PDF
p̄(n, t0 + 2dt, t0) from p̄(n, t0 + dt, t0) in a manner similar
to p̄(n, t0 + dt ) from p(t0). The only difference is that now
the distribution for n is more involved. Namely, to get the
PDF for the current at time t0 + 2dt , we need to integrate
over all possible combinations of the initial n and the

increase in n during the time interval dt : p̄(n, t0 + 2dt, t0) =∫
dn′

x

∫
dn′

y Ū (t0 + 2dt, t0 + dt, n′)p̄(n − n′, t0 + dt, t0) =
[Ū (t0 + 2dt, t0 + dt ) � p̄(t0 + dt, t0)](n) = [Ū (t0 + 2dt, t0 +
dt ) � Ū (t0 + dt, t0)](n)p(t0), where � denotes convolutions
in nx and ny. In a similar manner, one can construct the joint
PDF p̄(n, t0 + τ, t0) for the whole time interval (t0, t0 + τ ).
The obvious technical difficulty here lies in the fact than such
a PDF would contain many convolutions.

To circumvent this issue, it is advantageous to focus on
moment-generating functions instead of PDFs. According
to the definition (B2), the MGF is a Laplace transform of
the PDF, which transforms convolutions of original func-
tions into products of transformed functions. The joint PDF
p̄(n, t0 + 2dt, t0) is thus transformed in ps(sn, t0 + 2dt, t0) =
Ũ (t0 + 2dt, t0 + dt, sn)Ũ (t0 + dt, t0, sn)p(t0), where the ma-
trices Ũ (t + dt, t, sn ) are given by Laplace transform of the
matrices Ū (t + dt, t, n). These matrices are called tilted ma-
trices and they are identical to Ū (t + dt, t, n) except for the
δ functions δ(nx ∓ 1) and δ(ny ∓ 1) in Ū (t + dt, t, n) that
are transformed to the exponentials exp(∓snx ) and exp(∓sny )
and the δ functions δ(nx ) and δ(ny) that are both transformed
to 1. The vector ps(sn, t, t0) thus obeys a similar dynamical
equation as the probability vector p(t0):

d

dt
ps(sn, t, t0) = R̃sn (t )ps(sn, t, t0), (B5)

where the tilted rate matrix R̃sn (t ) =
[Ũ (t + dt, t, sn ) − I]/dt can be obtained from the rate
matrix R(t ) multiplying the rate r

iya
ixa →ixa +1(t ) by exp(−snx ),

the rate r
iya
ixa +1→ixa

(t ) by exp(snx ), the rate by l ixa
iya →iya +1(t ) by

exp(−sny ), and the rate l ixa
iya +1→iya

(t ) by exp(sny ), and keeping
all other rates unchanged. For a given sn, the formula (B5)
can be solved in a manner similar to the formula for (26)
for p(t ). For a time-independent tilted rate matrix R̃sn , the
solution to Eq. (B5) is given by a matrix exponential

ps(sn, t, t0) = exp
[
R̃sn (t − t0)

]
p(t0), (B6)

while for a time-dependent rate matrix R̃sn (t ) the solution
should be constructed using the time discretization analogous
to the one used in Eq. (33) with �t = (t0 + t )/Nt . We get

ps(sn, t, t0) = lim
�t →0

it (t )∏
i=0

Ũi(sn)p(t0), (B7)

where Ũi(sn) = exp [R̃sn (t0 + i�t )�t ] if i � 1 and Ũ0 = I.
The vectors (B6) and (B7) give moment-generating functions
for nx and ny conditioned on the final state of the system
during the evolution. The unconditioned generating function
is thus obtained by summing over all final states,

χ (sn, t, t0) = p

+ · ps(sn, t, t0), (B8)

where p

+ is a vector of ones.

For fine discretizations, the moment-generating function
χn(sn, t0 + τ, t0) = χn(snx , sny ) finally approximates the MGF
χJ̄(sJ̄, t0 + τ, t0) = χJ̄(sJ̄x

, sJ̄y
) for the time-averaged cur-

rent:

χJ̄(sJ̄x
, sJ̄y

) = lim
�x→0,�y→0

χn

(
snx

τ�y
,

sny

τ�x

)
. (B9)
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According to the laws of thermodynamics, no heat engine can beat the efficiency of a Carnot cycle. This
efficiency traditionally comes with vanishing power output and practical designs, optimized for power,
generally achieve far less. Recently, various strategies to obtain Carnot’s efficiency at large power were
proposed. However, a thermodynamic uncertainty relation implies that steady-state heat engines can
operate in this regime only at the cost of large fluctuations that render them immensely unreliable. Here, we
demonstrate that this unfortunate trade-off can be overcome by designs operating cyclically under
quasistatic conditions. The experimentally relevant yet exactly solvable model of an overdamped Brownian
heat engine is used to illustrate the formal result. Our study highlights that work in cyclic heat engines and
that in quasistatic ones are different stochastic processes.
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Introduction.—Conversion of disordered energy (heat)
into directed motion (work) propels not only industry but
also nature itself through photosynthesis. According to
the laws of thermodynamics, the efficiency η ¼ W=Qh
of this conversion is bounded from above by Carnot’s
efficiency ηC ¼ 1 − Tc=Th [1]. The average heat Qh from
a heat source can at most yield the average work
W ¼ hwi ¼ ηCQh, the remaining energy must be trans-
ferred into a heat sink. The upper bound is saturated if the
temperatures of the hot and cold heat reservoirs assume
constant values Th and Tc, respectively, and if the heat
engine (HE) operates reversibly. Also, it is frequently
argued that ηC can be reached only if the engine operates
on an infinite timescale tp with vanishing output power
P ¼ W=tp. Recently, this claim has been seriously chal-
lenged [2–15].
It was shown that either using a special coupling between

subsystems [3], working substances close to criticality
[4,6], or scalings leading to vanishing system relaxation
times [7–9], it is possible to asymptotically reach ηC with
P > 0. Although the HEs used for derivation of the last-
mentioned results obey the trade-off bounds P ≤ CðηC − ηÞ
[10,11,13], they can operate with η ¼ ηC and P > 0 since
the parameter C generally diverges with a vanishing system
relaxation time [16].
However, it was suggested that the price one has to pay

for overcoming the trade-off between power and efficiency
are large power fluctuations [6,9]. In the critical heat engine
[4], the fluctuations almost surely dominate the averages
[6] and also steady state HEs (SSHEs) exhibit large power
fluctuations [9].
Here, we show that such a trade-off does not exist for

quasistatic cyclic HEs (CHEs) with controllable relaxation

times. These machines can work with η asymptotically close
to ηC at P > 0 with vanishing fluctuations. Specifically,
we show that both the work and power fluctuation eσP ¼
σW=W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw2i −W2

p
=W and the Fano factor for work

σ2W=W are finite and can even vanish.
Our results highlight that the work done by CHEs and the

work done by SSHEs are two different stochastic proc-
esses. Although their mean values can be equal [17–19],
their fluctuations are qualitatively different. The work in the
SSHEs obeys thermodynamic uncertainty relations [20–24]
which imply that the Fano factor for the output work
diverges if the efficiency reaches ηC [9]. The work in the
CHEs obeys no such relation and it is possible to construct
a CHE operating with Carnot’s efficiency and delivering a
persistent deterministic power output.
Cyclic heat engines.—Consider a periodically driven HE

operating along a quasistatic Carnot cycle composed of two
isotherms connected by two adiabats. For concreteness, we
consider a one-dimensional system with the Hamiltonian

Hðx; tÞ ¼ kðtÞx2n=2n; n ¼ 1; 2;…; ð1Þ

where k ¼ kðtÞ controls its stiffness and x ¼ xðtÞ is a
continuous stochastic process describing the microstate of
the system. The Hamiltonian (1) serves as a mere illus-
tration. Our main results are valid for arbitrary thermody-
namic systems which can operate quasistatically, including
many-dimensional systems with momentum degrees of
freedom and systems with discrete state space.
The operational cycle of the engine is depicted in

Fig. 1. During the hot isotherm at Th (branch 1) and
during the subsequent adiabat (branch 2), the Hamiltonian
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opens (_k ≥ 0) and the system performs work wh ¼
−
R
1;2 dt∂tHðx; tÞ ¼ −

R
1;2 dt_kðtÞxðtÞ2n=2n on the environ-

ment (the integration runs over the branches 1 and 2).
During the rest of the cycle, the Hamiltonian closes (_k ≤ 0)
and the engine consumes work −wc ¼

R
3;4 dt∂tHðx; tÞ ¼

−
R
3;4 dt_kðtÞxðtÞ2n=2n. The heat on average enters the

system during the hot isotherm and leaves it during the
cold one (branch 3). We denote the duration of the ith
branch as ti and as tp ¼ t1 þ t2 þ t3 þ t4 the duration of the
whole cycle.
The average thermodynamics of the engine observed

after averaging work and heat over many cycles is that of a
standard reversible Carnot cycle. Namely, a combination of
the first and the second law of thermodynamics implies that
the average output work W is given by [1,25]

W ¼ hwi ¼ hwh þ wci ¼ Qh −Qc ¼ ðTh − TcÞΔS; ð2Þ

where ΔS is the change of the system entropy during the
hot isotherm. On the other hand, the work fluctuations
depend both on the details of the Hamiltonian and on the
way how the adiabatic branches are realized.
By definition, no heat flows into the system during

adiabatic branches. This condition can be realized in two
physically different ways. (i) One ensures that no heat at all
flows between the system and the bath by performing the
adiabats very fast, or by disconnecting the system from the
reservoir. During these adiabatic branches, the system
evolves deterministically regardless of the dynamics of
the baths. In general, reconnecting the bath and the system
at the end of such adiabat brings the system far from
equilibrium. To keep the cycle quasistatic, it is necessary to

secure that the system state just before the reconnection is
identical with the equilibrium state corresponding to the
bath temperature and system Hamiltonian at the time of
reconnection. (ii) One ensures that no heat is interchanged
on average only by carefully controlling the system
connected to the reservoir with varying temperature
[39,40]. Because of the coupling to the bath, the system
evolves during such adiabats stochastically.
We start with the traditional adiabatic branches (i) where

no heat at all is exchanged leading to a deterministic
evolution of the system during the adiabats. Then the work
PDF pðwÞ can be expressed as an average over the
distributions for internal energy increases ΔH2 and ΔH4

along the adiabatic branches 2 and 4, respectively [25]:

pðwÞ ¼ hδfw − ½W − gΔH2 − gΔH4�gi; ð3Þ

where gΔHi ¼ ΔHi − hΔHii, i ¼ 2, 4. The PDF for ΔH2

and ΔH4 can be constructed from the Boltzmann distribu-
tion ρðx; τiÞ ¼ exp ½−Hðx; τiÞ=kBTðτiÞ�=ZðτiÞ correspond-
ing to the system Hamiltonian and bath temperature at times
τi, i ¼ 1;…; 4 delimiting the adiabatic branches. Here, kB
denotes the Boltzmann constant and Z is the partition
function.
The PDF (3) allows us to calculate all moments of

work: hwni ¼ R
∞
−∞ dwwnρðwÞ. For the case of infinitely fast

adiabatic branches (t2 → 0 and t4 → 0), the microstate of
the system during the adiabatic branches does not change.
Assuming that the particle is at a microstate x at the
beginning of the first adiabat and at a microstate y at the
beginning of the second one, the energy differences in
Eq. (3) read ΔH2 ¼ Hðx; t1 þ t2Þ −Hðx; t1Þ and ΔH4 ¼
Hðy; tpÞ −Hðy; tp − t4Þ and the average therein must be
taken over the PDF ρðx; t1Þρðy; tpÞ. The work and power
fluctuation evaluated for the Hamiltonian (1) are then given
by [25]

eσw ¼ σw
W

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw2i −W2

p
W

¼ 1ffiffiffi
n

p kB
ΔS

: ð4Þ

The function eσw ¼ eσP, which quantifies observability of
the average work and power at the Carnot efficiency, is thus
finite and decreases both with the exponent n in the
Hamiltonian (1) and with the change of the system entropy
during the hot isotherm ΔS.
During the adiabatic branches (i) performed in a finite

time with the disconnected heat bath, the system undergoes
a nontrivial evolution determined by the Hamiltonian
(through Hamiltonian equations for classical systems and
the Schrödinger equation in quantum cases). To get an
analytical result valid for arbitrary H, we use the approxi-
mation that microstates occupied by the system at the
beginning of the adiabats are independent from those
occupied at their ends. Then, the assumption that the
system is in equilibrium both before the beginning and

FIG. 1. The operational cycle of the considered cyclic heat
engines. Gray lines depict the Hamiltonian (1) and the shaded
areas stand for the probability density of the particle position
during the cycle.
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after the end of the adiabats allows us to calculate the work
fluctuation along similar lines as in the previous case. The
result is [25]

eσw ¼ 1ffiffiffi
n

p kB
ΔS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − ηCÞ2

p
ηC

≥
1ffiffiffi
n

p kB
ΔS

: ð5Þ

Compared to the work fluctuation (4), eσw now depends on
the temperatures of the two baths via the Carnot efficiency
ηC. The additional factor is always greater than 1 and thus
Eq. (4) for the cycle with instantaneous adiabatic branches
sets the lower bound on Eq. (5).
The work fluctuations (4) and (5) are always nonzero.

Their origin can be mapped to disconnecting the system
from the baths during the adiabatic branches. According to
its definition w ¼ −

R tp
0 dt∂tHðx; tÞ, the work is in CHEs

done only if the Hamiltonian changes in time. Along a
quasistatic process, the reservoir causes many transitions in
the system on the timescale on which the external param-
eter corresponding to the work (e.g., the stiffness k here, a
piston position in thermodynamics) is varied. The time
spent by arbitrary quasistatic trajectory xðtÞ in a microstate
y within the time window ½t; tþ dt� is determined by the
Boltzmann distribution ρðy; tÞ. The work w done during a
quasistatic process along each trajectory is hence given by
the average work W ¼ −

R
dx

R tp
0 dt∂tHðx; tÞρðx; tÞ ¼

ðTh − TcÞΔS [25,26,41,42].
Quasistatic Carnot cycles with adiabatic branches

(ii) where the system can interchange heat with the bath
thus yield sharp work PDF,

pðwÞ ¼ δðw −WÞ; ð6Þ

with vanishing variance σ2w and fluctuation eσw. Different
from Eqs. (4) and (5), this result does not depend on the
system Hamiltonian. As one consequence, the large power
fluctuations found in the critical heat engine [4,6] can be
avoided by utilizing this type of quasistatic adiabatic
branches.
Comparison with steady state heat engines.—Steady

state HEs are connected to the hot and to the cold reservoir
simultaneously and operate in a nonequilibirum steady
state. They obey the current fluctuation relations [20–24]
which can be used to derive the inequality for the relative
work and power variance [9]

eσ2wt
≥
2kBTc

Wt

η

ηC − η
¼ 2kB

ΔSt
: ð7Þ

Here, Wt and ΔSt are the work and entropy generated
during time window ½0; t�. The formula (7) is valid in the
long time limit t → ∞, when the PDF for work attains the
large deviation form.
The formula (7) implies that it is not possible to construct

a SSHE working with Carnot’s efficiency η ¼ ηC,

delivering work with a finite fluctuation eσwt
and operating

reversibly with ΔSt ¼ 0, at the same time. The SSHEs
operating with ηC must either dissipate (ΔSt > 0) or yield
diverging work fluctuations (eσwt

→ ∞). This observation
is a HE analogy of the result obtained for Brownian
clocks [43].
Another striking difference between the CHEs and the

SSHEs is revealed if we rewrite our findings for CHEs in
terms of the Fano factor for work σ2w=W, which equals to
the ratio of constancy ΔP ¼ σ2Pt, t ≫ 1 [9] to the output
power P ¼ W=t. The formula (4) for a CHE operating with
Carnot efficiency gives

ΔP

P
¼ σ2w

W
¼ 1

n
ThηCk2B
ΔS

ð8Þ

and thus the Fano factor is in this case finite. Equation (5)
yields analogous results and the Fano factor corresponding
to the work PDF (6) even vanishes.
On the other hand, Eq. (7) for the SSHEs leads to

ΔPt

Pt
¼ σ2wt

Wt
≥ 2kBTc

η

ηC − η
; ð9Þ

which diverges whenever η → ηC. The work and power
fluctuations in the CHEs and in the SSHEs operating with
ηC thus significantly differ.
One may object that these conclusions are based on a

comparison of incompatible quantities—variables mea-
sured per cycle for CHEs and variables measured over a
long time for SSHEs. Nevertheless, measuring the quan-
tities for the CHEs over many cycles or over many
independent systems does not alter the main conclusions.
More precisely, averaging over N independent CHEs or,
equivalently, over N cycles of a single CHEs, both the
average output work W and its variance σ2w scale as N.
Therefore, although the fluctuation eσw scales as 1=

ffiffiffiffi
N

p
, the

ratio ΔP=P ¼ σ2w=W remains constant.
The difference between work in CHEs and SSHEs lies in

the very definitions of these variables. Work in CHEs is
done only when an external parameter changes and under
quasistatic conditions it is independent of the initial micro-
state of the system [25]. On the contrary, work in SSHEs is
usually done when the microstate x of the system changes.
During this thermally induced transition, the system inter-
nal energy is increased in ratchets [5], particles are trans-
ferred against gradients of chemical potential in
thermochemical heat engines [7,9], etc. Such defined work
depends on the initial and final points of the stochastic
trajectory fxðtÞgtpt¼0, which, e.g., determine the increase in
the internal energy in a ratchet, and thus it always
fluctuates. Work in SSHEs hence lacks the self-averaging
property of the work done in CHEs. It is rather similar to

the heat Q ¼ R tp
0 dt∂xHðx; tÞ_x in CHEs which is
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interchanged with the bath also only if the system micro-
state changes.
Our analysis implies that the work done in SSHEs and

that in CHEs represent two different stochastic processes
which cannot be directly mapped onto each other.
Nevertheless, such a mapping might be constructed if
the different definitions of work in the two classes of
HEs would be taken into account.
Cyclic Brownian heat engine.—Let us now propose an

actual CHE operating close to Carnot’s efficiency while
delivering a stable power output. Its engineering is rather
straightforward, it can be performed with an arbitrary
thermodynamic system capable of quasistatic operation.
In order to further demonstrate that such a HE can operate
in finite time, delivering a nonzero output power, we need a
system with controllable relaxation time. A paradigmatic
example of such a system from the field of stochastic
thermodynamics [44,45] is the overdamped Brownian
HE [8,27,46].
The HE is based on an overdamped Brownian particle

diffusing in a harmonic potential [47] Uðx; tÞ ¼ Hðx; tÞ ¼
kðtÞx2=2, whose dynamics obeys the Langevin equation

_x ¼ −kx=γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=γ

p
ζ: ð10Þ

Here, ζ is the Gaussian white noise with hζi ¼ 0 and
hζðtÞζðt0Þi ¼ δðt − t0Þ. The relaxation time for the position,
τx ¼ γ=k, can be easily controlled in experiments through
the trap stiffness k. The friction coefficient γ is assumed to
be independent of k (yet it may depend on the temperature).
The model is valid if this relaxation time is much longer
than the relaxation time for the momentum, τp ¼ m=γ,
given by the ratio of the particle mass m to the friction γ.
The model (10) is exactly solvable and it has been
thoroughly investigated both theoretically [8,27] and exper-
imentally, using optical tweezers for generation of the
potential [46,48,49].
To demonstrate our results for instantaneous adiabatic

branches (i), we periodically modulate the bath temperature
T and the trap stiffness k using the Carnot-like driving
depicted in Fig. 1 with infinitely fast adiabatic branches. If
the cycle is performed in a finite time tp, with a non-
vanishing relaxation time τx, the system is during the cycle
inevitably out of equilibrium and the HE efficiency is
smaller than ηC. In order to realize the quasistatic Carnot
cycle using a finite tp, we thus need to use a very stiff trap,
which makes τx ≪ tp.
In Figs. 2(a) and 2(b), we introduce a suitable scaling of

the cycle duration tp and minimum and maximum trap
stiffness k during the cycle which, in the limit of infinite
scaling parameter σ∞, leads to a HE operating with
Carnot’s efficiency and delivering an infinite power with
fluctuation given by Eq. (4) with n ¼ 1. The convergence
of the output power, the power fluctuation, and the
efficiency to these values as the cycle becomes gradually

quasistatic with increasing σ∞ is plotted in Figs. 2(c)–2(e),
respectively. The curves are plotted using experimentally
motivated values of the model parameters [46]. Further
details are given in Supplemental Material [25]. The rest of
our results can be tested along similar lines.
Concluding remarks.—Unlike steady state heat engines

(SSHEs), cyclic heat engines (CHEs) can theoretically
operate reversibly with Carnot’s efficiency ηC, delivering
a large and stable power output Pwith finite fluctuation and
Fano factor. The main difference between the two classes of
heat engines lies in the definitions of work in the two
models. While the transitions caused in the system due to
the contact with the bath lead to averaging of work in
CHEs, such an averaging is not available for SSHEs. In the
latter case, the work always depends on the initial and final
point of a trajectory and thus inevitably fluctuates. The
recently proposed one-to-one mappings between SSHEs
and CHEs [17–19] thus break down on the level of work
fluctuations.
In practice, the described strategy does not allow us to

realize the strict limit η ¼ ηC at P > 0 without breaking the
system-reservoir timescale separation used in standard
thermodynamic models [12]. But it is possible to find
parameter regimes where realizable systems operate with
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FIG. 2. Behavior of the overdamped Brownian HE with the
scaling parameter σ∞. Timescale separation between the cycle
duration tp and the relaxation times τx (we show its smallest and
largest value during the cycle) and τp is depicted in panel (a). In
panel (b), kmax (kmin) stand for the maximum or minimum value
of the stiffness during the cycle. The shown values of cycle
durations tp and trap stiffnesses k are reasonable from exper-
imental perspective. In panels (c) and (d) we demonstrate
divergence of output power P and convergence of the relative
power fluctuation σ̃P to kB=ΔS as the efficiency η, shown in panel
(c), converges to ηC for large values of σ∞.
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efficiencies close to ηC and deliver large power P with
small fluctuation. Experimental realizations of such HEs
are possible using current micromanipulation techniques
such as optical tweezers [48,49]. Finally, we stress that our
results are valid for general HEs, including intensively
studied quantum models [50].
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WORK PDF FOR A QUASI-STATIC PROCESS

In this Section, we show that for any quasi-static pro-
cess the PDF of work (defined through the time deriva-
tive of the Hamiltonian) converges to the delta function.
The derivation generalizes the one given in Ref. [1] to any
process x(t), for which the PDF of x(t) evolves according
to the equation

∂tρ(x, t) = νL(t)[ρ(x, t)]. (S1)

For a continuous Markovian dynamics the operator L(t)
is a linear Fokker-Planck operator and for a discrete one
it is a transition rate matrix. However, Eq. (S1) can also
be a generalized Master equation for a non-Markovian
process [2].

During the operational cycle of the engine, the evolu-
tion operator L(t) varies from L(0) to L(tp) as both the
temperature T (t) and the Hamiltonian H(x, t) change.
Naturally, we assume that the system with the fixed
Hamiltonian H in contact with a heat bath at constant
temperature T , will eventually relax to the Boltzmann
distribution ρ(x,∞) = ρB(x) = exp (−H/kBT ) /Z,
where kB denotes the Boltzmann constant and Z is the
partition function. The Boltzmann distribution thus sat-
isfies L(t)[ρB(x, t)] = 0. In Eq. (S1), the relaxation time
to equilibrium is measured by the prefactor ν. The re-
laxation is fast (slow) for ν large (small).

The process is quasi-static if the evolution operator
L(t) changes on a time-scale much longer than the re-
laxation time. Since we are interested in finite-time pro-
cesses only (in order to obtain a non-zero output power
of the engine), we consider the limit of infinitely fast re-
laxation ν →∞. At any instant t during such a process,
the PDF for x is given by the Boltzmann distribution

ρ(x, t) ≈ ρB(x, t) =
1

Z(t)
exp

[
−H(x, t)

kBT (t)

]
, (S2)

where H(x, t) and T (t) are values of the Hamiltonian and
temperature at time t. Of course, the formula (S2) is in
general valid only if the system is in contact with the
heat bath. Once the bath is disconnected, the evolution
becomes deterministic, determined by the specific form
of the Hamiltonian. The formula (S2) is thus valid along
the whole cycle with adiabatic branches of the type (ii),
where the system never disconnects from the baths (see

the main text). On the other hand, for systems with
adiabatic branches of the type (i), where the system is
disconnected from the bath, the formula (S2) holds dur-
ing the isothermal branches only.

The work done by the system during the time interval
[0, t] is defined as

w(t) = −
∫ t

0

dτḢ[x(τ), τ ]. (S3)

The dot denotes the partial derivative with respect to the
time argument in H(x, t), Ḣ(x, t) = ∂tH(x, t). We will
now derive the probability distribution for this stochastic
functional assuming that the underlying stochastic pro-
cess x(t) is quasi-static with the PDF given by Eq. (S2).

The evolution equation for the joint probability density
for x(t) and w(t) reads [2]

∂tξ(x,w, t) =

Ḣ(x, t)∂wξ(x,w, t) + νL(x, t)[ξ(x,w, t)]. (S4)

The desired PDF for work, p(w, t), obtained from
ξ(x,w, t) by integration over x, p(w, t) =

∫
dxξ(x,w, t),

obeys the evolution equation

∂tp(w, t) =

∫
dxḢ(x, t)∂wξ(x,w, t)+

∫
dxνL(t)[ξ(x,w, t)]. (S5)

The equation cannot be solved in general and its solution
is known only in a few special cases [1]. Nevertheless,
we are interested only in the quasi-static limiting case
ν →∞, where the equation can be solved by the Ansatz
ξ(x,w, t) ≈ ρB(x, t)p(w, t). After inserting the Ansatz
into Eq. (S5), the last term on the right-hand side van-
ishes due to the quasi-static condition L(t)[ρB(x, t)] = 0,
and Eq. (S5) reduces to the pure convection equation

∂tp(w, t) =

[∫
dxḢ(x, t)ρB(x, t)

]
∂wp(w, t), (S6)

with the initial condition p(w, 0) = δ(w), where δ denotes
the Dirac δ-function (using the definition of stochastic
work (S3) we assume than no work has been done before
t = 0 with probability 1). Solution to this convection
equation is

p(w, t) = δ(w −W (t)), (S7)
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where

W (t) = −
∫ t

0

dτ

∫
dxḢ(x, τ)ρB(x, τ) (S8)

is the average work done by the system during the quasi-
static process taking account during the time window
[0, t]. The validity of the solution can be checked by
the direct substitution of p(w, t) given by Eq. (S7) with
W (t) given by Eq. (S8) into the Eq. (S6). Alternatively,
the solution (S7) can be found for example by Laplace
transform [1].

DERIVATION OF FORMULAS (3)–(6) FOR
CYCLIC HEAT ENGINES

The work PDF (S7) characterizes the statistics of work
done by the periodically driven heat engine (HE) de-
scribed in the main text only if the bath is not decoupled
from the working medium during the adiabatic branches.
Then the PDF p(w, tp) for work done per cycle is given
by Eq. (S7) with W (tp) defined in Eq. (S8). Denoting as
p(w) = p(w, tp) the PDF for the work per cycle and as
W = W (tp) the average work done per cycle, we obtain
Eq. (6) from the main text.

Let us now further derive the formulas (3)–(5) in the

main text for the stochastic work w = −
∫ tp
0
dtḢ[x(t), t]

done by periodically driven heat engines (HEs) discon-
nected from the reservoirs during the adiabatic branches.
The considered Carnot cycle is quasi-static and the PDF
for w can be calculated solely using the Boltzmann dis-
tribution (S2).

Due to the self-averaging property of work done dur-
ing quasi-static processes where the system is in contact
with the reservoirs, which we described in the preced-
ing section, the work PDFs for the isothermal branches
are given by δ-functions located at the positions of the
reversible works. For the hot isotherm, the reversible
work can be calculated using the combination of the
first and the second law of thermodynamics in the form
W1 = Th∆S − 〈∆H1〉, where ∆S = ∆S1 and 〈∆H1〉 de-
note the change of the system entropy and the change of
the average internal energy of the system during the hot
isotherm, respectively. The reversible work done during
the cold isotherm can be calculated along similar lines.
It reads W3 = −Tc∆S − 〈∆H3〉. The minus sign before
the entropy term follows from the fact that the change
of the system entropy during the cold isotherm is given
by ∆S3 = −∆S as follows from the condition that the
change of the system entropy per cycle, ∆S1 +∆S3, van-
ishes. To sum up, the PDF for work done along the hot
isotherm reads p1(w) = δ(w −W1) and the one for the
cold isotherm is given by p3(w) = δ(w −W3).

During the adiabatic branches when the reservoir is
disconnected from the system, the work lacks the self av-
eraging property of quasi-static processes which slightly

complicates the calculation of the corresponding PDFs.
Since no heat can be interchanged during such adiabats,
the stochastic work done during the adiabats is simply
given by the decrease of the internal energy along these
branches. Concretely, we get w2 = −∆H2 for the first
adiabat and w4 = −∆H4 for the second one. The PDFs
for these works are thus determined by the PDFs for the
changes of energy. Formally, we can write the work PDF
for the first adiabat as p2(w) = 〈δ(w + ∆H2)〉 and as
p4(w) = 〈δ(w + ∆H4)〉 for the second one. These aver-
ages must by taken over the PDFs for ∆H2 and ∆H4,
respectively. Due to the quasi-staticity of the consid-
ered cycle, these PDFs are independent and can be con-
structed from the Boltzmann distribution (S2).

For infinitely fast adiabatic branches the microstate of
the system does not change during the adiabats. As-
suming that the system dwells in a microstate x at the
beginning of the first adiabat and at a microstate y at
the beginning of the second one, the changes of the inter-
nal energy are given by ∆H2 = H(x, t1 + t2) −H(x, t1)
and ∆H4 = H(y, tp) − H(y, tp − t4), where ti, i =
1, . . . , 4 denote durations of the individual branches (see
Fig. 1 in the main text). In this case, the average
in the PDF p2(w) must be calculated over the PDF
ρB(x, t1) = ρB(x, t1 + t2) and the one in p4(w) over the
PDF ρB(y, tp − t4) = ρB(y, tp).

If the reservoirs are disconnected from the system for a
finite time interval, the system microstate and thus also
the corresponding PDF during the adiabatic branches
deterministically changes. In order to avoid bringing the
system out of equilibrium after the ends of such adiabats,
the driving must be chosen in such a way that the PDF
for x just before the end of an adiabat is equivalent to
the equilibrium PDF corresponding to the Hamiltonian
and bath temperature after reconnecting the system and
the bath when the adiabat ends. Let us denote as x2 the
microstates occupied at the beginning of the first adia-
bat. Because the system evolution during the adiabat is
deterministic, the microstate at its end, y2 = y2(x2), is a
function of x2. The corresponding change of the internal
energy reads ∆H2 = H(y2(x2), t1 + t2) − H(x2, t1) and
the average in the PDF p2(w) must be calculated over
the PDF ρB(x2, t1). To get explicit results, it is neces-
sary to know the specific form of the mapping y2(x2), i.e.
to solve concrete dynamical equations for the microstate
during the adiabat.

To avoid this, we here consider two situations which
can be treated without specifying the dynamics. First,
one can drive the system in such a way that y2(x2) = x2,
and return to the situation of infinitely fast adiabatic
branches. Second, one can use the approximation that
x2 and y2 are independent of each other. In this case,
the average in the PDF p2(w) must be calculated over the
PDF ρB(x2, t1)ρB(y2, t1+t2). Using similar notation, the
change of the internal energy during the second adiabat
can be written as ∆H4 = H(y4, tp)−H(x4, tp−t4). If we
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again use the approximation that x4 and y4 are indepen-
dent, the average in the PDF p4(w) must be calculated
over the PDF ρB(x4, tp − t4)ρB(y4, tp).

The work PDF for the whole cycle is given by
the convolution of the work PDFs for the individ-
ual branches, p(w) = p1 ? p2 ? p3 ? p4(w) =
〈δ {w − [W1 +W2 −∆H2 −∆H4]}〉. Using the condi-
tion on zero change of the system average internal en-
ergy per cycle,

∑4
i=1 〈∆Hi〉 = 0, the expression W1 +

W2 − ∆H2 − ∆H4 can be rewritten as (Th − Tc)∆S −
(∆H2 − 〈∆H2〉) − (∆H4 − 〈∆H4〉). The PDF for the
work done per cycle thus reads

p(w) =
〈
δ
{
w −

[
W − ∆̃H2 − ∆̃H4

]}〉
, (S9)

where ∆̃Hi = ∆Hi − 〈∆Hi〉, i = 2, 4 and W = (Th −
Tc)∆S. Integrals over this function yield all moments of
work: 〈wm〉 =

∫∞
−∞ dwwmp(w). The first one (m = 1) is

given by

〈w〉 = W = (Th − Tc)∆S (S10)

and the second one (m = 2) reads

〈
w2
〉

= W 2 +
〈
∆H2

2

〉
− 〈∆H2〉2 +

〈
∆H2

4

〉
− 〈∆H4〉2 .

(S11)
Equations (S9)–(S11) are valid for an arbitrary Carnot
cycle with adiabatic branches where the system and
reservoir are disconnected. To get specific expressions
for specific models, the averages must be taken over the
proper PDFs for ∆H2 and ∆H4, as described above.

For the instantaneous adiabatic branches, the changes
in the internal energy assumes the form ∆H2 = H(x, t1+
t2)−H(x, t1) and ∆H4 = H(y, tp)−H(y, tp−t4) and the
averages must be taken over the PDF ρB(x, t1)ρB(y, tp).
Using the Hamiltonian H(x, t) = k(t)x2n/2n, Eqs. (S10)
and (S11) gives the work variance

σ2
w =

〈
w2
〉
−W 2 =

k2B
n

(Th − Tc)2 (S12)

which, together with W = (Th − Tc)∆S, implies Eq. (4)
in the main text for the work fluctuation.

For the finite time adiabats, under the assumption that
the microstates occupied at the beginnings and at the
ends of the adiabats are independent, the changes in
the internal energy assumes the form ∆H2 = H(y2, t1 +
t2) − H(x2, t1) and ∆H4 = H(y4, tp) − H(x4, tp −
t4) and the averages must be taken over the PDF
ρB(x2, t1)ρB(y2, t1 + t2)ρB(x4, tp − t4)ρB(y4, tp). Using
the Hamiltonian H(x, t) = k(t)x2n/2n, we obtain from
Eqs. (S10) and (S11) the formula

σ2
w =

k2B
n

(Th + Tc)
2 (S13)

for the work variance and the formula (5) in the main
text for the work fluctuation.

CYCLIC BROWNIAN HEAT ENGINE

The HE is based on an overdamped Brownian particle
diffusing in a harmonic potential

U(x, t) = H(x, t) = k(t)x2/2. (S14)

Its position x = x(t) obeys the Langevin equation

ẋ = −kx/γ +
√

2kBT/γζ. (S15)

Here, γ is the friction coefficient and ζ is the Gaussian
white noise with 〈ζ〉 = 0 and 〈ζ(t)ζ(t′)〉 = δ(t− t′). The
bath temperature T and the stiffness k are varied along
the Carnot cycle depicted in Fig. 1 in the main text.
Specifically, we use the stiffness protocol

k(t) =

{
1
σ2
0

kBTh

(1+b1t)2
− γb1

1+b1t
, t ∈ [0, t1),

1
σ2
f

kBTc

[1+b2(t−t1)]2 −
γb2

1+b2(t−t1) , t ∈ [t1, tp),

(S16)
maximizing the work done by the engine per cycle once
the system entropy change during the hot isotherm
∆S = kB log σf/σ0 and durations t1 and t3 of the
two isotherms are fixed [3, 4]. In Eq. (S16), the pa-
rameter σ2

0 (σ2
f ) stands for the variance of the parti-

cle position at the beginning (end) of the hot isotherm.
The adiabatic branches are assumed to be instantaneous
(t2 = t4 = 0) and thus tp = t1 + t3 denotes the duration
of the whole cycle. The constants b1 and b2 are given
by b1 = (σf/σ0 − 1) /t1 and b2 = (σ0/σf − 1) /t3. For
t1 and t3 much larger than the system relaxation time
τx = k/γ, the driving produces a quasi-static process
even though it changes infinitely fast during the adiabats.
This is because the jumps of the stiffness during these
branches balance the jumps in the temperature keeping
constant the ratio k/T and thus also the equilibrium po-
sition distribution ρ(x) = exp(−kx2/2kBT )/Zx.

Besides the protocol (S16) is optimal, it also leads to
concise expressions for power and efficiency [3, 5]

P =
(Th − Tc)∆S

tp
− A

t1tp
− A

t3tp
, (S17)

η =
Wout

Qh
=

ηC
1 + Tc∆Stot/W

, (S18)

where the parameter A = γ (σf − σ0)
2

measures the work
dissipated due to the irreversible realization of the cy-
cle for t1 ≈ t3 ≈ τx and the entropy produced per cy-
cle ∆Stot = A(1/Tht1 + 1/Tct3) assumes the so called
low-dissipation form [3, 6]. General calculation of the
work/power fluctuation σ̃w is more involved. One can
either calculate it with the help of Brownian dynamics
simulation of the Langevin equation, or numerically, for
example using the method suggested in Ref. [7]. We use
the analytical method presented in Ref. [4].

In the considered setting, the Carnot efficiency is
reached in the limit of infinitely fast cycles with infinitely
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tp 〈w〉
〈
w2

〉
P

〈
P 2

〉
∆Stot ∆Stot/tp ηC − η

σ
(χ−1)ξ
∞ σ0

∞ σ0
∞ σ

(1−χ)ξ
∞ σ

2(1−χ)ξ
∞ σ−χξ∞ σ

(1−2χ)ξ
∞ σ−χξ∞

TABLE I. Scalings of the main variables in the Brownian
HE with the harmonic Hamiltonian (S14). The engine can
work with the Carnot efficiency at nonzero power with finite
fluctuation whenever ξ > 0 and χ ∈ (0, 1].

strong driving [8]. More precisely, introducing the scaling

σf ∝ σ−ξ∞ , tp ∝ σ(χ−1)ξ
∞ (S19)

while keeping constant the ratio σf/σ0 > 0 yields in the
limit σ∞ the Carnot efficiency at a nonzero power for
ξ > 0 and χ ∈ (0, 1]. Under the scaling (S19) the position
relaxation time τx = γ/k ∝ σ−ξ∞ vanishes faster than

the cycle duration tp ∝ σ(χ−1)ξ
∞ , and thus, although fast,

the cycle can be regarded as quasi-static. Different from
the shortcuts to adiabaticity and equilibrium presented
in the literature [9–13], the fast relaxation is caused by
decreasing the system relaxation time τx by increasing
the stiffness k rather than by devising a clever protocol.

In Tab. I, we sum scalings of the most important pa-
rameters of the Brownian HEs with σ∞. Let us note
that the cycle duration t?p, corresponding to the maxi-
mum power P ? attainable in the HE once all its param-
eters except for tp are fixed, scales as 1/k and thus it is
proportional to the position relaxation time τx. Inter-
estingly, the maximum power P ? is always much larger
than P at ηC [8].

According to Ref. [8], the overdamped Brownian HEs
work with η = ηC and P > 0 whenever they operate
in the low-dissipation regime, where the work dissipated
during the hot (cold) isotherm scales as 1/t1 (1/t3). This
is achieved if the state of the system depends during the
hot (cold) isotherm on time solely through the combina-
tion t/t1 (t/t3). In fact, the Carnot bound at P > 0 can
be reached under much milder conditions of: 1) Short
cycle times tp which are nevertheless long compared to
the relaxation times for position τx and for the momen-
tum τp = m/γ. In practice, the time-scale separation
tp � τx, τp must be realized in such a way that the time-
scales τx and τp are much larger than the reservoir relax-
ation time [14]. 2) Driving leading to nonzero reversible
work W = (Th − Tc)∆S. 3) A Carnot cycle composed of
two adiabats and two isotherms.

The curves plotted in Fig. 2 in the main text are calcu-
lated for a round glass particle with the density ρg = 2800
kg/m3 and radius R = 10−6 m diffusing in water with
dynamical viscosity κ = 0.001 Pa s, which is assumed
to be temperature independent. The friction coefficient
γ = 6πRκ, is calculated according to the Stokes law.

We take σf = cσ−ξ∞ , c = 1 m, and σ2
f/σ

2
0 = 3 for the

boundary variances, t1 = t3 = tp/2 for durations of the
isothermal branches, Tc = 293.15 K and Th = 5273.15 K
for the reservoir temperatures and ξ = 1.5 and χ = 0.05
for the exponents defined in Eq. (S19).

The values of parameters taken are readily realizable
in experiments with optical tweezers as can be checked
by comparing their values with the values used in the ex-
periments reported in Refs. [15, 16]. Especially, we point
out that the seemingly unrealistically large hot bath tem-
perature Th = 5273.15 K can be realized by applying on
the particle a further electrostatic force that mimics a
thermal bath much hotter than the actual temperature
of the water surrounding the particle. The hottest effec-
tive temperature achieved using this method in Ref. [16]
was 6000 K.
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We optimize finite-time stochastic heat engines with a periodically scaled Hamiltonian under experimentally
motivated constraints on the bath temperature T and the scaling parameter λ. We present a general geometric
proof that maximum-efficiency protocols for T and λ are piecewise constant, alternating between the maximum
and minimum allowed values. When λ is restricted to a small range and the system is close to equilibrium
at the ends of the isotherms, a similar argument shows that this protocol also maximizes output power. These
results are valid for arbitrary dynamics. We illustrate them for an overdamped Brownian heat engine, which can
experimentally be realized using optical tweezers with stiffness λ.
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I. INTRODUCTION

The unprecedented improvement in experimental control
over microscopic Brownian [1] and quantum systems [2–4]
has induced a revolution in the study of heat engines [5,6].
It aims to generalize equilibrium and finite-time thermody-
namics [7–15] to the nanoscale, where thermal and quantum
fluctuations render thermodynamic variables such as work
and heat stochastic [16]. Intense effort is devoted to un-
cover optimal performance of stochastic heat engines [16–41].
However, optimal control protocols are only known under
approximations of fast [34–36] or slow [28,37–41] driving,
or for specific microscopic models: engines based on over-
damped Brownian particles in harmonic [24] or log-harmonic
[42] potential, and underdamped harmonic Brownian heat
engines [43]. Furthermore, most of these exact results are
obtained under constraints on the state of the working medium
[44], instead of experimentally motivated constraints on the
control parameters [45,46]. An exception is Ref. [47], show-
ing that reaching maximum efficiency of slowly driven cyclic
heat engines requires control over the scaling of the full
Hamiltonian to avoid heat leakages.
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†viktor.holubec@mff.cuni.cz

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
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In this paper, we optimize finite-time thermodynamic cy-
cles under constraints on control parameters such as trap
stiffness of optical tweezers λ and bath temperature T . We
show that, different from constraining the response such as
the width σ of the phase distribution, constraining the con-
trol allows for surprisingly simple and general derivation of
maximum-efficiency and maximum-power protocols. Besides
other stark differences, for constrained control of Brownian
heat engines, these protocols significantly outperform the pro-
tocol optimized for power and efficiency under constraints
on σ [24].

The paper is organized as follows. In Sec. II, we introduce
the considered setup with a periodically scaled Hamilto-
nian under experimentally motivated constraints. In Sec. III,
we derive the corresponding maximum-efficiency protocol.
In Sec. IV, we prove that the maximum-efficiency protocol
yields, under certain conditions, also maximum output power.
In Sec. V, we present a case study of optimization of power
and efficiency for constrained control by considering a spe-
cific overdamped Brownian heat engine. Besides illustrating
the general results derived in Secs. III and IV, we provide
numerical evidence that the maximum-power protocol is, in
this case, piecewise linear. We conclude in Sec. VI.

II. SETUP

Following Ref. [47], we assume that the Hamiltonian of the
system that serves as a working medium of the stochastic heat
engine is of the form

H (x, t ) = λ(t ) f (x), (1)

2643-1564/2022/4(4)/043130(12) 043130-1 Published by the American Physical Society
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where the control parameter λ(t ) periodically expands and
shrinks the energy spectrum in time, and f (x) is an arbitrary
function of the system degrees of freedom x such that the
equilibrium partition function Z (t ) = ∫

dx exp[−H (x, t )/
(kBT )] is finite for all kBT � 0 (kB denotes the Boltzmann
constant). This class of Hamiltonians generalizes the well-
known “breathing” parabola model [24] for an overdamped
particle trapped in a parametrically driven harmonic potential.
It also includes semiclassical two-level (or multilevel) systems
with controlled gaps between the individual energy levels
[16], and quantum spins, where the control parameter is an
externally controlled magnetic field [17].

We connect the system to a heat bath and periodically alter
its temperature T (t ) with the same finite period tp as λ(t ). The
parameters under experimental control are thus λ(t ) and T (t )
and our aim is to find optimal tp-periodic protocols for them
under the experimentally motivated constraints [48]

λ(t ) ∈ [λ−, λ+], T (t ) ∈ [T−, T+]. (2)

III. MAXIMUM-EFFICIENCY PROTOCOL

Our first main result is a general geometric proof
that the maximum-efficiency finite-time cycle under the
constraints (2) is a Carnot-Otto cycle composed of two
isotherms/isochores interconnected by two adiabats. The
maximum-efficiency protocol {T (t ), λ(t )} is thus piecewise
constant:

{T (t ), λ(t )}η =
{{T+, λ+}, 0 < t < t+,

{T−, λ−}, t+ < t < tp.
(3)

And the maximum efficiency is given by

η = 1 − λ−
λ+

. (4)

The proof relies just on the definition of heat and it is thus
independent of the details of the system dynamics, including
the times t+ and tp. It holds both for situations when the
heat bath is memoryless (Markovian) and non-Markovian.
The nonequilibrium dynamics of the system communicating
with a Markovian bath can be described by Fokker-Planck or
master equations for the probability density for x [49]. Except
for a few exactly solvable settings [16,49], these equations are
usually hard to solve analytically for non-quasi-static time-
dependent protocols. However, in the non-Markovian case,
a corresponding closed deterministic description might not
be available at all [50]. Then one has to resort to stochastic
descriptions, such as a generalized Langevin equation, making
even a numerical optimization challenging. The derivation
also holds in situations with a nonequilibrium bath, such as in
recently intensely studied cyclic active Brownian heat engines
[51–54].

Let us now derive Eqs. (3) and (4). Under reasonable as-
sumptions, any periodic variation of the control parameters
eventually induces a periodic average response of the system,
σ (t ) = 〈 f [x(t )]〉. This ensemble average is a functional of
T (t ) and λ(t ) specified by dynamical equations of the system.
Due to the factorized structure of the Hamiltonian (1), the
average internal energy of the system 〈H (x, t )〉 is given by
λ(t )σ (t ). Decomposing its infinitesimal change into a com-
ponent corresponding to the external variation of the control λ

λ+

λ−

σ

λ

σ− σ+

Qout

Qin

FIG. 1. The maximum-efficiency protocol (3) under the con-
straints in Eq. (2) (dashed line) compared to a suboptimal cycle
(dotted line).

(work) and the rest (heat) [5,6], it follows that output work and
input heat increments are given by đWout (t ) = −σ (t )dλ(t )
and đQ(t ) = λ(t )dσ (t ), respectively. Per cycle, the engine
transforms the fraction

η = Wout

Qin
= 1 − Qout

Qin
(5)

of the heat

Qin =
∫ tp

0
λ(t )θ [dσ (t )]dσ (t ) (6)

from the heat source into output work

Wout = −
∫ tp

0
σ (t )dλ(t ), (7)

and dumps the remaining heat Qout = Qin − Wout =∫ tp
0 λ(t )θ [−dσ (t )]dσ (t ) into the heat sink. [The Heaviside

step function θ (•) = 1 when the heat flows on average into
the system, i.e., dσ > 0.]

Consider now the λ-σ diagram of the cycle depicted in
Fig. 1. We seek the shape of the cycle which yields maxi-
mum efficiency η under the constraints (2).1 The cycle must
run clockwise to secure that Qin > Qout. Next, we note that
maximizing η amounts to minimizing the ratio Qout/Qin. For
given boundary values σ± of σ , this is obviously achieved by
setting λ = λ+ when dσ > 0 and λ = λ− when dσ < 0. In
such a case, Qin = λ+�σ , Qout = λ−�σ , and the efficiency
is given by Eq. (4). The increase in the system response
�σ = σ+ − σ−, which can be a complicated functional of the
protocol {T (t ), λ(t )}, canceled out. Equation (4) is thus valid
for arbitrary σ±, and it represents the maximum efficiency of
a heat engine based on Hamiltonian (1) under the constraints
(2). The corresponding maximum-efficiency protocol for λ

forms a rectangle ranging from λ− to λ+ in the λ-σ diagram
regardless the cycle duration and dynamical equations of the

1A similar optimization problem is often solved in courses on
classical thermodynamics to show that maximum efficiency of an
equilibrium cycle under the constraint T (t ) ∈ [T−, T+] on the bath
temperature is the Carnot efficiency. However, in our case, the system
can be arbitrarily far from equilibrium.
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system. The only constraint on these control parameters is that
the cycle runs in the λ-σ diagram clockwise.

When not driven, a system out of equilibrium relaxes
towards the equilibrium state corresponding to the instanta-
neous values of the fixed control parameters. For cyclically
varied control parameters, the system can no longer relax to
equilibrium and its nonequilibrium state “lags behind” the
quasistatic cycle specified by the instantaneous values of the
control parameters. In our setting, σ (t ) lags behind σ eq(t ) =∫

dx f (x) exp{−λ(t ) f (x)/[kBT (t )]}/Z (t ). In Appendix B 1,
we show that σ eq(t ) is a monotonically increasing func-
tion of T/λ. Denoting as t+ the duration of the λ = λ+
branch, clockwise cycles with �σ > 0 are thus obtained for
temperature protocols T (t ) which obey (i) Ṫ (t ) � 0 when
λ = λ+, (ii) Ṫ (t ) � 0 when λ = λ−, and (iii) T (t+−)/λ+ >

T (tp−)/λ−, where T (t−) ≡ limε→0 T (t − |ε|). The last con-
dition implies that the maximum efficiency (4) obeys the
standard second-law inequality η � 1 − T (tp−)/T (t+−) �
1 − T−/T+. It saturates for the “compression ratio” λ−/λ+ =
T−/T+. Even for a finite cycle time tp, output power, in this
case, vanishes because σ eq(t ) becomes constant, yielding an
infinitesimal quasistatic cycle with a vanishing output work.
In the maximum-efficiency protocol (3), we use the specific
protocol for T (t ) that maximizes the upper bound on η. In
Appendix B 1, we argue that this temperature protocol also
maximizes the output work of the engine regardless of λ(t )
because it yields the largest temperate differences between the
bath and the system when they exchange heat. However, we
reiterate that the maximum efficiency (4) can be achieved for
an arbitrary protocol for T (t ) that obeys the above conditions
(i)-(iii). This freedom in T (t ) can be exploited in setups where
precise control of the bath (effective) temperature is difficult,
such as in active Brownian heat engines [52].

The adiabatic branches connecting the isotherms in the
protocol (3) can be realised using several qualitatively differ-
ent approaches [31]. (i) One can disconnect the system from
the heat bath, which might be impractical for microscopic
engines. (ii) One may keep the system in thermal contact
with the bath and vary the control parameters T and λ in
such a way that the response σ does not change [55]. This
approach allows circumventing some of the shortcomings
of overdamped thermodynamics [56], where the heat fluxes
through the momentum degrees of freedom are neglected.
(iii) One can realize the adiabatic branches by changing the
control parameters much faster than the relaxation time of the
response σ [57]. In the specific maximum-efficiency protocol
(3), we employ the last possibility. It minimizes the cycle
time tp and thus maximize the output power P ≡ Wout/tp.
Besides, it allows for a direct comparison with the maximum-
efficiency protocols derived for Brownian heat engines under
constraints on σ [24]. However, other realisations of the adi-
abatic branches yield the same maximum efficiency (4). We
reiterate that also the choice of the durations t+ and tp − t+ of
the isotherms in (3) do not affect the maximum η.

IV. MAXIMUM-POWER PROTOCOL

If the durations of the isotherms are long enough compared
to the relaxation time of the system, i.e., �σ is close to its
equilibrium value, and the compression ratio λ−/λ+ is large,

the maximum-efficiency protocol (3) also yields maximum
output work Wout (7) and power

P = Wout

tp
(8)

under the constrained control (2). This is our second main re-
sult. To prove it, consider the generally unreachable geometric
loose upper bound on the output work max Wout = �λ max
�σ eq = (λ+ − λ−)[σ eq(T+/λ−) − σ eq(T−/λ+)], which fol-
lows from the broadly valid assumption max �σ < max �σ eq

and the insight that Wout is given by the area enclosed
by the cycle in the λ-σ diagram. Expanding max Wout

in �λ yields max Wout = �λ[σ eq(T+/λ+) − σ eq(T−/λ−)] +
O(�λ2). Up to the leading order in �λ and under the con-
dition that the system has relaxed at the ends of the two
isotherms to equilibrium, this upper bound is saturated by
the protocol (3), which completes the proof. We note that
(i) the condition �σ = �σ eq does not mean that the cycle
is slow as the system has to be close to equilibrium at the
ends of the two isotherms only and can be arbitrarily far
from equilibrium otherwise. (ii) This condition allows one
to analytically calculate the whole probability distribution for
the output work regardless of additional details of the system
dynamics [16,58]. Interestingly, for semiclassical systems,
piecewise constant protocols with two or more branches also
maximize output power when the cycle time is much shorter
than the system relaxation time [34,35,59].

Beyond these regimes, Wout and P strongly depend on all
details of the dynamics through σ (t ) and cycle time tp. While
Wout and P are still optimized by the temperature protocol and
the choice of fast adiabats in (3), optimal protocols for λ(t )
under the constraints (2) are no longer piecewise constant and
they have to be identified for each system separately. Similarly
to the derivation of maximum-efficiency and maximum-power
protocols under constraints on the system state [24,42–44],
this often involves functional optimization or extensive nu-
merical work which are both nontrivial tasks.

In the next section, we illustrate the main features of
maximum-efficiency and maximum-power protocols under
constrained control on an engine based on an overdamped
Brownian particle in a harmonic potential. This model de-
scribes experimental realizations of microscopic heat engines
using optical tweezers [57,60,61]. Besides, the corresponding
maximum-efficiency and maximum-power protocols under
the constrained response are known [24], allowing for a di-
rect comparison with our results obtained under constrained
control.

V. CASE STUDY: OVERDAMPED BROWNIAN
HEAT ENGINE

Let us now consider the specific Brownian heat engine
based on an overdamped particle with mobility μ diffusing
in a controlled harmonic potential. The Hamiltonian (1) now
reads H (x, t ) = λ(t )x2/2, with x the position of the particle.
The response of the system σ (t ) = 〈x2/2〉 is proportional to
the position variance and it obeys the first-order differential
equation [16,24,62]

dσ (t )/dt = −2μλ(t )σ (t ) + μkBT (t ). (9)
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TABLE I. Considered classes of protocols with free parameters
a, b, c, d to be determined by the optimization (protocols λpwc and
λS have only two free parameters). The protocols are in general
discontinuous at times t+ and tp. The piecewise constant protocol
λpwc(t ) is a variant of the maximum-efficiency protocol λη(t ) (3),
where λpwc(t ) does not have to reach the boundary values λ− and
λ+. The piecewise linear protocol λpwl(t ) has zero curvature. The
protocol λslow(t ) minimizes the irreversible losses during isothermal
branches under close-to-equilibrium conditions. Such protocols can
be derived for Brownian heat engines with Hamiltonians of the form
λ(t )xn/n (for details, see Appendix C). The protocol λS(t ) maximizes
both power and efficiency under the constraint that σ (0) = σ (tp) ≡ a
and σ (t+) ≡ b [24]. The corresponding response σS(t ) is given by
Eq. (D2). For b = d = 0, λpwl and λslow reduce to λpwc.

λpwc(t ) λpwl(t ) λslow(t ) λS(t )

t < t+ a a + bt a
(1+bt )2

T+
2σS(a,b,t ) −

√
b−√

a
μt+

√
σS(a,b,t )

t > t+ c c + dt c
(1+dt )2

T−
2σS(a,b,t ) +

√
b−√

a
μt−

√
σS(a,b,t )

In Sec. III, we proved that the maximum-efficiency pro-
tocol under the constraints (2) should, in this case, be the
protocol (3). In this section, we illustrate this results by direct
numerical optimization. In addition, we ask which protocol
for λ yields the largest output power under the constraints (2).
Even though the model (9) is exactly solvable [16], the cor-
responding optimal λ(t ) has to be found numerically, e.g., by
the method in Ref. [63]. To keep the optimization transparent,
we instead consider the specific set of families of protocols
for the isothermal strokes in Table I and numerically optimize
over their free parameters. When such classes are chosen
suitably, the resulting suboptimal performance will be close
to the global optimum [64,65]. Besides, we use the protocol
for temperature and adiabatic branches from Eq. (3), and fix
the durations of the two isotherms and thus tp. The durations
can be further optimized once the optimal variation of λ is
known. The solutions to Eq. (9) can involve exponentials of
very large or small numbers, which can lead to numerical
instabilities inducing large losses of precision, and thus they
have to be treated with care. To secure that our solutions are
always precise enough, we have solved Eq. (9) in our analysis
also numerically.

For the protocols in Table I and the temperature protocol in
Eq. (3), we thus numerically optimized the efficiency (5) and
output power (8) as functions of the parameters {a, b, c, d}
under constraints on λ(t ). For constrained response σ (t ), we
additionally verified in Appendix D that the protocol λS ob-
tained from Ref. [24] indeed yields both the maximum power
and maximum efficiency.

The results of optimizing efficiency under the constrained
control are depicted in Fig. 2. For all of the trial protocols from
Table I except for λS the optimal values of parameters b and
d were 0. All these protocols thus collapsed to the piecewise
constant maximum-efficiency protocol λη (3), illustrating our
general theoretical result. Notably, the efficiency achieved by
the maximum-efficiency protocol is significantly larger than
that provided by usage of the protocol λS, which gives maxi-
mum efficiency under constrained response.

0.3 0.5 0.7 0.9
0.2

0.4

0.6

0.8

1

(a)

0.3 0.5 0.7 0.9
0.4

0.6

0.8

1 (b)

FIG. 2. Numerical optimization of the efficiency of the Brownian
heat engine under constrained control verifies that the maximum-
efficiency protocol is given by Eq. (3). (a) Maximum efficiency
and (b) the corresponding power (in units of the ultimate maximum
power P∗

λpwl
for λpwl) as functions of λ−/λ+. All protocols except

for λS perfectly overlap. Parameters used are t+ = t− = 1, kBT+ = 1,
kBT− = 0.25 (thus Carnot efficiency ηC ≡ 1 − T−/T+ = 0.75), λ+ =
0.5, and μ = 1.

Main results of the optimization of output power under
the constrained control are summarized in Fig. 3. (i) With
increasing minimum compression ratio λ−/λ+ allowed by the
constraints (2), maximum power for all considered protocols
in (a) is first constant and then, at an optimal compression
ratio r∗, decreases. The decreasing part corresponds to pro-
tocols which span between the allowed boundary values,
i.e., max λ(t ) = λ(0+) = λ+ and min λ(t ) = λ(t++) = λ−.
At the plateau, the boundary values of the protocols are chosen
within the bounds (2) to keep the optimal compression ratio
r∗. (ii) Values of maximum power obtained for the proto-
cols which have enough free parameters are indistinguishable
within our numerical precision. As the corresponding opti-
mized protocols seem to have minimum possible curvature
λ̈(t ), we conclude that the maximum-power protocol is λpwl.
(iii) Only the protocol λS, optimized for constrained response
σ , yields notably smaller power than other protocols. (iv) In
agreement with our above discussion, for large enough val-
ues of λ−/λ+ � 0.59, the optimized parameters for protocols
λpwc, λpwl, and λslow are b = d = 0, a = λ+, and c = λ−,
reducing them to λη (3). (v) The maximum powers for the
protocols λη and λpwl differ just by 1%.

In Fig. 4, we further show that the relative difference
in maximum power for λpwl and λη is small for a broad
range of values of T−/T+ and t−/t+. From panels (c)–(f) we
conclude that the optimal ratio t−/t+ is between 1 and 2,
which is in agreement with the results of Appendix B 2 b [see
Eq. (B19) below]. Thus, for branch durations that optimize
output power, the relative difference δP in (a) is always below
12%, decreasing with the temperature ratio. These results
indicate that when one can optimize Wout and P over λ−,
the maximum-efficiency protocol (3) often yields almost the
maximum power.

The optimization over λ− is natural for experimental
platforms with limitations on the maximum strength of
the potential only. The maximum power regime of the
maximum-efficiency protocol (3) can be, to a large extend,
investigated analytically. First, assuming again that dura-
tions of the isotherms are long enough that the system is
close to equilibrium at times t+ and tp, we have Wout =
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FIG. 3. Numerical optimization of the output power of the Brow-
nian heat engine illustrates that the maximum-efficiency protocol λη

(3) also yields maximum power when the compression ratio λ−/λ+ is
large and the durations t+ = t− = 1 of the two isotherms are compa-
rable to the relaxation times 1/(2μλ±) for σ . (a) Powers (in units of
the ultimate maximum power P∗

λpwl
for λpwl) and (b) the correspond-

ing efficiencies obtained using λη (3) and the protocols in Table I. For
λ−/λ+ � 0.59 all protocols except for λS coincide. (c) and (d) show
the protocols and the resulting response for λ−/λ+ = 0.4. (e) The
relative differences δX = (Xλpwl − Xλpwc )/Xλpwl of power (X = P)
and efficiency (X = η) for λpwl and λpwc. (f) The optimal values of
parameters b and d for λpwl. We used the same parameters as in Fig. 2.

(λ+ − λ−)[σ eq(T+/λ+) − σ eq(T−/λ−)]. For f (x) = |x|n in
Eq. (1), we then find that the optimal compression ra-
tio is λ−/λ+ = √

T−/T+, which leads to the output work
Wout = kBT+(2ηCA − ηC)/n and Curzon-Ahlborn efficiency
η = ηCA = 1 − √

T−/T+ (see Appendix B 2 a for details). For
other than power-law Hamiltonians, the efficiency at maxi-
mum power can differ from ηCA but it can still be determined
numerically regardless details of dynamical equations for the
system (for details, see Appendix B 2 a). Relaxing the assump-
tion of slow (but not quasistatic) isotherms, the optimization
of Wout with respect to λ− requires specification of the dynam-
ics. In Fig. 5, we show that the efficiency at maximum power
of the Brownian heat engine described by Eq. (9) and driven
by the maximum-efficiency protocol (3) is bounded between
the Curzon-Ahlborn efficiency, achieved for slow isotherms,
and the efficiency 2 − √

4 − 2ηC < ηCA, reached in the limit
tp → 0.

In closing this section, we summarize the strong effects
of the constraints (constrained control versus constrained

response [24]). First, constraining the control allowed us to
derive much more generally valid results than constraining the
response. Second, for the constrained response, the power and
efficiency can be optimized simultaneously, whereas for the
constrained control this is, in general, not possible. Third, the
resulting functional forms of the optimal protocols and the
corresponding optimal performance strongly differ. Fourth,
the change of boundary conditions alters the optimal alloca-
tion of cycle duration between hot and cold isotherms, t+/t−,
as we show below Eq. (B19) in the Appendix.

VI. CONCLUSION

We have optimized the thermodynamic performance of
finite-time overdamped stochastic heat engines under the con-
straint that control parameters, such as potential strength or
bath temperature, can be varied only over a limited range. This
optimization problem is experimentally motivated and differs
from previously studied optimization studies performed with
constraints on the system’s state. We have found that, for
working fluids described by the experimentally most common
“breathing” Hamiltonians proportional to a control parameter,
the maximum efficiency is reached by piecewise constant
modulation of the control parameters, independently of the
detailed dynamics of the system. When the control parame-
ter can only be changed over a small range and the system
is close to equilibrium at the ends of the isotherms, the
maximum-efficiency protocol also yields maximum output
power. But outside this regime, the maximization of power
requires specifying the dynamical equations of the working
fluid. For engines based on an overdamped Brownian parti-
cle trapped in a harmonic potential, we numerically found
that the maximum-power protocol is linear. Nevertheless,
the global maxima of the maximum-power and maximum-
efficiency protocols are in this setting close, suggesting that
the maximum-efficiency protocol provides a reasonable esti-
mate of the output power.

The main strength of the presented derivations of the
maximum-efficiency and maximum-power protocols under
constrained control is their simplicity and unprecedented
generality. Their possible extension to more complicated
Hamiltonians is sketched in Appendix A. While more general
extensions remain to be explored in future work, the validity
of our results for Brownian heat engines is already of ex-
perimental relevance. These engines are often realized using
optical tweezers with strict bounds on the trap stiffness λ: too
small λ leads to losing the Brownian particle while too large
λ can induce its overheating. Interestingly, the achievable
trap stiffnesses are well above 10−6 N/m [31]. For spherical
Brownian particles with the radius of 10−6 m in water, the
Stokes law predicts the mobility of μ ≈ 0.5 × 108 m/Ns,
leading to the relaxation time 1/(2μλ) of the response σ on
the order of 10−2 s. The assumption that the durations of the
isotherms are longer than the response relaxation time, used
in our derivation of the maximum-power protocol, is thus,
in this setup, natural. Besides, we believe that extensions of
our results can find applications in more involved optimiza-
tion tasks, e.g., performed using machine learning algorithms
[66,67] or geometric methods [68,69], as well as in quantum
setups [39,70,71].
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FIG. 4. The relative differences δX = (Xλpwl − Xλη
)/Xλpwl of (a) maximum power (X = P) optimized with respect to λ− and (b) the

corresponding efficiency (X = η) for the linear protocol λpwl and the maximum-efficiency protocol (3) for different values of T−/T+ and t−/t+.
(c)–(f) show the corresponding values of maximum power and efficiency. The piecewise constant protocol λpwc and the maximum-efficiency
protocol λη (3) are in this case equal. We used the same parameters as in Fig. 2.
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APPENDIX A: MAXIMUM-EFFICIENCY PROTOCOL
FOR MULTITERM HAMILTONIANS

Consider a heat engine with a working fluid described by
the Hamiltonian

H (x, t ) =
∑

i

λi(t ) fi(x) (A1)

with control parameters λi(t ), i = 1, . . . , N . As in the main
text, we now aim to derive the finite-time protocol for the con-
strained control parameters, λi(t ) ∈ (λ−

i , λ+
i ), which would

yield maximum efficiency of the engine. It will turn out that
if the compression ratios λ−

i /λ+
i for all the control parameters

equal, the geometric argument from the main text still applies.
The heat increment is for the Hamiltonian (A1) given

by đQ = ∑
i λi(t )dσi(t ) with the response functions σi(t ) =

〈 fi(x)〉. For arbitrary fixed maximum changes �σi in the re-
sponse functions during the cycle, geometric upper and lower
bounds on Qin and Qout and thus on efficiency are achieved by
clockwise rectangular cycles in the individual λi-σi diagrams.
These hypothetical cycles yield the following geometric upper
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bound on efficiency:

η = 1 − Qout

Qin
� 1 −

∑
i �σiλ

−
i∑

i �σiλ
+
i

. (A2)

We use the term “geometric” to stress that this bound follows
from the analysis of the cycle in the λ-σ diagram, without con-
sidering the relation between the protocol [λ1(t ), . . . , λN (t )]
and the response [σ1(t ), . . . , σN (t )] imposed by dynamical
equations of the working fluid. This means that the given set
of �σi might not be achievable by the piecewise constant
protocol and thus the bound in (A2) is loose. Furthermore, we
seek an optimal protocol constrained just by the conditions on
λi, and the upper bound in (A2) in general strongly depends
on the fixed values of �σi. For the single-term Hamiltonian
H (x, t ) = λ(t ) f (x) used in the main text, this has not been
an issue because then �σ in the nominator and denominator
in (A2) cancel out and the upper bound becomes indepen-
dent of the details of the dynamics. The optimal protocol
for efficiency is then the piecewise constant protocol for λ(t )
because it saturates the geometric upper bound. To sum up, the
bound in (A2) allows one to derive the maximum-efficiency
protocol only if it happens to be independent of �σi. In
the opposite case, the optimal protocol cannot be determined
without considering the dynamical equations and performing
the corresponding functional optimization.

Let us now investigate when the upper bound in (A2)
becomes independent of the system response, �σi. Defining
the set of “probabilities” pi = �σiλ

+
i /

∑
i �σiλ

+
i , the ratio in

the upper bound in (A2) can be rewritten as the average∑
i �σiλ

−
i∑

i �σiλ
+
i

=
∑

i

pi
λ−

i

λ+
i

. (A3)

This expression becomes independent of σi only if all the
compression ratios λ−

i /λ+
i are equal. In such a case, the

maximum-efficiency protocol is thus a piecewise constant
protocol for each of λi and yields the efficiency

η = 1 − λ−
i /λ+

i . (A4)

Besides this result, the probabilistic interpretation (A3) of the
upper bound in (A2) also yields the dynamics independent
(but in general loose) upper bound on efficiency,

η � 1 − min
i

λ−
i

λ+
i

. (A5)

To close this section, we note that a piecewise con-
stant protocol for λi will always yield the efficiency
1 − (

∑
i �σiλ

−
i )/(

∑
i �σiλ

+
i ), with values of �σi induced by

the dynamical equations of the system. Within the class of
piecewise constant protocols, the upper bound (A5) is then
tight if the constraints on all the control parameters λi allow

to achieve the minimum compression ratio mini
λ−

i

λ+
i

. Further-
more, for such protocols, Eq. (A3) also implies the lower
bound on the efficiency,

η � 1 − max
i

λ−
i

λ+
i

, (A6)

which is always tight.

APPENDIX B: PROPERTIES OF MAXIMUM-
EFFICIENCY PROTOCOL

In this section, we provide further details concerning the
maximum-efficiency protocol for the Hamiltonian, H (x, t ) =
λ(t ) f (x), discussed in the main text. First, we argue that
the maximum-efficiency protocol that yields maximum output
work for the given piecewise constant λ(t ) requires piecewise
constant variation of temperature. Then, we investigate output
power of the maximum-efficiency protocol as a function of
the lower bound on the control parameter λ(t ).

1. Temperature protocol

In the main text, we have shown that the maximum-
efficiency protocol for the control parameter λ(t ) is piecewise
constant and the corresponding efficiency η = 1 − λ−/λ+.
The only condition on the temperature protocol was that the
cycle is performed clockwise in the λ-σ diagram. Never-
theless, in order to allow the engine to operate at Carnot
efficiency and to maximize its output work, we have chosen
the protocol (3).

For this choice of T (t ), the working medium of the engine
operates with the largest possible temperature gradient during
the whole cycle. This maximizes the heat flux through the
engine, which can be utilized to yield the maximum amount
of work Wout = ηQin. Besides, the engine efficiency η is also
known to increase with the bath temperature difference [see
also Figs. 4(c)–4(f)].

Let us now provide an alternative and more technical argu-
ment that the choice of T (t ) in Eq. (3) maximizes the output
work. We restrict this argument to the maximum-efficiency
protocol for λ in Eq. (3). However, generalizations to other
protocols are straightforward. The main idea is that connect-
ing the system to the hottest possible bath when σ̇ > 0 and to
the coldest possible bath when σ̇ < 0 maximizes the extent of
the cycle in the σ direction in the σ -λ diagram and thus also
Wout.

For the protocol (3), the output work is given by

Wout = �λ�σ, (B1)

with �λ = λ+ − λ− and the maximum change in the response
parameter during the cycle �σ = σ+ − σ−. To maximize
Wout, we thus need to maximize �σ . To this end, it is rea-
sonable to assume that

�σ � �σ eq, (B2)

where �σ eq = max σ eq − min σ eq is the maximum change
in the response parameter σ during the cycle with iso-
choric branches (constant λ) longer than the system relaxation
time. This assumption is in particular valid for arbitrary
overdamped dynamics, where σ always converges to its equi-
librium value (kB denotes the Boltzmann constant)

σ eq(t ) =
∑

x

f (x)
exp {−λ(t ) f (x)/[kBT (t )]}∑
x exp {−λ(t ) f (x)/[kBT (t )]} , (B3)

corresponding to the instantaneous values of the control
parameters {T (t ), λ(t )}. Noticing that σ eq(t ) = U (t )/λ(t ),
where U (t ) = 〈H (x, t )〉 is the thermodynamic internal energy
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of the system, the positivity of heat capacity

Cv = ∂U

∂T
= ∂σ eq

∂ (T/λ)
> 0 (B4)

implies that σ eq is a monotonously increasing function of the
ratio T/λ.

From Fig. 1 in the main text, it follows that max σ eq and
min σ eq are the values of σ eq at the ends of the isochores with
λ = λ+ and λ = λ−, respectively. The upper bound on �σ is
thus given by

max σ eq − min σ eq = σ eq(T+/λ+) − σ eq(T−/λ−). (B5)

It is attained for slow isochores when T = T+ for λ = λ+
and T = T− for λ = λ−. As long as σ̇ eq > 0 for λ = λ+ and
σ̇ eq < 0 for λ = λ− (so that the used definitions of input and
output heat hold), details of the temperature protocol during
the isochores in this limit do not alter the value of �σ eq and
thus Wout = �λ�σ eq. However, these details become impor-
tant for finite-time cycles.

A typical dynamical equation for an overdamped degree of
freedom has the form

σ̇ (t ) = t−1
R [σ eq − σ (t )]. (B6)

For constant values of control parameters T (t ) and λ(t ), which
enter the relaxation time tR and the equilibrium state σ eq(t )
defined in Eq. (B3), this equation describes an exponential
relaxation of σ to σ eq (for a specific example, see Sec. B 2 b).
For a cyclic variation of the control parameters, σ lags behind
σ eq [72]. More precisely, σ � σ eq and σ̇ � 0 for λ = λ+,
when σ eq increases to max σ eq, and σ � σ eq and σ̇ � 0 for
λ = λ−, when σ eq decreases to min σ eq. The change in the
response �σ = ∫ t+

0 σ̇ dt = − ∫ tp
t+

σ̇ dt and thus it can be max-
imized by maximizing (minimizing) the instantaneous rate of
change of the response, σ̇ , during the first (second) isochore.
From Eq. (B6), it follows that this is achieved by setting
σ eq = max σ eq during the fist isochore and σ eq = min σ eq

during the second one. Altogether, this suggests that the piece-
wise constant temperature protocol in Eq. (3) yields maximum
�σ and thus output work Wout (B1) for arbitrary cycle
duration.

2. Efficiency at maximum power

Let us now turn to the task of maximizing the output work
Wout = (λ+ − λ−)�σ with respect to λ−. Analytical results
can be obtained in the limits of slow and fast isotherms.

a. Slow isotherms

When the duration of the isotherms is longer than the
relaxation time of the response σ , one can approximate σ+
and σ− in �σ by their equilibrium values. Using Eq. (B1), the
output work then reads

Wout = �λ�σ eq. (B7)

Equation (B4) implies that the partial derivative of σ eq with
respect to the control parameter λ (T is constant) is given by

∂

∂λ
σ eq(T/λ) = − T

λ2
Cv. (B8)

0 0.25 0.5 0.75 1
0.92

0.96

1

FIG. 6. Efficiency at maximum output work obtained using the
Hamiltonian H = λ(t )(|x|n/n − ln |x|) as a function of T−/T+. Pa-
rameters used are kBT+ = 1 and λ+ = 0.5.

The condition on the extreme of Wout (B7) with respect to λ−
thus reads

∂Wout

∂λ−
= (λ+ − λ−)

T−
λ2−

Cv(T−/λ−) − U (T+/λ+)

λ+

+ U (T−/λ−)

λ−
= 0, (B9)

where we additionally used the relation σ eq = U/λ between
σ eq and the internal energy U .

For power law Hamiltonians of the form H = λ|x|n/n
where Cv = kB/n and U = kBT/n, this equation can be solved
explicitly. The resulting optimal compression ratio is given by
λ−/λ+ = √

T−/T+. The corresponding efficiency at the maxi-
mum output work is given by the Curzohn-Ahlborn efficiency,

η = 1 − λ−
λ+

= 1 −
√

T−
T+

≡ ηCA, (B10)

and the maximum output work is (Carnot efficiency ηC = 1 −
T−/T+)

Wout = kBT+
n

(2ηCA − ηC). (B11)

Let us now consider the asymmetric Hamiltonian
H = λ(t )(|x|n/n − ln |x|). In this case, the internal energy and
heat capacity are given by

U = kBT + λ
[
1 + ln λ

nkBT − ψ (0)
(

λ+kBT
nkBT

)]
n

, (B12)

Cv = nkBT (kBT − λ) + λ2ψ (1)
(

λ+kBT
nkBT

)
n2k2

BT 2
, (B13)

where ψ (m)(z) denotes the polygamma function of order m.
In this case, Eq. (B9) is transcendental and we solved it nu-
merically. In Fig. 6, we show the resulting efficiency at the
maximum output work as a function of T−/T+. Even though
the resulting efficiency is still close to ηCA, it can be both
slightly larger and smaller than that.
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b. Fast isotherms

Let us now assume that the duration of the isothermal
branches are much shorter than the system relaxation time.
In such a case, the work optimization cannot be done without
specifying the dynamical equation for the response σ . To this
end, we assume that it obeys the overdamped equation (B6)
with the equilibrium value σ eq and relaxation time tR deter-
mined by the values of the control parameters {T (t ), λ(t )} at
time t . The most prominent examples of systems described by
this formula are a two-level system [35] and an overdamped
particle trapped in a harmonic potential [24].

Solving Eq. (B6) for the maximum-efficiency protocol (3),
we find that

σ (t ) =

⎧⎪⎪⎨
⎪⎪⎩

σ0e
− t

t+R + σ+
eq

(
1 − e

− t
t+R

)
, 0 < t < t+,

σ1e
− t−t+

t−R + σ−
eq

(
1 − e

− t−t+
t−R

)
, t+ < t < tp,

(B14)
where σ0 ≡ σ (0) and σ1 ≡ σ (t+) are determined by the con-
dition that σ (t ) must be a continuous function of time. The
variables corresponding to the first (second) isotherm are de-
noted by max (min). It turns out that

�σ = σ+ − σ− = σ1 − σ0

= �σ eq sinh (t+/t+
R ) sinh (t−/t−

R )

sinh (t+/t+
R + t−/t−

R )
� �σ eq.

(B15)

Substituting this result into the expression for the output work
(B1) and expanding the result up to the leading order in the
ratios of duration of the individual isotherms to the corre-
sponding relaxation times, t+/t+

R and t−/t−
R , we find that

Wout = �λ�σ eq

t+t−
t+
R t−

R

t+
t+
R

+ t−
t−
R

. (B16)

To maximize the output work, we need to choose a specific
model to determine the dependence of the equilibrium values
of response and relaxation times on the control parameters.
To this end, we consider the paradigmatic model of stochastic
thermodynamics, σ̇ (t ) = −2 μλ(t ) σ (t ) + μ kBT , describing
an overdamped Brownian particle with mobility μ in a har-
monic trap [24,62]. In this case, σ eq = T/(2μλ) and tR =
1/(2μλ), and the maximum output work (B16) is produced
for

λ−
λ+

=
√

(α + 1)(α + 1 − ηC) − α, (B17)

where α ≡ t+/t−. The corresponding efficiency reads

η = 1 − λ−
λ+

= α + 1 −
√

(α + 1)(α + 1 − ηC), (B18)

which reduces to ηCA for α → 0 and ηC/2 for α → ∞.
Assuming that α = 1 (t+ = t−), Eq. (B18) is given by the
formula

η = 2 −
√

4 − 2ηC = ηC

2
+ η2

C

16
+ O

(
η3

C

)
(B19)

used in the main text. The corresponding expansion for the

Curzohn-Ahlborn efficiency, ηCA ≈ ηC

2 + 2η2
C

16 , has an identical
linear term and a twice larger quadratic term.

Last but not least, with respect to α, the output power

Wout/tp using Eq. (B16) develops a peak at α = α∗ =
√

λ−
λ+

< 1.

This also contradicts the situation with constrained σ , where
maximum power is attained when the durations of the
isotherms are equal (α = α∗ = 1) [24].

APPENDIX C: OPTIMAL DRIVING FOR SYSTEMS
CLOSE TO EQUILIBRIUM

In this Appendix, we consider optimization of a slowly
driven heat engine based on an overdamped Brownian par-
ticle trapped in the power-law potential H = λ(t )xn/n with
n = 2, 4, . . . . We use the temperature protocol from Eq. (3)
and impose fixed values of the response σ (or, in the slow
driving limit equivalently also the control λ) at the ends of the
two isotherms. Dynamics of the particle position is described
by the Langevin equation

ẋ = −μλ(t )xn−1 +
√

2D(t )ξ (t ), (C1)

where D(t ) = μkBT (t ) denotes the diffusion coefficient.
From Eq. (C1) and its formal solution

x(t ) = −μ

∫
dt λ(t )xn−1(t ) +

√
2D(t )

∫
dt ξ (t ), (C2)

we find that 〈x(t )ξ (t )〉 = √
D/2 and thus

d

dt
〈x2(t )〉 = −2μλ(t )〈xn(t )〉 + 2D. (C3)

Let us now assume that the control parameters {T (t ), λ(t )}
vary slowly with respect to the relaxation time of the system,
such that, during the limit cycle, the system is always close
to equilibrium, and solve this equation up to the first order
in λ̇(t ). To this end, we consider the ansatz 〈x2(t )〉 = 〈x2(t )〉0

and 〈xn(t )〉 = 〈xn(t )〉0 + 〈xn(t )〉λ̇, where

〈xm(t )〉0 =
∫ ∞

−∞
dx xm exp

( − μλxn

nD

)
Z

, (C4)

with the partition function Z = 2[nD/μλ(t )]1/n(1 + 1/n),
is the value of the moment 〈xm(t )〉 corresponding to the
infinitely slow driving, and 〈xn(t )〉λ̇ is the correction propor-
tional to λ̇. We find that

〈xn(t )〉0 = D(t )

μλ(t )
, (C5)

〈x2(t )〉0 =
[

nD(t )

μλ(t )

]2/n
(3/n)

(1/n)
, (C6)

and

〈xn(t )〉λ̇ = − 1

2μλ(t )

d

dt
〈x2(t )〉0. (C7)

We reiterate that this solution is valid only for protocols
{T (t ), λ(t )} which are changing slowly with respect to the
relaxation time of the system so that the system is, during
the whole cycle, close to equilibrium. However, as we know
from the previous discussion, both the piecewise constant
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maximum-efficiency protocol for constrained control and the
optimal protocol (D1) for the constrained response contain
discontinuities, where {T (t ), λ(t )} changes abruptly. To be
able to use the slow driving approximation for the derivation
of optimal cyclic protocols, we thus need to additionally as-
sume that during these jumps the system is not driven far from
equilibrium. To this end, we assume that the ratio λ(t )/T (t )
in the Boltzmann factor is during the jumps at the ends of
the isotherms constant. This additional assumption fixes the
state of the system σ at the ends of the isotherms and thus the
present optimization scheme is only suitable for the optimiza-
tion under the constrained response. Let us now proceed with
the optimization.

Work done on the system during the time interval ti � t � tf
for the given Hamiltonian reads

W = 1

n

∫ tf

ti

dt λ̇(t )〈xn(t )〉 ≡ W (ti, tf ). (C8)

Having fixed the state of the system at the ends of the
isotherms, it is enough to maximize the work during these
branches. For an isothermal process, the work Eq. (C8) can
be written as W = �F + Wirr , where the first term, denoting
the nonequilibrium free energy difference [24], comes from
〈xn(t )〉0, and the second term reads

Wirr = 1

n

∫ tf

ti

dt λ̇(t )〈xn(t )〉λ̇ = 1

n2μ

(
nD

μ

)2/n

× (3/n)

(1/n)

∫ tf

ti

dt λ̇(t )2λ(t )−2(1+n)/n. (C9)

As �F is fixed by the imposed boundary conditions on the
state of the system σ , to maximize the output work −W means
to minimize the irreversible work Wirr as a functional of λ(t ).
This leads to the Euler-Lagrange equation

λ̈(t )λ(t ) − 1 + n

n
λ̇(t )2 = 0, (C10)

which has the general solution

λslow(t ) = a

(1 + bt )n
. (C11)

We thus come to an interesting conclusion that the optimal
slow protocol for the constrained response scales with the
same exponent as the potential. The values of a and b can be
expressed in terms of the boundary conditions for λslow(t ), i.e.,
λslow(ti ) ≡ λi and λslow(tf ) ≡ λf . The optimal slow protocol
(C11) then reads

λslow(t ) = λ(ti )[
1 +

(
n

√
λ(ti )
λ(tf ) − 1

)
t−ti
tf −ti

]n . (C12)

And the corresponding irreversible work and input work are
given by

Wirr =
(3/n)
(1/n)

[
nD
μλi

]2/n(
n
√

λi
λf

−1
)2

μ(tf−ti )
, (C13)

W =
(3/n)
(1/n)

[
nD
μλi

]2/n(
n
√

λi
λf

−1
)2

μ(tf −ti )
− D

nμ
ln λi

λf
. (C14)

These results are valid for the individual isothermal branches
of the cycle. Importantly, the obtained optimized values of
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FIG. 7. Optimal performance for fixed boundary values of the
response: σ− ≡ σ (0) = σ (tp) and σ+ ≡ σ (t+) = 0.5. (a) Maximum
power (in units of the ultimate maximum power P∗

λpwl
for λpwl) and

(b) maximum efficiency as functions of σ−/σ+. Lines corresponding
to λS (orange solid) and λslow (blue dotted) perfectly overlap. The
maximum-efficiency protocol (3) and the piecewise constant proto-
col λpwc are in this case equal. We used the same parameters as in
Fig. 2.

the irreversible work are correct up to the order 1/(tf − ti ),
which is their exact dependence on the process duration
[24]. These results are thus exact even though they were
obtained from the approximate optimal protocol. According
to Refs. [24,73], these irreversible works determine the op-
timal performance of the engine under the constrains on σ ,
i.e., they give the maximum output work Wout = −W (0, t+) −
W (t+, tp) and efficiency η = Wout/[Th�S − Wirr (0, t+)] (�S
is the increase in entropy of the system during the hot
isotherm). Also this performance is thus from the ap-
proximate analysis based on the slow driving obtained
exactly.

APPENDIX D: CONSTRAINED RESPONSE

To test our numerical procedure, in this Appendix we check
numerically that the protocol λS obtained from Ref. [24]
is indeed optimal for both power and efficiency under the
constraints on σ . When the values of the response (po-
sition variance) σ at the ends of the two isotherms are
fixed, i.e., σ− ≡ σ (0) = σ (tp) and σ+ ≡ σ (t+), the pro-
tocol which yields both maximum efficiency and power
reads [24]

λS =
{

T+
2σS

−
√

σ+−√
σ−

μt+
√

σS
, 0 < t < t+,

T−
2σS

+
√

σ+−√
σ−

μt−
√

σS
, t+ < t < tp,

(D1)

with

σS =

⎧⎪⎪⎨
⎪⎪⎩

σ−
2

[
1 +

(√
σ+
σ−

− 1

)
t

t+

]2

, 0 < t < t+,

σ+
2

[
1 +

(√
σ−
σ+

− 1

)
t−t+

t−

]2

, t+ < t < tp.

(D2)

However, this protocol is no longer optimal when one imposes
just maximum and minimum values on the response, i.e.,
σ (t ) ∈ [σ−, σ+]. Then, our analysis shows that the maximum-
efficiency and maximum-power protocol is still of the above
form, but with σ− < σ (0) = σ (tp) < σ (t+) < σ+.

In Fig. 7, we show the maximum power (a) and maxi-
mum efficiency (b) for the trial protocols under the constraint
σ− ≡ σ (0) = σ (tp) and σ+ ≡ σ (t+). As expected, power and
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efficiency corresponding to the protocol λS are largest from all
the protocols. In particular, the figure demonstrates that the
linear protocol, which was found to maximize output power
for constrained λ, yields smaller output power than λS. And
the piecewise constant protocol yields smaller efficiency than
λS. Nevertheless, it is interesting to note that the performance

of the protocol λslow(t ), which optimizes both output power
and efficiency for slow driving (see Sec. C for details), is
for the chosen parameters indistinguishable from that of λS.
This means that the chosen cycle is slow enough. Finally, for
small enough cycles (small σ−/σ+) performances of all the
protocols are equal.
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Active-particle suspensions exhibit distinct polarization-density patterns in activity landscapes, even
without anisotropic particle interactions. Such polarization without alignment forces is at work in motility-
induced phase separation and betrays intrinsic microscopic activity to mesoscale observers. Using stable
long-term confinement of a single thermophoretic microswimmer in a dedicated force-free particle trap, we
examine the polarized interfacial layer at a motility step and confirm that it does not exert pressure onto the
bulk. Our observations are quantitatively explained by an analytical theory that can also guide the analysis
of more complex geometries and many-body effects.
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Active matter can succinctly be characterized as matter
made from “animalcules,” a type of nonequilibrium mol-
ecules [1]. As a consequence, it can exhibit unusual
material properties that would be strictly forbidden in
conventional materials by symmetries implicit in the
condition of (local) thermal equilibrium. The plethora of
emergent phenomena observed in living matter has stimu-
lated numerous laboratory studies of better controlled
synthetic active fluids ([2], Table I), and the development
of analytically tractable toy models [3,4] to describe them.
A key feature vital for both biological and artificial
microswimmers is their ability to adjust their motility in
response to environmental cues [2,5–8]. The resulting
heterogeneous motility [9–16] can be used to trap active
particles [17,18] or to mimic quorum sensing [19]. In the
case of intermittent “run-and-tumble” dynamics, an inverse
relation between active-particle density and swim speed
was predicted [20] and experimentally confirmed [21,22].
Dynamic clustering transitions known as motility-induced
phase separation [23,24] have stimulated intense discus-
sions of the “swim pressure” generated by active particles
on solid boundaries [25–27] or between regions of different
activity [28], and of the concomitant spontaneous polari-
zation effects [14]. Despite recent progress in the theoreti-
cal description, precise experimental verifications remain
challenging and plagued by confounding effects, such as
hydrodynamic and complex physicochemical interactions
among active particles and with physical boundaries.
In this Letter, we overcome these experimental difficul-

ties by exploiting the precise control of autonomous Janus-
type microswimmers via photon nudging [17,29–31]. With
the help of a dedicated theoretical model (see also the
companion paper [32]), we precisely quantify the coloc-
alization of density modulations and polarization that

comes hand in hand with inhomogeneous swim speeds
[10–12,19–22,26,28].
Importantly, apart from weak gravitational forces and

interactions with the container walls, which are largely
irrelevant to our experiment, our setup is entirely force free.
A two-dimensional rectangular arena is divided into two
regions of diverse activity, separated by a sharp activity
step, as found as a concomitant feature of most actual
physical boundaries. Here, however, it is realized without
inserting any physical wall, as otherwise often done in
experiments and computer simulations. We thereby avoid
possible unintended (hydrodynamic, electrostatic, steric,
…) side effects, which could uncontrollably alter the
particle density, current, and orientation. This allows us
to experimentally confirm, on the single-particle level, that
the interfacial polarization is emerging from unbalanced
hidden bulk currents [14] rather than “controlling” the bulk
states [33]. Our data reveal rich mutual relations between
the particle density, polarization, and motility, which are all
quantitatively explained by our analytical theory, which
extends the mentioned asymptotic reciprocal relation of
particle density and swim speed [20] to situations with
continuous translational and rotational diffusion.
Materials and methods.—Janus microswimmers are

constructed of a 1.5 μm diameter polystyrene core
(microParticles GmbH) and a 50 nm thin gold hemisphere.
The particles are propelled by optically controlled self-
thermophoresis [17,29–31]. The sample consists of a
2.4 μm thin water film confined by two microscopy cover
slips coated with Pluronic F127 to prevent particle adsorp-
tion, and sealed with polydimethylsiloxane to prohibit
evaporation. The particle’s in-plane motion was observed
in an inverted microscope Olympus (IX-73) under dark-
field illumination (Olympus DF condenser) using 1 ms
duration LED flashes (Thorlabs SOLIS-3C). The
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illumination was synchronized with a CCD camera
(Hamamatsu Orca-Flash4.0 V2) at an inverse frame rate
of 20 ms. The activity of the particle was adjusted by a
λ ¼ 532 nm laser with a homogeneous intensity over the
whole sample area. The illumination intensity is varied by
an acousto-optic modulator (Isomet 1260C) between 0 and
12 μW μm−2. The corresponding feedback loop, which
detects particle orientation and position in real time and
adjusts the corresponding laser intensity is implemented in
LABVIEW as described in Ref. [17]. The setup’s overall
feedback latency time amounts to 10 ms, which is negli-
gible for the experimental results.
Photon nudging [29] as feedback control technique

allowed us to define a virtual rectangular arena of 6 μm×
5 μm for the swimmer [Fig. 1(a)]. Outside the arena, the
heating laser is turned on only if the swim direction of the
Janus particle points toward the arena, yielding a mean
propulsion speed of 2.5 μms−1 in the on state. The central
area of the arena is divided into a passive and an active
region. All detected crossings of the particle between them
trigger the laser to be switched off or on, irrespective of

particle orientation, corresponding to an activity landscape
with a step profile vðxÞ ¼ v0ΘðxÞ. The step function ΘðxÞ
is 0 in the passive (p, x < 0) and 1 in active (a, x > 0)
region. The accuracy of the experimental intensity step is
given by the localization accuracy (about 40 nm) of the
real-time tracking. The experiments were performed with a
single Janus particle, with observation times of about 2 days
for each of the laser powers depicted in Fig. 1(c).
Results.—The particle’s in-plane motion is characterized

by its translational and rotational diffusion coefficients D,
Dr, and, in the active region, its propulsion speed v0. The
parameters are estimated from the recorded in-plane mean-
square displacement (MSD) and orientational autocorrela-
tion function (ACF). Since the particle frequently com-
mutes between the different regions, short trajectories need
to be judiciously concatenated into longer ones, as detailed
in the Supplemental Material [34], to assess the late-time
dynamics. The deduced value of the diffusion coefficient
D ¼ 0.094 μm2 s−1 � 0.002 μm2 s−1 is roughly 1=3 of the
expected Stokes–Einstein value kBT=6πηR in a bulk
solvent, which we ascribe to hydrodynamic interactions
of the swimmer with the confining cover slips [37].
Here, T ¼ 295 K� 2 K is the solvent temperature, η ¼
0.9 mPa s the dynamic viscosity, R ¼ 0.77 μm� 0.04 μm
the particle radius, and kB the Boltzmann constant. The
particle’s in-plane orientational ACF is intrinsically multi-
exponential [30] and affected by the Janus particle’s bottom
heaviness, causing preferential vertical alignment [38,39].
We therefore extract the longest decay time τ of the orienta-
tional ACF by fitting the late-time ACFs with a single
exponential function, to get an estimate forDr. In the passive
region, we obtained τ ¼ τp ¼ 1.12 s� 0.05 s [Fig. 1(b)],
which is indeed close to the rotational correlation time
1=ð2DrÞ ¼ 1.27 s, expected for a freely rotating sphere
according to the (rotational) Einstein relation Dr →
kBTð8πηR3Þ−1 ¼ 0.39 s−1 � 0.06 s−1 [40]. Restricting the
analysis of theACF in the passive region to data pointswhere
the particle exhibits strong in-plane alignment, we find a
longer relaxation time τ ¼ 2.40 s−1 � 0.05 s−1, in agree-
ment with the expectation 1=Dr [30] for free in-plane
rotation. In the active region, τ ¼ τa increases approximately
linearly with the laser intensity from τa ¼ 1.4 s to
τa ¼ 2.0 s, which can mainly be attributed to the particle’s
tendency to increasingly orient in plane in response to the
thermo-osmotic flow fields generated by the heating in the
confined geometry, and the torques exerted by the radiation
pressure [41,42]. Finally, the effective diffusivity [26,43]

DeffðxÞ ¼ Dþ vðxÞ2
2DrðxÞ !x∈bulkDþ v20τa

2
; ð1Þ

in the active region was deduced from the MSD. It grows
nonlinearly in the laser intensity [Fig. 1(d)], and provides a
consistency check for the parameters v0, D, τa.

(a)

(c) (d)

(b)

FIG. 1. Setup and parameter measurement. (a) Sketch of the
rectangular arena, in which a 1.5 μm Janus particle is confined by
photon nudging. Position and in-plane orientation n are observed
in dark-field microscopy. (b) Orientational correlation time τ for
the active-passive bulk region as a function of the in-plane
propulsion speed v0. The horizontal and linear fits serve to
identify τp;a. (c) In-plane propulsion speed v0 as a function of the
incident laser intensity, with a fit accounting for the weakly
variable particle-wall alignment. (d) Effective diffusion coeffi-
cient Deff in the active bulk, obtained from the slopes of the late-
time MSD, and Eq. (1) (line) using τa from (b). In (b)–(d) squares
and circles correspond to the passive and active region, respec-
tively, and error bars show 95% confidence intervals for Gaussian
error propagation.
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Because of the spatially heterogeneous laser heating in
the sample plane, the swim speed of the particle as well as
the probability density ρ2ðx; yÞ to find it at a position ðx; yÞ
are spatially heterogeneous. The particle spends consid-
erably more time in the passive than in the active region
[Fig. 2(a)]. Outside of the central arena, the density decays
due to photon nudging. Small imperfections in the data can
most likely be attributed to mild statistical fluctuations due
to the limited measurement time and localized defects in the
Pluronic F127 coating of the cover slips. Integrating the
density ρ2ðx; yÞ along the y direction, we obtain the
marginal density ρðxÞ shown in Fig. 2(b). It exhibits a
pronounced step between essentially homogeneous active
and passive bulk plateaus of height ρa;p. Further inspection
reveals a colocalized excess of Janus orientations n at the
density step, pointing along −ex, toward the passive region
[Fig. 2(d)]. This amounts to a negative average particle
polarization

pðxÞ ¼ hn · exiρðxÞ; ð2Þ

where h·i denotes the time average. It decays approximately
exponentially with the distance from the activity step. The
characteristic decay length on the passive side is substan-
tially longer than that on the active side, λp ≫ λa. Similar
polarization peaks are seen to occur at the interfaces to the
photon-nudging boundary regions, which are regions of a
different (orientation-dependent) type of activity [32].
Figure 3(a) shows that the ratio ρp=ρa of the passive
and active bulk density plateaus increases as a function of
the experimental estimate v20τa=ð2DÞ for the Péclet number,
which characterizes the activity of the Janus particle in the
bulk region. Also, the decay lengths λa and λp depend on
the activity contrast—the former decreasing and the latter
slightly increasing (presumably due to the transient wall
alignment, thus lowerDr, of trespassers) with v0, as seen in
Fig. 3(b). In summary, the main conclusion drawn from our
experiments is that abrupt activity steps are accompanied
by (i) smooth but pronounced steps in the particle density
and (ii) the formation of skewed interfacial polarization
layers of distinct widths and height.
Theory.—Our findings can be substantiated by a simple

active-Brownian-particle model for the dynamic probabil-
ity density fðx; θ; tÞ to find the Janus particle at time t and
position x with orientation angle θ≡ arccosðn · exÞ relative
to the x axis. Its Fokker–Planck equation reads

_f ¼ D∂2
xf − ∂x½fvðxÞ cos θ� þDr∂2

θf; ð3Þ

where D is the translational diffusion coefficient, vðxÞ the
local propulsion speed, and 1=Dr the orientational

(a) (b)

FIG. 3. Bulk density ratio and interface widths. (a) Measured
ratio ρp=ρa of passive and active bulk densities as function of the
(experimental) Péclet number v20τa=2D (circles). Our analytical
prediction (8) with Dr ¼ 1=τa (solid line) improves that of
Refs. [19,45], namely ρa=ρp ¼ Dp=Da (dotted line). (b) Decay
lengths λa;p in the active (circles) and passive (squares) bulk
regions as functions of v0. The solid and dashed lines show the
theoretical prediction (6) with Dr ¼ 1=τa, while the dot-dashed
line assumes Dr ¼ 1=τp, with τa;p from the fits in Fig. 1(b). The
solid line for λa improves a prediction of Refs. [19,45] (dotted
line). Error bars indicate the 95% confidence intervals of ρ and
the Gaussian propagation of uncertainties for v0, τa, D from
Fig. 1, respectively.

(a)

(b)

(c)

(d)

FIG. 2. Particle density and polarization. (a) Particle density in
the sample plane for v0 ¼ 2.34 μms−1 and τa ¼ 1.96 s with the
active-passive interface at x ¼ 0. (b) Its integral along the y
direction (excluding a 0.7 μm lateral boundary region). The bulk
densities ρp, ρa (upper, lower arrow) in the passive-active region
were determined at about one decay length λp;a from the passive-
active interface. The numerical solution [44] of Eq. (3) (solid line)
employs reflecting outer boundaries. The (approximate) analytic
solution from Eqs. (4)–(8) (dashed line) was normalized over half
of the nominal width of the active and passive regions. (c) Sketch
of the processes creating the interfacial polarization and depletion
layers in a simplified model with binary particle orientations.
(d) The experimental and theoretical (numerical and analytical)
particle polarization [legend as in (b)]. The thin dotted vertical
lines in (b) and (d) mark the borders to the confining photon-
nudging region [cf. Fig. 1(a)]. Similar plots for other laser
intensities can be found in the Supplemental Material [34].
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correlation time. The stationary solution fðx; θÞ to Eq. (3)
can be approximated by truncating the exact moment
expansion with respect to the particle orientation [32,43]
after the first two terms, yielding two coupled equations

ρ0ðxÞ ¼ pðxÞvðxÞ=D; ð4Þ

p00ðxÞ ¼ pðxÞ=λ2ðxÞ þ ρðxÞv0ðxÞ=ð2DÞ; ð5Þ

for the particle density ρðxÞ≡ R
2π
0 dθfðx; θÞ and the polari-

zation pðxÞ≡ R
2π
0 dθfðx; θÞ cos θ. For the experimentally

realized activity step (see Ref. [32] for a similar analysis at
nudging interfaces) we find λ ¼ λpΘð−xÞ þ λaΘðxÞ, with

λp ¼ ðDr=DÞ−1=2; λa ¼ ðDr=Dþ v20=2D
2Þ−1=2: ð6Þ

In the two regions of constant activity, Eqs. (4) and (5) can be
solved exactly [32]. With the matching condition across the
interface, this yields the polarization profile

pa;pðxÞ
ρp

¼ −
v0
2D

λaλp
λa þ λp

e−jxj=λa;p ; ð7Þ

and (assuming homogeneous Dr) the bulk density ratio,

ρa
ρp

¼
ffiffiffiffiffiffiffi
Dp

Da

s

¼
�

1þ v20
2DDr

�−1=2
¼ λa

λp
: ð8Þ

Observe that the ratio of the interfacial layer widths λp;a, the
bulk-density ratio ρp=ρa, and the reduced peak polarization
pa;pð0Þ=ρa;p are kinetically determined quantities that only
depend on the Péclet number v20=ð2DDrÞ. In Ref. [32], we
detail how the density ratio can be understood in terms of a
detailed balance of two fluxes, a diffusion with the effective
diffusivity (1), and a nonequilibrium flux due to its spatial
heterogeneity.
Discussion.—A convincing parameter-free comparison

of our analytical and experimental findings is obtained if
we identify the parameter Dr of the model with the
experimental 1=τa. This choice is not entirely trivial, since
the theory describes planar rotational motion, whereas the
rotational motion of the experimental particle is affected by
its mass anisotropy, spatially heterogeneous optical forces,
and the excited thermo-osmotic flows. Yet, assuming that
uncertainties in position tracking (of about 40 nm) and the
finite feedback-iteration time cause some low-pass filtering
of the experimental curves, the comparison with the
idealized analytical theory in Figs. 2(b) and 2(d) is very
reasonable.
Intuitively, the (negatively) polarized boundary layer can

most easily be understood by a caricature of the above
modeling approach in terms of a two-species model that
only admits left (−) and right (þ) particle orientations, as

sketched in Fig. 2(c). The net polarization at the activity
step is then immediately understood from the quasiballistic
motion in the active region: it quickly drives the (þ)
particles to the right edge of the arena and the (−) particles
across the interface into the passive region, where they get
stuck and cause the negative interface polarization. The
active region is thereby depleted relative to the passive
region. The (up to a spurious factor 1=2) exact analogy
between our analytical solutions of Eq. (3) and the
schematic two-species model vindicates our approximation
scheme in Eqs. (4) and (5) [32]. It also explains why,
despite the superimposed Brownian motion, Eq. (8) coin-
cides with the prediction for a run-and-tumble process [20].
Our results, moreover, improve recent theoretical predic-
tions for quorum sensing [19,45].
Finally, also the skewed shape of the polarization layer is

readily explained within the schematic two-species picture.
Namely, during the characteristic reorientation time ð2DrÞ−1,
an initially perfectly polarizedparticle starting at the interface
diffuses about a distance

ffiffiffiffiffiffiffiffiffi
2Dτ

p ¼ ðD=DrÞ1=2 into the
passive region. On the active side, however, the same process
is superimposed by self-propulsion, which acts like a
sedimentation pressure. It provides a second channel to
deplete the negative boundary layer polarization by driving
trespassing (−) particles back across the interface.As a result,
the interfacial polarization layer on the active side is
diminished according to Eq. (6), which adds the two decay
channels together. The total polarization

Ptot ¼
Z

∞

−∞
dxpðxÞ ¼ −

v0ρa
2Dr

< 0 ð9Þ

is completely defined by themagnitude of bulk currents (here
only v0ρa ≠ 0) and Dr, as a glance at Eqs. (6)–(8) confirms
[14,32]. It is equivalent to the polarization expected at a solid
boundary [14], where it represents the swim pressure [27]
when multiplied by v0=μ, μ being the translational mobility.
The abrupt motility step allows us to infer the swim pressure
in the active bulk noninvasively, without a physical wall.
Also note that it is not exerted across the interface onto the
neighboring passive bulk phase. The lack of an alternative
explanation in terms of a static equilibrium analogy [46]
suggests that the precisely quantified polarization-density
patterns can play the role of a smoking gun for particle-level
activity.
In summary, we have employed the sophisticated tech-

nique of photon nudging to set up a boundary-free activity
arena, thereby establishing a potent test bed to address
fundamental open issues in active-particle physics. It
enables us to observe active-particle motion in activity
landscapes over several days. We found that motility
gradients are accompanied by characteristic skewed inter-
facial polarization profiles. We showed them to arise from
unbalanced dissipative active-particle fluxes (hidden in the
bulk), thus not admitting any straightforward analogy with
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equilibrium phase coexistence [16]. Our experiments are
well described by a precise quantitative theory that
advances previous work, can be generalized to photon
nudging, and can deal with further phenomena such as wall
accumulation and quorum sensing in active phase transi-
tions [32]. It allows the swim pressure and essential
microscopic parameters such as swim speed and (effective)
translational and rotational diffusion coefficients to be
inferred from accessible mesoscopic observables, namely
the bulk particle-density and interfacial polarization pro-
files. And it suggests that similar polarization-density
patterns are a hallmark of all microswimmer suspensions
in heterogeneous activity landscapes, far beyond our
artificial model system. As our experimental approach is
capable of handling a controlled number of of active
particles simultaneously, a challenging but interesting
avenue for future research would be to try and extend
our experiments and theory to interacting many-body
problems.
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Supplemental Material for
Active-Particle Polarization Without Alignment Forces
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The following two figures depict the experimentally obtained density and polarization profiles, ρ(x) and p(x), for
various particle activities, characterized by the Péclet number Pe ≡ v20τa/(2D). Here, v0, D and τa denote the
measured in-plane propulsion speed, translational diffusion coefficient and characteristic decay time of the swimmer’s
in-plane orientation within the active region, respectively. The solid lines depict the exact numerical solutions obtained
from solving the Fokker-Planck equation for the ABP model, whereas the dashed curves correspond to our approximate
analytic solutions discussed in the main text. The experimental profiles for Pe = 45.46 are the ones displayed in Fig.
2 of the main text.
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FIG. 1. Density profiles



3

0.10

0.05

0.00

0.05

p 
[µ

m
1 ]

Pe = 3.47

0.10

0.05

0.00

0.05

Pe = 3.59

0.10

0.05

0.00

0.05

p 
[µ

m
1 ]

Pe = 6.18

0.05

0.00

0.05

Pe = 6.73

0.05

0.00

0.05

p 
[µ

m
1 ]

Pe = 6.94

0.10

0.05

0.00

0.05

Pe = 11.31

0.10

0.05

0.00

0.05

0.10

p 
[µ

m
1 ]

Pe = 18.55

0.10

0.05

0.00

0.05

Pe = 27.87

4 2 0 2 4
x [µm]

0.10
0.05
0.00
0.05
0.10

p 
[µ

m
1 ]

Pe = 45.46

4 2 0 2 4
x [µm]

0.10
0.05
0.00
0.05
0.10

Pe = 49.57

FIG. 2. Polarization profiles





PHYSICAL REVIEW E 103, 062601 (2021)
Featured in Physics

Polarization-density patterns of active particles in motility gradients
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The colocalization of density modulations and particle polarization is a characteristic emergent feature of
motile active matter in activity gradients. We employ the active-Brownian-particle model to derive precise
analytical expressions for the density and polarization profiles of a single Janus-type swimmer in the vicinity of
an abrupt activity step. Our analysis allows for an optional (but not necessary) orientation-dependent propulsion
speed, as often employed in force-free particle steering. The results agree well with measurement data for a
thermophoretic microswimmer presented in the companion paper [Söker et al., Phys. Rev. Lett. 126, 228001
(2021)], and they can serve as a template for more complex applications, e.g., to motility-induced phase
separation or studies of physical boundaries. The essential physics behind our formal results is robustly captured
and elucidated by a schematic two-species “run-and-tumble” model.

DOI: 10.1103/PhysRevE.103.062601

I. INTRODUCTION

The surging field of active matter [1–3] aims for a micro-
scopic understanding and control of the material properties
of assemblies of interacting energy-consuming elements [4].
In particular, examples of motile active matter are ubiqui-
tous in nature, ranging from flocks of birds [5], to swarms
of insects [6], to colonies of bacteria such as Escherichia
coli [7]. The wealth of observed natural phenomena has
stimulated many laboratory studies of artificial active flu-
ids of suspended inanimate microswimmers (see Ref. [4],
Table I). Such “active-particle systems” often consist of sim-
ple colloidal particles propelled by a form of self-phoresis
[8–15]. Numerous interesting features have been observed
already on the level of a single or a few active particles
[10,16–22], which open a wide range of potential applications
[23–34]. Microswimmers moreover exhibit rich collective dy-
namics, ranging from mesoscopic turbulence via collective
oscillations to macroscopic motility-induced phase separation
(MIPS) [35–47].

A key feature vital for both biological and synthetic mi-
croswimmers is their ability to adjust their motility in response
to environmental cues [4,48–51]. The omnipresence of het-
erogeneous motility on all scales of active matter has inspired
many theoretical and experimental studies [19,43,47,52–74].

Inhomogeneous swim velocities go hand in hand with
modulations in particle density and polarization [43,54–
58,75]. These patterns might be exploited to polarize and

*sven.auschra@itp.uni-leipzig.de
†viktor.holubec@mff.cuni.cz
‡nicola.soeker@uni-leipzig.de
§cichos@physik.uni-leipzig.de
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“transport” active particles along activity waves [19,63,64],
find applications in the context of target finding [59,69],
quorum-sensing [65,66], or to build motility traps [60]. Their
precise mathematical characterization could also help to iden-
tify mesoscopic signatures of a motile-particle fraction [75].

The paradigmatic problem for a single active particle
moving in a heterogeneous activity/motility field was experi-
mentally studied in Ref. [75] (referred to hereafter as paper I).
The crux of the experimental setup is that it allows for long-
time observations of a single autonomous microswimmer [76]
near an abrupt activity step. The latter may be thought of as
a concomitant feature of most physical boundaries (e.g., sedi-
mentation [72,77–79], wall adsorption [70,80–82]), and even
of collective phenomena such as MIPS interface formation
[70,73,83–87]. Importantly, the setup, schematically sketched
in Fig. 1, confines the active particle to a planar arena by
photon nudging [24,25], hence without imposing any lateral
physical boundaries or confinement forces. It thereby enables
the experimental study of the emerging interfacial patterns
at the central activity step without any of the fundamen-
tally unrelated perturbations usually encountered in practical
applications. In many ways, the setup can thus be likened
to the idealized textbook quantum-mechanics problem of a
particle in a potential well. The main finding in Ref. [75] is
an emerging characteristic polarization-density pattern in an
interfacial layer around the motility step, which can serve as
a distinctive trait of active versus passive Brownian particle
motion. And the main tasks of the present contribution are
its precise theoretical computation and the discussion of its
physical implications.

To this end, we employ the (standard) active-Brownian-
particle (ABP) model [3,39,88–90] for a single motile
spherical particle.

We show that the well-known, intuitive, and experimen-
tally confirmed [61,62] result that (one-particle) “density” ×

2470-0045/2021/103(6)/062601(20) 062601-1 ©2021 American Physical Society
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FIG. 1. Sketch of the experimental setup studied in paper I [75]
(not to scale). Photon nudging [24,25] is employed to confine a
self-thermophoretic Janus swimmer within a rectangular arena with-
out physical boundaries or confining forces. Its in-plane orientation
and position are observed by microscopy. Upon entering from the
PASSIVE into the ACTIVE region, the particle’s Brownian motion
gets boosted by self-propulsion with velocity v along its symmetry
axis. This is a special, exactly solvable case of the general setup
depicted in Fig. 2 covered by the theory presented in this paper.

“swim speed” = const [54] for run-and-tumble particles does
not generally hold in situations of continuous translational and
rotational diffusion. We furthermore extend the analysis to the
case of orientation-dependent propulsion speeds [68], as often
employed for force-free particle steering [23,91]. No such ori-
entation dependence is needed, however, either in the motility
or in the physical interactions, to generate the experimentally
observed characteristic polarization-density patterns. This be-
comes explicitly clear from our precise analytical expressions
for the case of a sharp motility step. They supersede a number
of literature results. For example, the Green-Kubo approach
[56] of Ref. [55] would lead to a symmetric polarization
profile, described by a single characteristic length scale, while
the interfacial layers actually have distinct activity-dependent
widths. Further, comparing analytical and exact numerical
solutions, we demonstrate the superiority of our approach over
attempts to push the moment expansion for the one-particle
density to higher orders [65]. Our explicit results moreover
verify a general relation derived in Ref. [70], namely that
the total polarization associated with a sudden activity step,
which is accompanied by a corresponding jump in the osmotic
pressure [58], is uniquely determined by bulk quantities,
whereas the reverse statement [85] does not generally hold.
While the corresponding “sum rule” [70] promotes a nonequi-
librium flux (difference) to the status of a thermodynamic
state variable, the interfacial polarization and pressure retain
a fundamentally different status from that of molecules or
passive colloids at an equilibrium phase boundary. The latter
point was recently also emphasized for the collective velocity
alignment in MIPS [47]. We finally show that our highly
accurate but approximate analytic theory can be mapped onto
an exact solution of a two-species run-and-tumble model. This
link provides an intuitive physical picture that elucidates our
key findings, and a physical explanation for the high accuracy
and the broad range of applicability of our analytical theory,
which thereby suggests itself as an efficient practical tool
for the approximate reconstruction of the full picture from

Cr

rC

nC

x

y

VA Va

v = vAn̂

FIG. 2. A Janus particle with orientation n̂ and position r. The
planar arena is divided into two subregions VA,a with distinct propul-
sion speeds, vA,a. An optionally restricted acceptance range of
particle orientations (shaded area) allows us to account for photon
nudging. The interface C between the regions VA,a is parametrized
by its position vector rC and normal vector nC (pointing toward Va).

incomplete and coarse-grained active-particle data for more
complex geometries and interacting many-body problems.

II. GENERAL THEORY

A. Moment equations

We idealize the experimental thermophoretic microswim-
mer by the standard ABP model [3,39,88–90] of an over-
damped particle, whose propulsion speed v(r, n̂) depends on
its position r and optionally also on its orientation n̂, according
to the Langevin equations

∂t r = v(r, n̂)n̂ +
√

2Dξt , ∂t n̂ =
√

2Drξr × n̂. (1)

Here, D and Dr are the diffusion coefficients corresponding to
the independent, unit variance, unbiased Gaussian white-noise
processes ξt,r (t ) pertaining to the particle’s translation and
rotation, respectively. Some notation is illustrated by Fig. 2
for a piecewise constant activity profile in a planar setup.

The time evolution of the dynamic probability density
f (r, n̂, t ) for finding the Janus swimmer at time t at position
r with the in-plane orientation n̂ is described by the Fokker-
Planck equation (FPE) [39,90,92]

∂t f = D∇2 f + Dr∇2
n f − ∇ · [ f v(r, n̂)n̂] (2)

for dimensionality d = 2, 3. Here, ∂t denotes the partial time
derivative, and ∇2 and ∇2

n are the translational and rotational
parts of the Laplacian acting on r and n̂, respectively. To ex-
tract measurable predictions from the model, we truncate the
(exact) moment expansion of f with respect to the orientation
n̂ [39,92,93]:

f (r, n̂, t ) = 1

Sd
[ρ(r, t ) + d p(r, t ) · n̂]. (3)

Here we used the following abbreviations:

Sd ≡
∫

dn̂ (unit sphere surface), (4)
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ρ(r) ≡
∫

dn̂ f (r, n̂) (particle density), (5)

p(r) ≡
∫

dn̂ n̂ f (r, n̂) (polarization density). (6)

Motivated by the experimental setup, the activity profile is
modeled as v(r, n̂) = v(r)χA(n̂). Here, v(r) reflects the oc-
currence of inhomogeneous activity in position space, and the
indicator function χA(n̂), which is unity if n̂ ∈ A ⊆ Sd and
zero otherwise, accounts for a limitation of the activity to an
acceptance range A of the particle orientation. This enables us
to include the effect of photon nudging. We also note that the
truncation in Eq. (3) is not systematic with respect to a small
parameter but is physically motivated. Namely, the moment
equations for ρ(x) and p(x) derived from it in Sec. II C for
one-dimensional activity profiles v(x) can be mapped onto an
exact description of a one-dimensional run-and-tumble model,
which captures the relevant physics for arbitrary activity pro-
files and dimensions (see Sec. III A).

Multiplying Eq. (2) by 1 or n̂, using ∇2
nn̂ = −(d − 1)n̂,

and integrating the result over the orientational degrees of
freedom then yields the two moment equations [2]

∂tρ(r, t ) = −∇ · J(r, t ), (7)

∂t p(r, t ) = −(d − 1)Dr p(r, t ) − ∇ · M(r, t ). (8)

Here, we introduced the (orientation-averaged) flux,

J(r, t ) ≡ −D∇ρ(r, t ) + v(r)[I1ρ(r, t ) + I2 p(r, t )], (9)

and the matrix flux,

M(r, t ) ≡ −D∇p(r, t ) + v(r)[I3ρ(r, t ) + I4 p(r, t )]. (10)

The quantities Ik, k = 1, . . . , 4, account for a possibly re-
stricted acceptance range A for propulsion, and they are
defined as

I1 ≡ 1

Sd

∫
A

dn̂ n̂,

I2 = d I3 ≡ d

Sd

∫
A

dn̂ n̂n̂,

I4 ≡ d

Sd

∫
A

dn̂ n̂n̂n̂.

(11)

Note that for orientationally unrestricted propulsion, i.e., A =
Sd and χA = 1, the only contributing integrals are

I2 = d I3 = 1, (12)

with the unit matrix 1.

B. Steady state and continuity conditions

For the remainder of this section, we focus on the
steady-state particle density and polarization. Vanishing time-
derivatives in Eqs. (7) and (8) provide the stationarity
conditions

D∇2ρ(r) = ∇ · {v(r)[I1ρ(r) + I2 p(r)]}, (13)

D∇2 p(r) = (d − 1)Dr p(r)

+ ∇ · {v(r)[I3ρ(r) + I4 p(r)]}. (14)

Furthermore, it turns out that for all setups considered here,
the no-flux boundary conditions imply that the steady-state
flux J(r) vanishes at each point in space. Equation (9) then
implies

∇ρ = v

D
(I1ρ + I2 p), (15)

which we substitute into Eq. (14).
Let us now consider two domains of constant activity, VA

and Va, whose interface is described by a hyperplane C, as
sketched in Fig. 2. For r ∈ VA,a, the Janus particle propels at
constant swim speed vA,a, given that its orientation lies within
the acceptance range of nudging. Upon crossing the interface
C, the swimmer experiences a sudden change in its activity.
The respective solutions ρA,a(r) and pA,a(r) of the steady-state
moment Eqs. (13) and (14) within each domain VA,a have to
be matched at the interface C. Besides continuity of ρ and
p itself, we demand the normal components J · nC and M ·
nC of both fluxes to be continuous at each point rC along the
interface C [94]. The surface normal nC is defined to point
toward Va. Computing the limits lim|ε|→0 rC ± ε in Eqs. (9)
and (10) delivers the following two continuity conditions:

nC · (Ja − JA) = 0, nC · (Ma − MA) = 0. (16)

While the first of these relations is obvious from J ≡ 0,
both follow formally by integrating the (stationary) moment
Eqs. (13) and (14) over an infinitesimal area around some
point on the interface C and exploiting the divergence theo-
rem.

In the next paragraph, we discuss analytical solutions for
the density ρ and polarization p for a straight-interface geom-
etry as depicted in Fig. 1.

C. Activity step in an infinite planar arena

Consider a situation in which the Janus swimmer faces
an orientation-independent activity with a step at an infinite
straight interface in d = 2 dimensions. For x < xi f , the par-
ticle propels at a swim speed vA, which abruptly reduces to
va < vA upon crossing the interface at x = xi f . Due to the
translational symmetry of the system in the y-direction, we
project the particle dynamics onto the x-axis by replacing
(r, n̂) by (x, cos θ ) in the general equations above.

In this situation, the only nonzero coefficients (11) are
given by Eq. (12), and thus the flux balance (15) reads

ρ ′(x) = v(x)

D
p(x). (17)

Plugging this relation into the moment Eq. (14) yields

p′′(x) = p(x)

λ2(x)
+ v′(x)ρ(x)

2D
, (18)

where we defined the natural relaxation length

λ(x) ≡
[

Dr

D
+ v2(x)

2D2

]−1/2

. (19)

For the considered piecewise constant activity profile, Eq. (18)
boils down within each half-space to p′′

A,a(x) = pA,a(x)/λ2
A,a

with the characteristic length scales λA,a defined by Eq. (19).
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Their relation can be expressed as

λA

λa
=

√
1 + Pa

1 + PA
, PA,a ≡ v2

A,a

2DDr
, (20)

with the Péclet numbers PA,a weighing active versus diffusive
transport rates in the respective regions.

The general solutions of the polarization profiles are

pA,a(x) = C(1)
A,a ex/λA,a + C(2)

A,a e−x/λA,a (21)

and the density profile follows by integrating Eq. (17) from an
arbitrary reference point x0:

ρ(x) = ρ(x0) +
∫ x

x0

dx
v(x)

D
p(x). (22)

The boundary term ρ(x0) follows from the normalization con-
dition for the density, and the integration constants C(1,2)

A,a are
determined by the boundary and matching conditions at the
activity step. The latter read

ρA(xi f ) = ρa(xi f ), pA(xi f ) = pa(xi f ), (23)

p′
a(xi f ) − p′

A(xi f ) = ρA,a(xi f )

2D
(va − vA), (24)

where the second line follows from Eq. (16) while using
v′(x) = (va − vA)δ(x − xi f ), with the delta function δ(x).

The natural boundary conditions in an infinite arena are
[95] p(|x| → ∞) = 0. The continuity condition (23) then im-
plies that the polarization profiles around an activity step at
the origin, xi f = 0, take the form

pA,a(x) = pmaxe−|x|/λA,a , (25)

with an unknown maximum polarization pmax. The density
profile follows via Eq. (22) as

ρA(x) = ρA + pmax

D
vAλAex/λA , (26)

ρa(x) = ρA + pmax

D
(vAλA + vaλa − vaλae−x/λa ), (27)

so that ρ(x → ±∞) attains the regional constant bulk densi-
ties ρa,A.

A suitable order parameter for the polarization at the inter-
face is the relative maximum polarization pmax/ρ(0). Using
Eq. (24), this ratio can be expressed as

pmax

ρ(0)
= vA − va

2D

λAλa

λA + λa
= 1√

2

√PA − √Pa√
1 + PA + √

1 + Pa
. (28)

Its sign is via Eq. (25) shared by the whole polarization profile
p(x) and solely determined by the difference in the swim
speeds vA − va. The Janus swimmer thus preferably points
from the more into the less active region. The maximum 1/

√
2

of |pmax|/ρ(0) is reached for PA → ∞ and Pa = 0 (or vice
versa). It is less than 1, because we consider particle rotations
in two dimensions in a projection onto the (x-)axis of the
activity gradient.

By Eqs. (25)–(28), pA,a(x)/ρ(0) and [ρ(x) − ρA]/ρ(0) are
uniquely determined. The bulk density ratio

ρa

ρA
= λa

λA
=

√
1 + PA

1 + Pa
(29)

is derived in Appendix A 1.

FIG. 3. Particle density and polarization profiles—approximate
theory vs exact numerical solutions at an activity step at x = 0,
between a high-activity (A) and a low-activity (a) or entirely passive
(p) region. Upper panel: The reduced polarization from Eqs. (25)
and (28) closely matches the exact numerical solutions (dashed and
solid lines). Inset: the polarization peak at the active-passive interface
as a function of the active Péclet number P from Eq. (28) (dotted)
precisely follows the exact numerical solution (solid line), improving
upon earlier predictions [65,66] (dashed). Lower panel: The reduced
density ratio (ρ − ρA)/ρ(0) from Eqs. (26)–(28) (dotted) closely
matches the exact numerical solutions (dashed and solid lines). Inset:
the density ratio ρp/ρa for the active-passive interface as a function
of the Péclet number P from Eq. (29) (dotted line) precisely follows
the numerical results (solid line), improving upon earlier predictions
[65,66] (dashed line).

In the remainder of this paragraph and in Sec. II E, we
show that this result holds far beyond the scope of the ap-
plied approximation [truncated moment expansion (3)], and
for arbitrary activity profiles mediating between the two bulk
states.

Figure 3 compares the approximate theory profiles follow-
ing from Eqs. (25)–(29) to the (exact) numerical solutions
obtained from Eq. (2) using the method of Ref. [96]. The
two cases 0 < va < vA and 0 = va < vA are considered. The
characteristic length scales λi, bulk densities ρi, and Pé-
clet numbers Pi corresponding to the highly active (x < 0)
and less active/completely passive regions (x � 0) are dis-
tinguished by the subscripts A, a, and p, respectively. The
analytic solutions for the polarization and density profiles in
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the main panels agree nicely with the numerical solutions,
with slight deviations appearing only for substantial activity.

Such an impressive performance of the approximate model
is unexpected. Intuitively, the approximation (3) should break
down for P 
 1. Its remarkable accuracy far beyond this
limit becomes more plausible by observing that its moment
equations (17) and (18) map onto an exactly solvable two-
species model (one-dimensional run-and-tumble [54,97,98]
accompanied by diffusion [67,99]; see Sec. III A). The latter
robustly captures the pertinent physics (though not all quanti-
tative details) at the motility step for arbitrary Péclet numbers.
Indeed, the quantitative agreement between the approximate
analytical and the exact numerical profiles, which we obtain
using the method described in Ref. [96], remains very good
up to Péclet numbers on the order of 100, as independently
discovered in Ref. [100]. For even higher activities, higher
moments in the moment expansion (3) become nonzero. How-
ever, formally pushing the moment expansion up to the third
order actually leads to less precise numerical predictions than
our physically motivated second-order approximation, already
for intermediate Péclet numbers on the order of 1.

From the upper panel in Fig. 3, we infer that the relative po-
larization pmax/ρ(0) peaks exactly at the motility step with a
magnitude given by Eq. (28), which improves the predictions
of Refs. [65,66] (see the inset). The polarization decays expo-
nentially as a function of the distance from the interface. The
polarization layers extend over the characteristic length scale
λ, defined in Eq. (19). Its limiting forms for vanishing and di-
verging self-propulsion are λ ∼ √

D/Dr and λ ∼ √
2D/v(x),

respectively, i.e., the boundary layer is compressed by the
particle’s self-propulsion. (For a physical interpretation, see
the discussion in Sec. III.) The inset provides strong numer-
ical evidence that Eq. (28) for the reduced polarization peak
generally holds for arbitrarily large activity steps. The lower
panel of Fig. 3 presents the corresponding density profiles.
For the active-passive interface, the density profile remains
constant at the bulk density ρ = ρp throughout the whole
passive region by virtue of Eq. (17). On crossing the interface,
it decays to the bulk density ρA < ρp pertaining to the active
region over a length scale λA. In the case of finite activity in
both regions (0 < va < vA), the density still displays a kink
at the interface, but it decays over the length scales λa,A > 0
toward its bulk density values ρa,A. The inset of the lower
panel of Fig. 3 compares the analytical expression (29) for the
bulk density ratio ρp/ρa at an active-passive interface with the
exact numerical solution. Both curves perfectly overlap over
a vast range of Péclet numbers P , demonstrating that Eq. (29)
holds far beyond the scope of the approximation (3), and again
improving predictions by Refs. [65,66].

The following paragraph points out a number of interesting
consequences of the above findings and puts them into a
broader context.

D. Various consequences and ramifications: Wall accumulation,
MIPS, and swim pressure

1. Wall accumulation

Equations (17) and (18) can serve to calculate (approx-
imate) polarization and density profiles at various kinds of
interfaces or boundaries, which enter the governing equations

only via different boundary conditions. As a concrete exam-
ple, consider an active particle confined by hard reflecting
walls [94]. Our model captures the well-known effects of po-
larization toward and accumulation at walls [67,70,80–82,99].
The simplest way to compute specific profiles is by exploiting
the equivalence between the approximate model, Eqs. (17)
and (18), and the two-species model (see Sec. III A), and we
compute ρ(x) and p(x) within the latter, as done in [67,99].
The polarization and density layers near the wall are still
determined by the same boundary-layer width λ in Eq. (19),
and they exhibit the same physics as those at motility steps
(see the discussion in Sec. III B).

2. MIPS

An extensively studied feature of active-Brownian-particle
suspensions is the so-called motility-induced phase separation
(MIPS) [39,43,73,83–85,101]. In a nutshell, it relies on a
positive feedback between (i) the slowing down of particles
in “crowded” areas [54], and (ii) active-particle accumulation
in low-motility areas [43]. Our results for the polarization
and density profiles of a single (overdamped) Janus swimmer
can, at least on a qualitative level, closely mimic the effects
observed for MIPS if applied to a gas of noninteracting active
Janus spheres experiencing an inhomogeneous activity pro-
file. As also pointed out in Ref. [100], such a gas exhibits the
following features observed in MIPS:

(i) The system divides into two bulk areas with different
bulk densities. Particles move slower (faster) in the denser
(less dense) regions [43,85] [cf. Eq. (29) and the lower panel
of Fig. 3].

(ii) An interfacial region forms between the two bulk ar-
eas, where particles, on average, point into the denser phase
[73,83,85,102] (cf. the upper panel of Fig. 3). Note that for
active Lennard-Jones particles, an opposite polarization was
observed [87].

(iii) Smaller activity corresponds to a wider polarization
layer [101] [cf. Eq. (19)].

In the particular case of quorum-sensing particles, adjust-
ing their activity according to the local density (e.g., via
chemical signaling) [103], Eq. (29) for the bulk density ratio
can be used to improve the corresponding literature results
[65,66] based on a dynamic mean-field theory.

3. Interface polarization

The total polarization Ptot, defined as the integrated local
polarization profile p(x) over a suitable (sub)volume, was rig-
orously shown to obey an exact global sum rule by Hermann
and Schmidt [70]. (Note that, without alignment interactions,
the integral over the whole space always vanishes, because
the polarization arises from spatial sorting of differently ori-
ented particles, without changing their overall numbers—see
Sec. III B for the sorting mechanism.) For our active-passive
interface between two bulk regions with vanishing polariza-
tion, p(xA,a

bulk) = 0, it is reasonable to define the total interface
polarization as the integral from the bulk region xA

bulk to
the left of the interface to the bulk region xa

bulk to its right.
Using Eqs. (25) and (29), we find that within our approxi-
mate model the total interface polarization is then given by
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(Appendix A 1)

Ptot =
∫ xa

bulk

xA
bulk

dx p(x) = pmax(λa + λA) = vAρA − vaρa

2Dr
.

(30)

This exactly agrees with the sum rule of Ref. [70], which is
thus verified within our approximate theory. The total inter-
face polarization is accordingly determined by the difference
of the otherwise “hidden” bulk fluxes vA,aρA,a, and both may
be addressed as thermodynamic state variables, even though,
as emphasized in Ref. [47], the dissipative, nonequilibrium
origin of this kind of force-free velocity alignment of active
Brownian particles sets it apart from any equilibrium interface
polarization.

According to Eq. (30), Ptot points from the region of higher
activity into the region of lower activity and only vanishes
for homogeneous activity, i.e., PA = Pa. This becomes more
obvious using Eqs. (20) and (29), for which one finds

2Dr

vAρA
Ptot = 1 −

√
1 + P−1

A

1 + P−1
a

> 0, (31)

where the last inequality follows from vA > va.

4. Mechanical swim pressure

Suspended active Brownian particles contribute a “swim
pressure” [104,105] to the overall mechanical stress. Like the
hidden bulk fluxes that are responsible for it, it usually only
becomes apparent when it is (internally) unbalanced, e.g., at
confining soft or hard container walls. For a homogeneous and
isotropic suspension of active Brownian spheres with constant
swim speed v0 and bulk density ρ0, this pressure is given by
[106,107]

v0

μ

∫ ∞

xbulk

dx p(x) = v2
0ρ0

2μDr
, (32)

where μ denotes the particle’s (translational) mobility. The
underlying rationale is that an arrested oriented swimmer
turns into an oriented pump that emits a Stokeslet correspond-
ing to the Stokes friction v0/μ, which balances the stopping
force. For our active-passive motility step, far away from
any confining wall, the total interface polarization (30) is
vAρA/(2Dr ). Multiplication by vA/μ makes it formally equiv-
alent to the swim pressure in Eq. (32) with vA

2ρA in place of
v2

0ρ0. One can then interpret the product ρAvA
2/2μDr as the

(unbalanced) swim pressure at the interface, although, due to
the abrupt motility step, this pressure is actually not exerted
across the interface onto the adjacent passive bulk.

E. Generalizations

We now show that Eq. (29) for the bulk density ratio
actually holds for the full ABP model (2) and arbitrary one-
dimensional activity variations, and we extend the above
discussion to finite domains.

1. Density ratio

Consider an arbitrary activity profile v(x) that mediates
between two bulk regions of constant activity. Using Eq. (2),

the corresponding stationary FPE for the probability density
f (x, θ ) reads

0 = −∂xJ − ∂θJθ = D∂2
x f + Dr∂

2
θ f − ∂x(v cos θ f ), (33)

with the (angle-resolved) translational and rotational currents

J (x, θ ) ≡ −D∂x f (x, θ ) + v(x) cos θ f (x, θ ), (34)

Jθ (x, θ ) ≡ −Dr∂θ f (x, θ ). (35)

In contrast to the truncation applied in Eq. (3), we now
consider the full moment expansion of f with respect to
orientation. For one orientational degree of freedom, this is
equivalent to expanding f into the Fourier series

f (x, θ ) = ρ(x)

2π
+ 1

π

∞∑
n=1

fn(x) cos(nθ ), (36)

with coefficients fn = 〈cos(nθ )〉 = ∫ 2π

0 dθ cos(nθ ) f (x, θ ). In
accord with our previous discussion, the zeroth and the first
coefficients are given by the density ρ ≡ 〈1〉 and the polariza-
tion p ≡ f1 = 〈cos θ〉, respectively. The orientation-averaged
flux thus reads

J (x) ≡ 〈J (x, θ )〉 = −Dρ ′(x) + v(x)p(x). (37)

Similarly, multiplication of the FPE (33) by cos θ and integra-
tion over θ yields the differential equation for the polarization,

0 = Dp′′ − Dr p − v

2
ρ ′ − ρ

2
v′ − 1

2
∂x(v f2), (38)

where we used the identity 2 cos2 θ = 1 + cos(2θ ).
Note that the last term in Eq. (38) was absent in the above

discussions based on the truncated moment expansion (3),
which amounts to the closure relation f2 = 〈cos(2θ )〉 = 0.

Isolating p from Eq. (38) and plugging it into Eq. (37)
yields

J (x) = −Deff (x)ρ ′(x) − 1

2
ρDeff

′ + J̃ (x), (39)

with the position-dependent effective diffusivity

Deff (x) ≡ D + v2(x)

2Dr
(40)

and the flux

J̃ ≡ D

Dr
v(x)p′′(x) − v

2Dr
∂x(v f2). (41)

Equation (39) constitutes a generalized version of Fick’s law.
The first contribution, −Deffρ

′, accounts for isotropic diffu-
sive transport. The effective diffusivity Deff � D is enhanced
by the swimmer’s short-term ballistic motion. The second
term, ρDeff

′/2, accounts for the spatial dependency of this
effective diffusivity, and its prefactor 1/2 for the directionality
of the active velocity. The last contribution, J̃ , represents the
influence of the polarization p(x) and higher moments fn,
n > 1, on the local density.

The condition J (x) = 0 of a vanishing steady-state flux
(39) yields

ρ ′

ρ
= −1

2

Deff
′

Deff
+ J̃

ρDeff
. (42)
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Integrating this equation from a reference point x0 up to an
arbitrary position x, we find

ρ(x)

ρ(x0)
=

√
Deff (x0)

Deff (x)
exp{U [v](x0, x)}, (43)

where we introduced the functional

U [v](x0, x) ≡
∫ x

x0

dx̃
J̃ (x̃)

ρ(x̃)Deff (x̃)
. (44)

Equation (43) shows that density ratios are determined by
the ratio of the corresponding effective diffusion coefficients,
corrected by the exponential of a complicated functional
U [v](x0, x) of J̃/(ρDeff ) and thus the activity profile v(x). It
is therefore not suitable for a computation of the full density
profile. However, if the integration bounds x0 and x in (43)
and (44) are sufficiently far away from the activity variations,
such that ρ(x) and ρ(x0) correspond to the bulk densities,
one can show that the functional vanishes, U [v](x0, x) = 0,
irrespective of the activity profile v(x) (see Appendix A 2).
We therefore find that the bulk density ratio is generally given
by

ρ(x)

ρ(x0)
=

√
Deff (x0)

Deff (x)
. (45)

By the definition of the Péclet number in Eq. (20), this re-
sult is seen to coincide with Eq. (29). For highly persistent
swimmers, i.e., v2(x) � 2DDr , Eq. (45) reduces to the well-
known relation [2,54] ρ(x)/ρ(x0) = v(x0)/v(x). To conclude,
the bulk density ratio ρ(x)/ρ(x0) is generally independent of
the exact shape and magnitude of the activity variations.

2. Finite domains

The experiment described in paper I [75] was performed
in a finite arena. We therefore next derive the appropriate
analytic solutions ρ(x) and p(x) for an activity step in a rectan-
gular domain of length 2L, comprising a central active region
of length 2xi f and two adjacent passive regions interconnected
by periodic boundaries, as sketched in Fig. 4. The correspond-
ing activity profile is given by v(x) = va	(xi f − |x|), with the
Heaviside step function 	(x). The symmetry of this setup
allows us to consider only the positive half-space with the
active-passive interface at x = xi f . The respective polariza-
tion and density profiles in the active and passive regions are
still given by Eqs. (21) and (22). By virtue of the system’s
symmetry and the imposed periodic boundary conditions at
x = ±L, the polarization must obey pa(0) = 0 and pp(L) = 0.
Hence, the polarization profiles in the active and passive re-
gions read

pa(x) = Ca sinh
( x

λa

)
, pp(x) = Cp sinh

(
L − x

λp

)
. (46)

Taking x0 = 0 as a reference point in Eq. (22), the density
profile on the active side (0 � x < xi f ) reads

ρa(x) = ρa(0) + Cavaλa

D

[
cosh

( x

λa

)
− 1

]
. (47)

The corresponding density profile on the passive side (xi f �
x � L) is constant, ρp(x) ≡ ρa(xi f ). The integration constants

x

y

−L L

r

v

PASSIVE ACTIVE

xx− if if

FIG. 4. Sketch of a Janus particle with orientation n̂ =
(cos θ, sin θ ) and position r = (x, y). It propels actively with velocity
v = van̂ along its symmetry axis as long as |x| < xi f . Otherwise it
undergoes ordinary translational and rotational diffusion. The system
has periodic boundaries located at ±L.

Ca and Cp and the reference density ρa(0) are uniquely deter-
mined by the continuity conditions

pp(xi f ) = pa(xi f ), (48)

pa
′(xi f ) − pp

′(xi f ) = va

2D
ρ(xi f ), (49)

and the normalization condition on ρ(x). The detailed calcu-
lation can be found in Appendix A 3.

Let us assume that the active and passive regions are suf-
ficiently large compared to the decay lengths λa,p to maintain
a scale separation between boundaries and bulk. Then, the
polarization and density profiles can be written as

pa(x) = 1

2L

Pmax

1 − (1 − rρ ) xi f −λa

L

sinh(x/λa)

sinh(xi f /λa)
, (50)

pp(x) = 1

2L

Pmax

1 − (1 − rρ ) xi f −λa

L

sinh[(L − x)/λp]

sinh[(L − xi f )/λp]
, (51)

ρa(x) = 1

2L

[
1

1 − (1 − rρ ) xi f −λa

L

+ 1 − rρ

1 − (1 − rρ ) xi f −λa

L

(
cosh(x/λa)

sinh(xi f /λa)
− 1

)]
, (52)

ρp(x) ≡ ρa(xi f ) = 1

2L

1

1 − (1 − rρ ) xi f −λa

L

, (53)

where we employed the short-hand notation

Pmax ≡ va

2D

λaλp

λa + λp
= 1√

2

√
P

1 + √
1 + P

, (54)

rρ ≡ λa

λp
= 1√

1 + P
, (55)

for the maximum (relative) polarization and density ratio,
respectively. In Fig. 5, we show that these results agree nicely
with the exact numerical solutions. In paper I [75], we further
show that they also describe well the experimental data.
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FIG. 5. Polarization-density patterns for a finite active domain
bounded at x = ±10λp by two passive margins extending to ±20λp.
Our approximate theory (50)–(53) for the particle density and polar-
ization (dotted) fares well compared to the exact numerical solutions
(dashed and solid lines).

Note that the total polarization of the system in Fig. 5,
Ptot = ∫ L

−L dx p(x), vanishes by virtue of the antisymmetry
between the polarization profiles on the left and right ac-
tivity step. This is in agreement with Ref. [70], stating that
Ptot = 0 for systems with vanishing fluxes at their boundary.
This means that inhomogeneous activity profiles in closed
systems merely operate as local spatial sorting mechanisms
for particles of different polarization.

F. Nudging

To mimic the technique of photon nudging [23–25,91]
exploited by the experimental setup described in paper I [75]
(see also Fig. 1), we need to allow the activity to depend
also on the particle orientation. In the nudging regions, the
“fuel” for the particle’s autonomous propulsion is restricted
not only spatially but also by an acceptance range of particle
orientations. We now discuss this additional complication.
The angular dependence of the activity profile is modeled as
v(x, θ ) = v(x)	(α − |θ |), where α represents the acceptance
angle. Then, the no-flux condition (15) and the moment from
Eq. (14) take the modified forms

ρ ′ = v

D
(I1ρ + I2 p), (56)

p′′ = Dr

D
p + v

D
(I3ρ

′ + I4 p′) + v′

D
(ρI3 + pI4). (57)

According to the definitions (11), the constants Ik , k =
1, . . . , 4, which represent the influence of the restricted ac-
ceptance angle α, read

I1 = 1

2π

∫ α

−α

dθ cos θ = sin α

π
, (58)

I2 = 1

π

∫ α

−α

dθ cos2 θ = α

π
+ sin(2α)

2π
, (59)

I3 = I2

2
= α

2π
+ sin(2α)

4π
, (60)

I4 = 1

π

∫ α

−α

dθ cos3 θ = 9 sin α + sin(3α)

6π
. (61)

The swimmer is nudged to the right if α < π and to the left
by formally replacing v → −v. The case α = π corresponds
to no nudging (orientation-independent activity). We let the
sudden activity step again be located at x = xi f ≡ 0, and we
assume the particle is nudged (“n”) to the right for x � 0.
Upon crossing the interface to x > 0, it enters a fully active
(a) or passive region (p), where its activity does not depend
on its orientation. Within each region, the swim speed vi � 0,
i ∈ {n, a, p}, is constant.

Plugging the steady-state condition (56) into the moment
Eq. (57) yields an equation of the form

X ′ = �X , (62)

where

X ≡ (p′, p, ρ)�, (63)

� ≡
⎛
⎝ vi

D I4
Dr
D + v2

i
D2 I3I2

v2
i

D2 I1I3

1 0 0
0 vi

D I2
vi
D I1

⎞
⎠. (64)

For α < π , all the integrals Ik from Eqs. (58)–(61) give
nonzero contributions. In Appendix B 1 we explicitly calcu-
late the eigenvalues λ−1

ni
of the matrix �. All of them are real

and mutually distinct. The general solution to Eq. (62) thus
has the structure

X =
3∑

i=1

Ciwie
λ−1

ni
x
, (65)

where wi denotes the eigenvector pertaining to the eigenvalue
λ−1

ni
. The coefficients Ci are determined by boundary and

matching conditions. The intuitive relations

ρn(0) = ρa(0), pn(0) = pa(0), (66)

at a nudging-active interface are complemented by the match-
ing condition

p′
a(0) − p′

n(0) = va/2 − vnI3

D
ρ(0) − vnI4

D
p(0). (67)

It follows from Eq. (16) while using I (2)
ρa

= 1/2 and I (2)
pa

= 0
within the active region [see Eq. (12) and the sentence above].
The matching condition for a nudging-passive interface is
included as the case va = 0.

We again require that the polarization vanishes for x →
±∞, so that the density attains its constant bulk values ρn = 0
and ρa,p > 0 in the nudging and active/passive bulk, respec-
tively. Hence, inside the nudging region (x � 0), only positive
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FIG. 6. Dependence of eigenvalues λ−1 on particle propulsion
speed v and the nudging acceptance angle α, with λ−1

ni
, i ∈ {1, 2, 3},

denoting the eigenvalues of the matrix � defined in Eq. (64). The
inverse interfacial layer widths λ−1

a,p for active/passive layer widths
are those from Eq. (19). See also Fig. 11, which presents a com-
plementary analysis. Upper panel: Eigenvalues were calculated for
fixed acceptance angles α = 45◦ (dotted curves) and α = 90◦ (solid
curves). Inset: Dependence of eigenvalues on the nudging direction
(indicated by gray arrows). Lower panel: Eigenvalues calculated
for the fixed Péclet numbers P ∈ {1/2, 1, 2} (dotted, dashed, solid
curve).

eigenvalues λ−1
ni

> 0 will contribute to the general solution
(65). Since the analytical expressions for the eigenvalues λ−1

ni

given in Appendix B 1 are not very enlightening, we dis-
cuss their behavior graphically in Fig. 6. In both panels, the
eigenvalues are measured in units of the inverse characteristic
length λp

−1 = √
Dr/D of a passive boundary layer. From the

main plot of the upper panel, one infers λ−1
n1

� λp
−1, λ−1

n2
� 0,

λ−1
n3

< 0 for all acceptance angles 0 � α � π (lower panel
and discussion in Appendix B 3). Therefore, only λ−1

n1
and λ−1

n2

contribute to the general solution (65). In contrast to purely
active-passive interfaces, which are characterized by a single
natural length scale λa,p for each side of the activity step, two
characteristic lengths λ1 and λ2 determine the shape of the po-
larization and density profiles within the nudging layer. Both

λ−1
n1

and λ−1
n2

grow monotonically with increasing propulsion
speed v, λ−1

n2
less than λ−1

n1
. While λ−1

n2
remains strictly below

the (inverse) natural length λa
−1 of a fully active polarization

layer, λ−1
n1

might even exceed it, depending on swim speed
and acceptance angle. For slow swim speeds, i.e., small P ,
one generally has λ−1

n1
> λa

−1, as detailed in Appendix B 3.
Purely active or passive polarization layers are captured

within this framework (eigenvalues of matrix �) as well. In
the limiting case of vanishing activity (v → 0), one finds
λ−1

n2
→ 0, corresponding to a constant (bulk) density in (65),

whereas λ−1
n1,3

→ ±λp
−1. The positive/negative sign refers to a

polarization layer in the negative/positive polarization region.
Only one of both eigenvalues contributes, whereas the other
vanishes for the natural boundary conditions p(|x| → ∞) =
0. Similarly, for a fully active region (α → π ), the eigenvalues
λ−1

n1,3
approach ±λa

−1, which is indicated by the faint gray
lines in the lower panel of Fig. 6. Here, a positive/negative
sign also refers to a polarization layer in the negative/positive
region. Again only one of them contributes, due to the bound-
ary conditions. The eigenvalue λ−1

n2
vanishes, corresponding

to a constant (bulk) density in Eq. (65). The inset of the upper
panel of Fig. 6 contains information about the behavior of all
three eigenvalues upon inverting the direction of the nudging
process. We find a completely symmetric picture when replac-
ing v → −v. Only the roles of the eigenvalues change, as we
now only allow negative eigenvalues to contribute (particles
are nudged to the left if x > 0). So λ−1

n1
becomes λ−1

n3
and thus

does not contribute to p(x) and ρ(x) anymore, while, in return,
λ−1

n3
→ λ−1

n1
. The eigenvalue λ−1

n2
changes sign upon inverting

the propulsion direction and thus keeps its role.
Having the eigenvalues λ−1

n1,2
and the corresponding eigen-

vectors w1,2 of matrix � that contribute to the general solution
(65), we obtained the polarization and density profiles for
nudging-active and nudging-passive interfaces. Polarization
and density profiles are matched to those in the respective
passive/active regions by the matching conditions (66) and
(67). The resulting profiles are depicted in Fig. 7 for two
acceptance angles at P = 1 in both the active and the nudging
region. (We note in passing that P = 1 corresponds to an
effectively lower overall activity in the nudging region com-
pared to the active region, due to the restricted acceptance
angle.)

All our approximate analytical solutions nicely follow the
exact numerical results. An intuitive physical explanation of
the density and polarization profiles is provided in Secs. III C
and III D.

The lower panels of Fig. 7 depict the relative polarization
profiles p(x)/ρ(x) in both scenarios. Peaking exactly at the
interface, they decay over a length scale (inverse eigenvalue)
λn1 < λn2 into the nudging region (left) and approach a con-
stant nonzero value. The (relative) bulk polarization (p/ρ)n

within the nudging region can be calculated explicitly. We
therefor rewrite Eq. (56) as

p(x)

ρ(x)
= D

v(x)I2

ρ ′(x)

ρ(x)
− I1

I2
. (68)

Given λn1 < λn2 , and exploiting that the density profile within
the nudging region can be written as a linear combination
of ex/λn1 and ex/λn2 [see Eq. (65) and boundary conditions],
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FIG. 7. Particle polarization, density, and relative polarization
(from top to bottom) according to Eq. (65) vs the exact numerical
solution, for P = 1. Left panels: nudging-passive interface. Right
panels: nudging-active interface. The coefficients Ci are determined
by the boundary and matching conditions (66) and (67).

one finds ρ ′/ρ ∼ λ−1
n2

for |x| sufficiently greater than λn1 . The
relative polarization in the nudging bulk is thus given by(

p

ρ

)
n

= D

v(x)λn2I2
− I1

I2
. (69)

For a nudging layer in the region with x < 0, one finds that
(p/ρ)n � 0 and that it is minimal for α = π/2, as can be
inferred from the upper panel of Fig. 8. Also, the higher the
swimmer’s activity P , the deeper the minimum in the bulk
polarization. The middle panel of Fig. 8 shows the agreement
between the approximate theoretical prediction (69) and exact
numerical solutions up to Péclet numbers P on the order of 50.
We attribute the small but systematically growing mismatch
between both to the breakdown of the one-to-one mapping
between our approximate analytical theory and the exact
description of a simple two-state caricature of our physical
setup, in the case of a nudging interface (see Sec. III A).

As explicitly checked above and proven to hold generally
[70], the total polarization Ptot = ∫ ∞

−∞ dx p(x) is determined
by the difference of the respective bulk fluxes viρi divided
by 2Dr ; cf. Eq. (30). The bulk fluxes associated with the

FIG. 8. Relative bulk polarization (p/ρ )n within the nudging
region and total interface polarization. Upper panel: Heat map of
(p/ρ )n as a function of the Péclet number P and acceptance angle α

according to Eq. (69). The vertical dashed line depicts the maximum
of |(p/ρ )n| with respect to the acceptance angle α. Middle panel:
approximate theory (69) (dashed line) vs exact numerical solution
(circles) for α = π/2. Lower panel: Reduced total interface polariza-
tion from Eq. (30), calculated via numerical integration of the exact
numerical polarization profiles (symbols) for various Péclet numbers
compared to theory (dashed lines).

nudging and the passive region are both zero. The former
vanishes because of ρn = 0 in the bulk, the latter because of
v = 0. Thus, for a nudging-passive interface, Ptot = 0. Van-
ishing bulk fluxes therefore explain the change of sign in the
polarization profile for the nudging-passive interface (see the
upper left panel of Fig. 7). For the nudging-active interface,
one finds Ptot = −ρava/(2Dr ), which coincides with the total
polarization at a passive-active interface; cf. Eq. (30). We ver-
ified these results for Ptot at the considered nudging interfaces
analytically and numerically, as shown in the lower panel of
Fig. 8.

Note that only the total polarization is determined by bulk
quantities, but not the local polarization profile p(x) itself. A
thorough discussion and physical interpretation of the (active,
passive, nudging) polarization layers is provided in the fol-
lowing section.
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III. INTUITIVE PHYSICAL INTERPRETATION

A. The two-species run-and-tumble model

The emerging polarization and inhomogeneous density
distribution in the vicinity of an activity step are easily
intuitively understood within a simple one-dimensional two-
species run-and-tumble model [2,67,97,99,108]. It constrains
the swimmer to either orient parallel or antiparallel to the
x-axis, while it may randomly flip its orientation (“tumble”)
at a rate k (corresponding to a dichotomous Markov process).
During the “run phases,” besides its thermal diffusion, the par-
ticle propels actively with a position-dependent swim speed
v±(x), which might also depend on the orientation (±) of
the particle in order to mimic the nudging. We define the
probability densities n+(x, t ) and n−(x, t ) for encountering
the particle at time t at position x with orientation parallel
(+) or antiparallel (−) to the x-axis. The corresponding fluxes
J±(x, t ) contain contributions both from thermal agitation and
from active propulsion, and they are given by

J+(x, t ) = −Dn′
+(x, t ) + v+(x)n+(x, t ), (70)

J−(x, t ) = −Dn′
−(x, t ) + v−(x)n−(x, t ). (71)

For the (total) density ρ ≡ n+ + n− and the polarization p ≡
n+ − n−, we keep the notation of the continuous-angle model.
In the steady state, the total flux J+ + J− vanishes, which
yields the balance condition

Dρ ′ = v+ + v−
2

ρ + v+ − v−
2

p. (72)

The time evolution of the densities is given by

ṅ+ = −J ′
+ − k(n+ − n−)

= Dn′′
+ − (v+n+)′ − k(n+ − n−), (73)

ṅ− = −J ′
− + k(n+ − n−)

= Dn′′
− − (v−n−)′ + k(n+ − n−). (74)

In the steady state (ṅ± = 0), subtracting Eq. (74) from
Eq. (73) yields

p′′ = 2k

D
p +

(v+ − v−
2D

ρ + v+ + v−
2D

p
)′

. (75)

1. Fully active/passive

The case of a symmetrically active/passive particle (re-
gardless of the orientation) is captured by setting v+ =
−v− ≡ v. Equations (72) and (75) then reduce to

ρ ′ = v

D
p, p′′ = p

λ2
+ ρ

D
v′, (76)

with the characteristic length scale

λ(x) ≡
[

2k

D
+ v2(x)

D2

]−1/2

. (77)

The above equations for ρ, p, and λ are structurally equal
to Eqs. (17), (18), and (19) in the (approximate) model for
an active particle that can rotate continuously in the plane.
Upon mapping 2k → Dr , v → v/

√
2, and ρ → ρ/

√
2, the

two models become equivalent. One therefore applies the
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FIG. 9. Exact analytical solution of the two-species model: po-
larization and density profiles, p(x) and ρ(x), their ratio p/ρ, and
the species concentrations n±(x) = [ρ(x) ± p(x)]/2 of right- and
left-oriented particles around an active-passive, nudging-active, and
nudging-passive interface located at x = 0. All quantities are normal-
ized by the respective constant bulk density ρ∞ = ρ(x → ∞). The
natural widths of the interfacial polarization layers are denoted by λa,
λp, and λn1,2 in the active, passive, and nudging regions, respectively.

same methods as above to obtain the analytical solutions for
p(x) and ρ(x). Both functions as well as the species densities
n±(x) = [ρ(x) ± p(x)]/2 and the relative polarization p/ρ are
plotted in the upper panel of Fig. 9. All quantities are nor-
malized by the bulk density ρ∞ = ρ(x → ∞) in the passive
region.

2. Nudging

Within the framework of the two-species model, a nudging
process is modeled by setting v+ ≡ v and v− ≡ 0 for nudging
to the right and vice versa for nudging to the left. The flux-
balance condition (72) and Eq. (75) for the polarization then
become

ρ ′ = v

D

ρ

2
+ v

D

p

2
, (78)

p′′ = 2k

D
p + v

D

(
ρ ′

2
+ p′

2

)
+ v′

D

(ρ

2
+ p

2

)
. (79)

These equations also have the same structure as their counter-
parts (56) and (57) for the continuous-rotation model. Thus,
the methods used in Sec. II F can be applied in order to deter-
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mine the polarization and density profiles. Note, however, that
here the two-species and the continuous-angle model cannot
be mapped onto each other. There exists no unique accep-
tance angle α to ensure v/2 = vaIk for all coefficients Ik ,
k = 1, . . . , 4, defined in (58)–(61), where va denotes the Janus
swimmer’s propulsion speed in the continuous-angle model.
Nevertheless, at least qualitatively, polarization and density
profiles in the two-species model display the same features
as their counterparts in the continuous-angle model, as can be
inferred from the second and third panel of Fig. 9 (cf. Fig. 7).
A more thorough discussion of the nudging process within the
framework of the two-state model, and a comparison to the
continuous model, can be found in Appendixes B 2 and B 3.

B. Active-passive interface

Via the mutual mappings discussed in the previous
paragraph, the two-species model supplies a straightfor-
ward intuitive interpretation of the results derived from the
continuous-angle model. For example, to gain an intuitive
understanding of the emerging polarization layer at an active-
passive interface, focus on the upper panel of Fig. 9. For the
sake of brevity, we denote particles pointing to the left and
right by L and R, respectively. We first consider the situa-
tion on the active side, where the particle motion might be
regarded as quasiballistic. While R-particles get stuck at the
interface due to the ceasing propulsion, L-particles quickly
“escape” the interfacial region. This sorting mechanism leads
to a majority of R-particles at the interface and thereby reveals
the otherwise hidden bulk currents [70]. We now qualitatively
explain the shape of two polarization layers. In the passive
region, the characteristic decay length λp = √

D/(2k) of the
polarization is obtained by setting v(x) = 0 in Eq. (77). It
is intuitively understood since the particle’s motion on the
passive side is ordinary diffusion with diffusivity D. The
spreading of the excess polarization into the passive region is
limited by the characteristic flipping time (2k)−1. Therefore,
λp basically coincides with the mean-squared displacement
of a passive particle during this time. On the active side, a
kind of “sedimentation pressure” joins the game. Its cause
is an “active swim force” ζv (with friction ζ ) directed to-
ward the interface for the R-particles and away from it for
L-particles. One thus might regard R-particles as “heavy” and
L-particles as “buoyant.” The effective sedimentation process
therefore compresses the extension λa of the polarization layer
according to Eq. (77) on the active side, which, for highly
persistent motion [v2/(2kD) � 1], is described by the barom-
eter formula exp(−vζx/ζD). The swim force takes the role
of gravity and ζD of thermal energy kBT , according to the
Sutherland-Einstein relation. In the same limit follows the
motility-induced density suppression ρa/ρp = λp/λa ∝ v−1,
which is a well-known result for run-and-tumble particles
[2,54].

C. Nudging-active interface

The middle panel of Fig. 9 depicts p(x), ρ(x), their ra-
tio, and the species concentrations n±(x) in the vicinity of a
nudging-active interface. While the propulsion speed is the
same in both regions, only the R-particles propel actively
inside the nudging region. The R-species, therefore, does not

display a sudden change (kink) in its species concentration
n+(x) upon crossing the interface, as no abrupt activity drop is
experienced. In the active region, R-particles quickly “escape”
the interfacial area into the active region, whereas L-particles
get stuck at the interface and venture only diffusively into
the nudging region. We thus observe an excess of L-particles
at the interface, and therefore a negative polarization. The
extent λa of the polarization layer on the active side is again
determined by the interplay between Brownian motion and the
effective sedimentation pressure, this time with “heavy” L-
and “buoyant” R-particles. The symmetry between “heavy”
and “buoyant” particle species is broken in the nudging re-
gion. There, R-particles are “heavy” and therefore nudged
toward the interface, whereas the L-species are passive Brow-
nian particles. Close to the interface, the decay of density and
polarization into the nudging region is therefore character-
ized by a length scale λn1 �= λa. Referring back to the upper
panel of Fig. 6, we infer that λn1 is still quite similar to the
characteristic decay length λa pertaining to a purely active
region. Notice that, over a distance λn1 , the relative polar-
ization p/ρ approaches a constant value given by Eq. (69),
which is a distinctive feature of the bulk in the nudging region,
characterized by the swim speed and the acceptance angle of
the nudging procedure. In contrast to purely active or passive
regions, both the particle polarization p(x → ∞) and the bulk
density ρ(x → ∞) in the nudging region decay to zero, since
every particle is inevitably nudged toward the interface until it
crosses it. The decay of the absolute polarization and density
profiles toward zero is described by the second characteristic
length scale λn2 > λn1 .

D. Nudging-passive interface

Finally, consider the polarization and density profiles and
the respective species concentrations presented in the last
panel of Fig. 9. Now, only R-particles propel actively inside
the nudging region, while both particle species behave like
ordinary Brownian particles in the passive region. Therefore,
the L-particles can cross the interface smoothly, and their
density n−(x) does not display a kink. We observe an excess
of R-particles at the interface by virtue of the inherently biased
nudging process, and thus a positive polarization. The width
λp of the polarization layer on the passive side is determined
by the distance

√
D/(2k) covered by thermal diffusion dur-

ing the characteristic time scale (2k)−1 for “tumbling.” The
imbalance between the “heavy” R- and neutral L-particles
determines the spreading of the polarization into the nudging
region. Due to the “removal” of R-particles toward the inter-
face by virtue of the nudging procedure, the polarization even
changes sign and becomes negative over the characteristic
length scale λn1 before it converges to zero over the length
scale λn2 as discussed in the previous scenario. This distinctive
shape of the polarization can be seen as indicative of the
hidden bulk currents that are generally understood to cause
the interfacial polarization layers [70], as already discussed in
Sec. II F.

IV. CONCLUSION

In this article, we have studied the behavior of a single
Janus-type swimmer in the vicinity of a motility step. Within
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an approximate ABP model, we derived analytical expres-
sions for the polarization and density profiles of a Janus
particle at planar activity steps. We showed that they agree
well with exact numerical solutions and experimental data
(see paper I [75]). Key features of polarization and density
profiles at motility steps were discussed and shown to ex-
hibit important similarities to those observed for MIPS. As
a consistency check, we also explicitly demonstrated both an-
alytically and numerically that the total polarization induced
by the motility step is determined by the difference of (hidden)
bulk fluxes, and it obeys an exact global sum rule. We further
showed that the bulk density ratio between two regions of
distinct but constant activity is determined by the ratio of the
respective effective diffusion coefficients and independent of
the shape of the activity profile that mediates between the bulk
regions. Motivated by the versatile experimental technique
of photon nudging, we moreover generalized our theoretical
results to the situation of orientation-dependent propulsion
speeds. We conclude that the colocalization of polarization
and density patterns in activity gradients, as they naturally oc-
cur at various interfaces, is a characteristic phenomenological
trait to robustly distinguish motile-particle suspensions from
thermal and athermal passive suspensions.
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APPENDIX A: PLANAR ACTIVITY STEP

1. Density ratio and total polarization

a. Density ratio

Introducing the auxiliary quantities βA,a ≡ pmaxvA,aλA,a/

[Dρ(0)], Eqs. (26) and (27) evaluated at x = 0 and x → ∞,
respectively, yield

ρ(0) − ρA = ρ(0)βA, (A1)

ρa − ρA = ρ(0)(βa + βA). (A2)

Using these equations, the density ratio can be expressed as
ρa/ρA = (1 + βa)/(1 − βA). Further using

λA,a =
(

Dr

D
+ v2

A,a

2D2

)−1/2

, (A3)

pmax

ρ(0)
= vA − va

2D

λAλa

λA + λa
, (A4)

from Eq. (28), implies ρa/ρA = λa/λA, as given in Eq. (29).

b. Total polarization

From Eq. (30) we know that the total polarization Ptot is
given by pmax(λA + λa). The coefficient pmax can be expressed
as D(ρa − ρA)/(vAλA + vaλa) by virtue of Eq. (A2). Hence,
the total polarization reads

Ptot = D(ρa − ρA)
λa + λA

vAλA + vaλa
. (A5)

Using ρa/ρA = λa/λA, we find that

Ptot = D
(ρa − ρA)(ρa + ρA)

vAρA + vaρa,
(A6)

= D
ρ2

a − ρ2
A

va
2ρ2

a − vA
2ρ2

A

(vaρa − vAρA). (A7)

Using the formula ρa/ρA = λa/λA and the definition (A3) of
λA,a, the factor in front of the term in parentheses turns out
to be equal to −1/(2Dr ). One thus obtains Ptot = (vAρA −
vaρa)/(2Dr ), as stated in Eq. (30).

2. Vanishing integral

Our intermediate result (43) for the density ratio,

ρ(x)

ρ(x0)
=

√
Deff (x0)

Deff (x)
exp{U [v](x0, x)}, (A8)

depends on the functional U defined in Eq. (44). In the follow-
ing, we prove that U vanishes if the densities ρ(x0) and ρ(x)
correspond to the constant bulk densities outside the interface
region with changing activity.

First, we consider the two-species model of Sec. III A with
an arbitrary activity profile v(x) whose inhomogeneities are
localized around a finite region beyond which the velocity
assumes a single constant value; see Fig. 10(a). We will refer
to the corresponding constant bulk densities as ρi, i = 1, 2.
In the bulk, the polarization vanishes and thus the concen-
trations n(i)

± = ρi/2 of the individual species coincide. The
corresponding fluxes between the two bulk regions can be
expressed as

J12 = ρ1

2
(ν+

12 + ν−
12), (A9)

J21 = ρ2

2
(ν+

21 + ν−
21), (A10)

where we introduced the transition rates ν±
i j of particle species

(±) between the bulk region i and j. In the steady state,
the (anti)symmetry between the two particle species implies
ν+

12 = ν−
21 and ν−

12 = ν+
21. Flux balance J12 = J21 then induces

ρ1 = ρ2. For an arbitrary activity profile v(x) with bulk ac-
tivities given by a single constant, Eq. (A8) thus implies that
1 = ρ1/ρ2 = eU and hence U = 0.

Now, we consider activity profiles of the form sketched
in Fig. 10(b). Two bulk regions with constant activity v1

are interconnected via an intermediate bulk region with a
constant activity v2 �= v1 by two arbitrary activity profiles,
v12(x) and v23(x). From the first part of the proof, we know
that the density ratio ρ1/ρ3 = 1 as the activity in the outer
bulk regions is equal and constant. We thus know that 0 =
U [v12, v23] = U12[v12] + U23[v23], where we introduced the
integrals U12, U23 pertaining to the two parts v12(x) and v23(x)
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(a)

(b)

FIG. 10. Activity profiles v(x) considered to demonstrate that the
integral U vanishes. In the upper plot, ν±

i j denote the transition rates
of particles species (±) from the left to the right bulk region and
vice versa. In the lower plot, v1,2 denote the constant activities in the
middle and the outer regions, respectively, which are connected by
the profiles v12(x) and v23(x).

of the activity profile. Since the total integral has to vanish for
any intermediate set of activity gradients, the integrals U12 and
U23 can only depend on the bulk values of the activity, not on
the details of the intermediate activity profiles. This means
that the same U would be obtained for the sharp activity step
as for any other profile mediating between the two bulk activi-
ties. But for the sharp step, our discussion in Sec. II C applies,
showing that U = 0. Therefore, for the two-state model, the
integral U evaluated between two bulk positions x1 and x2

always vanishes and ρ1/ρ2 = √
Deff (x2)/Deff (x1).

In the two-species model, the particle orientation hops
between the two orientations with a transition rate. In the
continuous model, the orientation diffuses in a continuum
of orientations. However, this difference does not break the
symmetry of the model, which is the key for our proof. For
each particle orientation there is still an antioriented particle
with the same absolute value of projection of the velocity on
the x-axis and the opposite velocity. Realizing this fact, the
proof for the two-species model applies also to the continuum
model.

The generalization can be formalized by introducing a
(2N )-species model, N > 1. We now assume that the fluxes
(A9) and (A10) correspond to the auxiliary process of left
and right jumping particles, which have 2N contributions. We
exploit that in the steady state, each particle species has an
equivalent “antispecies” with an equal transition rate to jump

in the opposite direction. As for the two-species model, flux
balance then again induces ρ1 = ρ2, and thus U = 0. The
generalization to the continuous situation is done by taking
the limit N → ∞ and introducing effective transition rates

νeff
12 ≡ lim

N→∞
1

2N

2N∑
k=0

ν
(k)
12 , (A11)

νeff
21 ≡ lim

N→∞
1

2N

2N∑
k=0

ν
(k)
21 , (A12)

where the index k runs over all particle species. As both
effective transition rates are equal in the steady state, we can
proceed with the proof as in the previously considered discrete
scenarios.

This proves also for the continuous model that the func-
tional U depends on the bulk values of the activity profiles
only. Despite its impressive accuracy, our analytical theory
for this case is only an approximation and thus is not able
to guarantee that U = 0 holds exactly for the activity step, but
supportive numerical evidence is provided in Fig. 3.

3. Finite system—Determining the coefficients

The general solutions (46) and (47) to the particle’s density
distribution ρa/p(x) and polarization pa/p(x) within the active
(0 � x � xi f ) and passive (a < x � L) region, respectively,
read

pa(x) = Ca sinh
( x

λa

)
, λa =

(
Dr

D
+ va

2

2D2

)−1/2

, (A13)

pp(x) = Cp sinh

(
L − x

λp

)
, λp =

√
D

Dr
, (A14)

ρa(x) = ρa(0) + Caλava

D

[
cosh

( x

λa

)
− 1

]
, (A15)

ρp(x) = ρa(xi f ) = const. (A16)

The emerging integration constants Ca and Cp are fixed by the
matching conditions

pp(xi f ) = pa(xi f ), (A17)

pa
′(xi f ) − pp

′(xi f ) = va

2D
ρ(xi f ), (A18)

which follow from Eq. (16). The first one allows us to express
one integration constant in terms of the other:

Cp = Ca
sinh[xi f /λa]

sinh[(L − xi f )/λp]
. (A19)

Before we employ the condition (A18), we exploit the nor-
malization condition

∫ L
−L dx ρ(x) = 1 to calculate the density

at the interface ρ(xi f ). Respecting the symmetry of the con-
sidered problem, we get

1

2
=

∫ L

0
dx ρ(x) =

∫ xi f

0
dx ρa(x) +

∫ L

xi f

dx ρp(x) =
∫ xi f

0
dx ρa(x) + (L − xi f )ρa(xi f )

= xi f ρa(0) + Caλava

D

[
λa sinh

(xi f

λa

)
− xi f

]
+ (L − xi f )

{
ρa(0) + Caλava

D

[
cosh

(xi f

λa

)
− 1

]}
. (A20)
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Solving this equation for ρa(0), we find

ρa(0) = 1

2L
−

(
1 − xi f

L

)Caλava

D

[
cosh

(xi f

λa

)
− 1

]
− xi f

L

Caλava

D

[
λa

xi f
sinh

(xi f

λa

)
− 1

]
. (A21)

Substituting this relation into Eq. (A15) yields

ρa(xi f ) = 1

2L
+ xi f

L

Caλava

D

[
cosh

(xi f

λa

)
− λa

xi f
sinh

(xi f

λa

)]
. (A22)

Finally, plugging this result into Eq. (A18) and using Eq. (A19) for Cp renders a linear equation for Ca, which is straightforwardly
solved. With the definitions (54) and (55),

Pmax ≡ va

2D

λaλp

λa + λp
, rρ ≡ λa

λp
, (A23)

one finds that

Ca = 1

2L sinh(xi f /λa)

Pmax

coth
( L−xi f

λp

) − 1−rρ

L

[
xi f coth

( L−xi f

λp

) − λa
] . (A24)

The approximation coth[(L − xi f )/λp] ≈ 1 in the above equations then leads to the polarization and density profiles (50)–(53)
given in the main text.

APPENDIX B: NUDGING LAYER

1. Continuous-angle model

As derived in Sec. II F, within a nudging region, the vec-
tor X (x) = [p′(x), p(x), ρ(x)]� composed of the polarization
profile p(x), its derivative, and the density ρ(x) obeys an equa-
tion of the form X ′ = �X . In contrast to the discussion in the
main text, we now resort to a dimensionless description by in-
troducing λp = √

D/Dr as a natural unit of length. The matrix
� can then be expressed in terms of a single parameter—the
Péclet number P = va

2/(2DDr )—and it reads

� =
⎛
⎝

√
2PI4 1 + 2PI3I2 2PI1I3

1 0 0
0

√
2PI2

√
2PI1

⎞
⎠. (B1)

The quantities Ik , k = 1, . . . , 4, defined in Eqs. (58)–(61),
characterize the influence of the restricted acceptance angle
α on the heating laser. Clearly, the eigenvalues λ−1

ni
of the

matrix � determine the general solution X (x). The charac-
teristic equation |� − λ−11| = 0 renders the cubic equation
λ−3 + aλ−2 + bλ−1 + c = 0, with

a ≡ −(I1 + I4)
√

2P, (B2)

b ≡ 2(I1I4 − 2[I3]2)P − 1, (B3)

c ≡ I1

√
2P . (B4)

Using the Tschirnhaus-Vieta approach to the solution of cubic
equations, one finds that all three roots are real-valued and can
be written in the form

λ−1
n1

= −a

3
+ 2

√−q cos
(γ

3

)
, (B5)

λ−1
n2

= −a

3
+ 2

√−q cos

(
γ

3
+ 4π

3

)
, (B6)

λ−1
n3

= −a

3
+ 2

√−q cos

(
γ

3
+ 2π

3

)
, (B7)

where we introduced the auxiliary quantities

q ≡ 3b − a2

9
, (B8)

r ≡ 9ab − 27c − 2a3

54
, (B9)

γ ≡ arccos

(
r√−q

)
. (B10)

The dependence of the eigenvalues λ−1
ni

on the particle’s
propulsion speed (or Péclet number) and the acceptance angle
α are graphically discussed in Sec. II F of the main text as
the analytical expressions above lack an immediate physical
insight.

2. Two-species model

As derived in Sec. III A, the governing equations for the
polarization and density profiles within the framework of the
two-state model are structurally equivalent to those of the
previously discussed continuous-angle model, namely X =
�2X . In a dimensionless description [lengths expressed in
units of

√
D/(2k)], the matrix �2 reads

�2 =
⎛
⎝

√P2
2 1 + P2

4
P2
4

1 0 0

0
√P2

2

√P2
2

⎞
⎠, (B11)

where we introduced the Péclet number P2 ≡ v2/(2kD)
corresponding to the two-species model. The characteris-
tic polynomial |�2 − λ−11| = 0 delivers the cubic equation
λ−3 + aλ−2 + bλ−1 + c = 0, with

a ≡ −
√

P2, b ≡ −1, c ≡
√

P2/2. (B12)

The solutions are obtained using the same method as in the
previous section (Tschirnhaus-Vieta approach).
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FIG. 11. Comparison of eigenvalues. Left panels: In (a), eigenvalues λ−1
ni

(in units of the inverse length λp
−1 = √

Dr/D of a passive layer)
pertaining to the continuous-angle model are plotted against the Péclet number P using Eqs. (B5)–(B7) for two fixed acceptance angles, α =
45◦ (dotted curves) and α = 90◦ (solid curves). The dashed gray curve corresponds to the inverse length scale (or eigenvalue) λa

−1 = √
1 + P

of a symmetrically active polarization layer. In (c), the absolute values of eigenvalues λ−1
ni

are presented on a double-logarithmic scale. Right
panels: The same eigenvalues pertaining to the two-species model (cf. Sec. III A) are plotted against the corresponding Péclet number P2 on a
linear-linear (b) and a double-logarithmic scale (d). Eigenvalues are measured in units of the corresponding inverse length

√
2k/D of a passive

layer. The gray dashed curve corresponds to λa
−1 = √

1 + P2, the (inverse) natural size of a fully active polarization layer. The horizontal lines
in all four panels correspond to the value 1/

√
2.

3. Comparison

The upper panels of Fig. 11 compare the eigenvalues λ−1
ni

pertaining to the continuous model (a) to those correspond-
ing to the two-state model (b). We infer that, within the
plot range, the eigenvalues of both models display the same
qualitative behavior. This observation proves the intuitive con-
junction that the two-species model can serve as a simple
model to explain the physics underlying the polarization and
accumulation effects. There are, nevertheless, quantitative and
qualitative differences between the two models. This becomes
obvious from the lower panels of Fig. 11, where we plotted
the absolute value of the eigenvalues λ−1

ni
of both models on a

double-logarithmic scale to visualize their behavior for large
Péclet numbers. We will qualitatively compare both models
in the following. Besides Fig. 11, we will refer to the content
of Table I showing the limiting behavior of all eigenvalues for
low Péclet numbers. During the following discussion, we will
use the notion P(2) in order to refer to both Péclet numbers
P and P2. First, we focus on the eigenvalue λ−1

n1
, which, for

low Péclet numbers, increases proportionally to
√

P(2), irre-
spective of the underlying model. The (inverse) characteristic
size λa

−1 of a fully active polarization layer grows only as
O(P(2) ) to leading order in both models. Hence, up to order√

P(2), the eigenvalue λ−1
n1

> λa
−1. On the other end of the

spectrum, for P2 � 1, eigenvalue λ−1
n1

∼ λa
−1 ∼ √P2 for the

two-species model, as can be inferred from Figs. 11(b) and
11(d). The situation is more complicated for the continuous
model, as can be seen in Figs. 11(a) and 11(c). Depending
on the acceptance angle α, λ−1

n1
can be smaller or larger than

λa
−1, for moderate and large P . As numerically determined,

choosing α ≡ α2 ≈ 0.373π , one has λ−1
n1

∼ √
P for P � 1,

similar to the two-species model. For α ≶ α2 one has λ−1
n1

≶
λa

−1 for sufficiently large P . Note, however, that the limit
P � 1 must be treated with great caution as the orienta-
tionally continuous model is based on an approximation (3)
that loses its justification for large Péclet numbers. Next, we
focus on the eigenvalue λ−1

n2
. For both the continuous and the

TABLE I. Behavior of the eigenvalues λ−1
ni

and λa
−1 for the con-

tinuous model (column P) as well as the two-species model (column
P2) for small Péclet numbers.

Eigenvalues P � 1 P2 � 1

λ−1
n1

I4
√P/2 + 1

√P2/4 + 1
λa

−1 O(P ) O(P2)
λ−1

n2
I1

√
P √P2/2

λ−1
n3

I4
√P/2 − 1

√P2/4 − 1
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two-species model, λ−1
n2

grows proportionally to the square
root of the respective Péclet number in the case P(2) � 1.
As can be inferred from Fig. 11(d), in the limit P2 → ∞, the
eigenvalue λ−1

n2
→ 1/

√
2 (horizontal line) for the two-species

model. Thus, for infinite activity, the nudging layer decays
exponentially (since λn1 → 0) over a characteristic length λn2

proportional to the extent of a passive layer. This limiting
behavior becomes intuitively clear by the observation that one
particle species is instantaneously removed from the nudging
region (λn1 = 0) while the other species undergoes ordinary
diffusion (λn2 ∝ λp) until its orientation flips. Regarding the
behavior of λ−1

n2
within the continuous model, we refer to

Fig. 11(c). The eigenvalue λ−1
n2

first seems to approach a

constant value close to 1/
√

2 as well, but eventually starts
to grow again for further increasing P . Similar to λ−1

n1
, λ−1

n2

grows proportionally to
√

P for P � 1. Both eigenvalues
differ, however, by two to three orders of magnitude in this

limit, depending on the choice of the acceptance angle α.
We emphasize that the limiting behavior of λ−1

n2
for P � 1

is unphysical. At infinite propulsion speed, particles are in-
stantaneously nudged back to the interface as soon as their
orientation lies within the acceptance range. The distance
covered by Brownian motion until proper reorientation is pro-
portional to

√
D/Dr . Therefore, as for the two-species model,

the nudging layer should decay exponentially over said length
scale for P → ∞. Figure 11(c) shows that the unphysical
increase of λ−1

n2
sets in at P ≈ 50–100, depending on the

choice of the acceptance angle α. Finally, the eigenvalue λ−1
n3

remains negative for all Péclet numbers P(2) within both mod-
els. While approaching the value −1/

√
2 in the limit P2 → ∞

for the two-species model, λ−1
n3

approaches zero as 1/
√

P for
P � 1 within the continuous model. The behavior of λ−1

n3
for

large Péclet numbers is unphysical for the same reason as for
λ−1

n2
.
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Suspensions of motile active particles with space-dependent activity form characteristic polarization and den-
sity patterns. Recent single-particle studies for planar activity landscapes identified several quantities associated
with emergent density-polarization patterns that are solely determined by bulk variables. Naive thermodynamic
intuition suggests that these results might hold for arbitrary activity landscapes mediating bulk regions, and
thus could be used as benchmarks for simulations and theories. However, the considered system operates in a
nonequilibrium steady state and we prove by construction that the quantities in question lose their simple form
for curved activity landscapes. Specifically, we provide a detailed analytical study of polarization and density
profiles induced by radially symmetric activity steps, and of the total polarization for the case of a general radially
symmetric activity landscape. While the qualitative picture is similar to the planar case, all the investigated
variables depend not only on bulk variables but also comprise geometry-induced contributions. We verified that
all our analytical results agree with exact numerical calculations.

DOI: 10.1103/PhysRevE.103.062604

I. INTRODUCTION

To feed, hide, or proliferate, both macroscopic [1–3] and
microscopic [4–8] living organisms actively adjust their mo-
tion to mechanical, optical, or chemical stimuli. The ability
to change motility based on the state of the environment is
also vital for artificial motile active matter ranging from robots
[9,10] to microscopic active particles [11–14], where some of
the ultimate goals are noninvasive drug delivery and micro-
surgeries [15,16]. On a much lower level of sophistication,
large assemblies of active particles exhibit motility-induced
phase separation (MIPS) [17] into a dense and slow, and dilute
and fast phase [18–20]. Typically, but not exclusively, this
separation is a consequence of a density-dependent propulsion
speed [21–24].

The inhomogenous or space-dependent activity comes
hand in hand with characteristic modulations in the local den-
sity and polarization [7,8,22,25–28]. Given the omnipresence
of inhomogenous activity at all scales of active matter, the lat-
ter can serve as mesoscale indicator for intrinsic microscopic
activity in the system [29,30]. In spite of that, a thorough
investigation of characteristic patterns in the local density and
polarization attracted a focused attention of the active matter
community only recently.

It was shown [29,30] that density and polarization for a
single micrometer-sized Janus swimmer in water are well
captured by the active Brownian particle model [31–35] for
noninteracting active spheres in a noisy environment. For a
single swimmer and a planar activity interface [30], this model

*sven.auschra@gmail.com
†viktor.holubec@mff.cuni.cz

allows us to identify three quantities that are solely determined
by bulk diffusion coefficients, swim speeds, and system size,
and thus acquire the status of thermodynamic state variables.
Namely, (i) the local polarization peak at the interface, (ii)
the ratio of densities of the bulk regions on either side of the
interface, and (iii) the total polarization caused by the activity
step. The latter two maintain this property irrespective of the
shape of the (one-dimensional) activity modulations, as long
as they mediate between two bulk regions [30,36]. If generally
valid, these simple relations can serve as consistency checks
for simulations and benchmarks for theories [36].

In this paper, we prove by construction that these results,
in general, do not hold for other than planar activity profiles.
Concretely, we applied the theoretical framework of Ref. [30]
to radially symmetric activity steps and investigated in detail
the resulting polarization and density patterns. Our analytical
results show that the quantities (i)–(iii) depend on the nonzero
curvature of the interface and thus on the geometry of the
setup. We also investigate the (radial) total polarization for
general radially symmetric motility modulations and show
that it acquires a geometry-induced nonlocal contribution and
hence is no longer determined only by bulk variables. In the
limit of vanishing curvature, the obtained results converge to
those for planar activity steps [30,36]. Our theoretical results
can be readily tested using the experimental setup used in
Ref. [37].

Our results would be surprising for a system in ther-
modynamic equilibrium with solid walls, where their shape
does not affect bulk properties. However, they might be ex-
pected for the active-matter system at hand, as it operates
in a nonequilibrium steady state. Indeed, the dependence of
bulk properties in active-matter systems on the shape of their
physical boundaries has been observed in Refs. [38–41]. The

2470-0045/2021/103(6)/062604(10) 062604-1 ©2021 American Physical Society
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FIG. 1. Janus particle with coordinates x = r cos φ, y = r sin φ

subjected to a radially symmetric activity profile. The particle propels
actively along its orientation v/v = (cos θ, sin θ )� for r ≡ |r| < rif.
Otherwise, its swim speed v is zero.

dependence on the interface curvature found here can be com-
pared to the Laplace pressure [42], e.g., in soap bubbles. The
main difference between the two setups is that the increased
pressure inside a bubble is caused by a physical force applied
in the form of the surface tension by the soap film on the
bubble interior. The activity interface in our setup is fixed
and the observed influence of its curvature can be traced to
geometry-induced imbalance of probability currents across
the curved interface.

II. THE MODEL

Consider an overdamped Janus swimmer with space-
dependent propulsion speed (activity) v(x, y) and orientation
parametrized by the angle θ confined in a plane. For a piece-
wise constant radially symmetric activity profile, we depict
the system in Fig. 1. We model the particle dynamics by the
active Brownian particle model [43] described by the system
of Langevin equations:

∂t x = v(x, y) cos θ +
√

2Dξx, (1)

∂t y = v(x, y) sin θ +
√

2Dξy, (2)

∂tθ =
√

2Drξθ . (3)

The transitional and rotational diffusion coefficients D and
Dr, respectively, measure intensities of independent, unit vari-
ance, and unbiased Gaussian white noise processes ξx,y,θ (t ).

In the following section, we utilize the framework of
Ref. [30] to derive approximate differential equations for the
stationary probability density ρ(r) to find the particle at posi-
tion r and the corresponding polarization p(r).

III. MOMENT EQUATIONS

The dynamic probability density f (r, n̂, t ) for finding the
Janus swimmer at time t at position r with the orientation
n̂ = (cos θ, sin θ )�, corresponding to the system of stochastic
differential equations (1)–(3), obeys the Fokker-Planck equa-

tion (FPE) [34,35,44]:

∂t f = D∇2 f + Dr∂
2
θ f − ∇ · [ f v(r)n̂]. (4)

Here, ∂t ≡ ∂/∂t , and ∇ represents the Nabla operator with
respect to r. The exact moment expansion of f in terms of n̂
[34,44,45] truncated after the second term reads [30]

f (r, n̂, t ) = 1

2π
[ρ(r, t ) + 2p(r, t ) · n̂], (5)

where

ρ(r, t ) ≡
∫

dn̂ f (r, n̂, t ), (6)

p(r, t ) ≡
∫

dn̂ n̂ f (r, n̂, t ) (7)

denote time-resolved density and polarization, respectively.
Multiplying Eq. (4) by 1 or n̂, integrating over orientational
degrees of freedom, and using the definitions (6) and (7), we
obtain the moment equations [43,44]:

∂tρ(r, t ) = −∇ · J(r, t ), (8)

∂t p(r, t ) = −Dr p(r, t ) − ∇ · M(r, t ). (9)

Here, we introduced the (orientation averaged) flux,

J(r, t ) ≡ −D∇ρ(r, t ) + v(r)p(r, t ), (10)

and the matrix flux,

M(r, t ) ≡ −D∇p(r, t ) + v(r)

2
ρ(r, t )1, (11)

with the unit matrix 1.
Throughout the rest of this paper, we will focus on the

steady-state solutions ρ(r) and p(r) of Eqs. (8) and (9), which
obey ∂tρ = ∂t p = 0 and thus

D∇2ρ(r) = ∇ · [v(r)p(r)], (12)

D∇2 p(r) = Dr p(r) + 1
2∇[v(r)ρ(r)]. (13)

Moreover, we assume that, under no-flux boundary condi-
tions, the stationary flux J(r) vanishes. While this assumption
is not generally valid in two (or higher) dimensions, it holds
for all setups considered below. Exploiting the no-flux condi-
tion in Eq. (10) and substituting the resulting formula

∇ρ(r) = v(r)

D
p(r), (14)

into Eq. (13), we obtain

∇2 p(r) = p(r)

λ2(r)
+ ρ(r)

2D
∇v(r), (15)

where we have introduced the length scale

λ(r) ≡
[

Dr

D
+ v2(r)

2D2

]−1/2

. (16)

A thorough discussion and physical interpretation of this
characteristic length scale in the case of a planar motility step
is given in Refs. [29,30] and we omit it here.
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IV. ACTIVE-PASSIVE INTERFACE

We will now solve Eqs. (14) and (15) for ρ and p for the
radially symmetric activity step sketched in Fig. 1. In this
setup, the swim speed v(r) ≡ v0, for r ≡

√
x2 + y2 < rif, and

is zero otherwise.
Polarization and density must reflect the radial symmetry

of the activity profile leading to ρ = ρ(r) and p = p(r)r̂,
where r̂ ≡ r/r = (cos ϕ, sin ϕ)�. Using this ansatz, the flux-
balance condition (14) reduces to

ρ ′(r) = v(r)

D
p(r), (17)

where ρ ′(r) ≡ ∂ρ/∂r. Exploiting this relation in the moment
Eq. (15) yields

p′′(r) = − p′(r)

r
+ p(r)

r2
+ p(r)

λ2(r)
+ v′(r)ρ(r)

2D
. (18)

For the planar setup of Refs. [29,30] corresponding to rif →
∞, the first two terms on the right-hand side (r.h.s.) of this
equation are zero, which suggests that the polarization and
its derivative decay with the distance from the interface faster
than 1/r2 and 1/r, respectively. In general, the last term of
Eq. (18) vanishes everywhere except for r = rif, since v′(r) =
−v0δ(r − rif ), with the Dirac delta function δ(r). Within the
active (r � rif) and passive region (r > rif), Eq. (18) reduces
to the modified Bessel equation [7,8]. Its general solution
reads [46]

pa,p(r) = C(1)
a,p I1(r/λa,p) + C(2)

a,p K1(r/λa,p), (19)

where Im(x) and Km(x) are the modified Bessel functions of
the first and second kinds, respectively. The characteristic
length scales

λa ≡
(

Dr

D
+ v2

0

2D2

)−1/2

, λp ≡
(

Dr

D

)−1/2

, (20)

follow from Eq. (16) evaluated in the active and passive re-
gion, respectively.

To create bulk regions with constant density and vanishing
polarization both in the active and in the passive region, we
demand in the following that the active-passive interface is far
enough both from the origin and from the system’s boundary
at r = R. That is, we assume that rif and R − rif are several
times greater than λa and λp, respectively. This allows us to
apply the boundary conditions

pa(r = 0) = 0, pp(r = R) = 0. (21)

Then the general solution (19) simplifies to

p(r) =
{

pa(r) = CaI1(r/λa) for r � rif

pp(r) = CpK1(r/λp) for r > rif.
(22)

Integration of Eq. (17) delivers the corresponding density

ρ(r) =
{

ρa + vCaλa
D [I0(r/λa) − 1] for r � rif

ρa + vCaλa
D [I0(rif/λa) − 1] ≡ ρp for r > rif,

(23)

which assumes the bulk value ρa ≡ ρ(0) in the active and
ρp ≡ ρ(rif ) ≡ ρ(R) in the passive region. The constants Ca

and Cp in Eq. (22) can be determined from continuity condi-
tions on p and the corresponding flux M at the active-passive

interface [47]. Demanding the polarization p(r) and the pro-
jection

M · r̂ =
[
−Dp′(r) + v(r)ρ(r)

2

]
r̂ (24)

of the matrix flux (11) onto the radial direction to be continu-
ous at r = rif renders

pa(rif ) = pp(rif ), (25)

p′
a(rif ) − p′

p(rif ) = v0

2D
ρ(rif ). (26)

The density (23) satisfies ρa(rif ) = ρp(rif ) by construction.
The normal component J · r̂ is continuous due to the imposed
no-flux condition J ≡ 0. The constant ρa in Eq. (23) follows
from the normalization condition∫ 2π

0
dφ

∫ R

0
dr rρ(r) = 1. (27)

Figures 2(a) and 2(b) show nice agreement of the approx-
imate analytic density and polarization profiles (22) and (23)
with exact numerical solutions [48] for two distinct particle
activities, expressed in terms of the Péclet number

P ≡ v2
0

2DDr
. (28)

We observe nice agreement with exact numerical solutions
[48] in both cases. In Sec. V B, we show that the approximate
solutions deviate from the exact results for much smaller
Péclet numbers than P = 100 found for straight planar inter-
faces [49]. This is because Eq. (18) cannot be mapped onto
an exactly solvable (two-species) run-and-tumble model [27]
providing the same phenomenology as the full model [50],
which was the key ingredient for success of the approximate
solutions at planar interfaces [29,30].

The qualitative behavior of density and polarization pro-
files is the same as for a planar activity step [29,30]. Namely,
an increased activity step induces a higher polarization and a
larger ratio ρp/ρa of bulk densities of the passive and active
regions. The polarization peaks exactly at the active-passive
interface and decays over characteristic lengths λp and λa <

λp into the passive and active region, respectively. The density
profile remains constant at the bulk density ρ = ρp throughout
the whole passive region. On crossing the interface, it decays
to the bulk density ρa < ρp pertaining to the active region over
a length scale λa. We refer to Refs. [29,30] for a more detailed
physical interpretation and discussion of the emerging polar-
ization and density variations. Here, we focus on the influence
of curvature on these profiles.

In Figs. 2(c) and 2(d), we show the (reduced) density and
polarization profiles corresponding to the inverse setup for
which the particle is passive for r < rif and active otherwise.
The derivation of the analytic profiles (solid and dashes lines)
is similar to the above calculations, and is detailed in Ap-
pendix B. The approximate theory profiles overlap with the
corresponding exact numerical solutions. The qualitative pic-
ture is similar to the situation shown in Figs. 2(a) and 2(b), we
flipped the active and passive region, and a negative polariza-
tion in the vicinity of the interface, confirming that the particle
preferably points into the passive region [29,30]. Note,
however, that the convexity or concavity of the activity
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(a)

(b)

(c)

(d)

(g)

(h)

FIG. 2. (a)–(d) Reduced density (top) and polarization (bottom) profiles near a radially symmetric active-passive [(a),(b)] and passive-
active [(c),(d)] interfaces at r = rif. Lengths are measured in units of λp = √

D/Dr and velocities in units of
√

2DDr. This corresponds to a
dimensionless theoretical description in terms of the Péclet number P (28). Theory profiles (solid and dashed curves) were calculated for
two distinct P and rif = 10 λp using Eqs. (22)–(27) in (a) and (b) and Eqs. (B1)–(B6) in (c) and (d), and compared against exact numerically
obtained [48] profiles (dotted lines). (e), (f) Density ratio, ρa/ρp, and magnitude of the (reduced) polarization at the interface, |p(rif )|/ρ(rif ), for
P = 1 as functions of the radial distance rif of the interface. Plotted curves correspond to the following analytical expressions (setups): Solid
curves (interior active and exterior passive): Eqs. (29) and (30). Dotted curves (interior passive and exterior active): Eqs. (B8) and (B9). Dashed
lines (straight planar case): Eqs. (33) and (35). (g), (h) Particle inside the active region in the vicinity of a concave (convex) active-passive
interface. In both panels, the vertical line corresponds to a straight active-passive interface. Relative to the latter case, for a concave (convex)
geometry, the particle has a higher (lower) chance to end up in the passive region.

interface also leads to quantitative differences between the two
cases.

To grasp the influence of the curvature of the activity
step more quantitatively, we compare the maximum relative
polarization, p(rif )/ρ(rif ), which constitutes a suitable order
parameter for the polarization at the interface, and the bulk
density ratio, ρa/ρp, for circular and straight planar interfaces.
For the setup where the particle is active for r < rif and
passive otherwise [Figs. 2(a) and 2(b)], these quantities are
given by

p(rif )

ρ(rif )
= v0

2D
GA(rif ), (29)

ρa

ρp
= 1 − v2

0λa

2D2
GA(rif )

(
I0

I1
− 1

I1

)
, (30)

as detailed in Appendix A. Here, the (geometry) function
reads

GA(rif ) ≡
(

I0 + I2

2λaI1
+ K0 + K2

2λpK1

)−1

, (31)

with Im ≡ Im(rif/λa) and Km ≡ Km(rif/λp). The subscript
A indicates that GA corresponds to the case where
the particle is active for r < rif. The geometry function
GP(rif ) for the inverted setup is derived in Appendix B.
Exploiting the asymptotic expansions In(z) ∼ ez/

√
2πz and

Kn(z) ∼ e−z/
√

2z/π , valid for z 	 1 irrespective of the order
n [46], one finds

GA(rif ) ∼ λaλp

λa + λp
. (32)

For rif 	 λp > λa, the maximum (relative) polarization
therefore approaches

p(rif )

ρ(rif )
∼ v0

2D

λaλp

λa + λp
= 1√

2

√
P

1 + √
1 + P

, (33)

which coincides with the expression found for planar inter-
faces [30]. The corresponding asymptotic behavior of the
density ratio (30),

ρa

ρp
∼ 1 − v2

0λa

2D2

λaλp

λa + λp

(
1 −

√
2πrif

λa
e−rif/λa

)
, (34)

still displays an exponential decaying with rif. By taking the
limit rif → ∞, it reduces to the result found at planar activity
steps [30]:

ρa

ρp
= λa

λp
= 1√

1 + P
. (35)

The analytic expressions for p(rif )/ρ(rif ) and ρa/ρp for the
inverted setup [Figs. 2(c) and 2(d)] are derived in Appendix B
along similar lines.
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Figures 2(e) and 2(f) show the dependence of these quan-
tities on the radius of curvature rif of the interface for both
circular setups, as well as their their counterparts (33) and
(35) for straight planar interfaces (dashed horizontal lines).
With increasing rif, the polarization peaks |p(rif )|/ρ(rif ) for
the circular setup approach—the one for the straight motility
step from below. For the setup where the particle is active for
r < rif (solid curve), the peak is slightly larger (≈ 0.02% for
rif = 10 λp) than for the inverted setup (dotted curve). Turning
to the bulk density ratio, if the interior is active (solid line), the
bulk density ratio ρa/ρp is smaller as compared to the straight
planar case, whereas it exceeds it for the inverse circular setup
(dotted curve).

This behavior can be intuitively understood as a result of a
geometry-induced imbalance in probability fluxes across the
curved interface. Consider the situations sketched in Figs. 2(g)
and 2(h). In both panels, a Janus particle (gray dot) is situated
inside an active region, in a close proximity to an adjacent
passive region. In Fig. 2(g), the active-passive interface is
concave, whereas in Fig. 2(h), it is convex. In both panels,
the vertical lines correspond to a straight active-passive inter-
face. For simplicity, consider a quasiballistic particle motion
denoted by the arrows in both panels. As indicated by the
number of blue arrows relative to the green ones, the particle’s
chance to enter the passive region is higher for the concave
[g)] than convex [h)] geometry. The setup with active interior
[g)] thus yields a larger bulk density ratio ρa/ρp than the
inverse setup [ h)]. It follows that the density ratio corre-
sponding to a concave (convex) active-passive interface is
always smaller (larger) than its counterpart for a straight pla-
nar interface. As the curvature of the circular activity interface
decreases, i.e., for rif → ∞, the bulk density ratio for straight
interfaces is approached.

To gain an intuition on why the magnitude of the reduced
polarization, |p(rif )|/ρ(rif ), is always larger in the straight
planar case than for a circular interface [see Fig. 2(f)] is
more difficult. The absolute value of the polarization |p(rif )|
depends on the probability that the particle with a given ori-
entation hits the interface. Compared to the planar case, for
the concave interface shown in Fig. 2(g), there are less active
particles in the bulk to hit the interface with a broader range of
polarizations, and vice versa for the convex interface shown
in Fig. 2(h). Hence we observe three competing ingredients
that determine the absolute polarization in the concave (con-
vex) case: low (high) bulk density in the active region, large
(small) probability for a given particle to hit the interface, and
large (small) average polarization of particles which hit the
interface, where the strength of the individual ingredients is
compared to the planar case. Furthermore, the magnitude of
the reduced polarization is obtained as absolute polarization
divided by density of the passive bulk, which is high for the
concave and low for the convex case. We thus find in both
circular setups two ingredients leading to an increase and two
leading to a decrease of |p(rif )|/ρ(rif ). Our analytical results
show that they compensate each other in such a way that the
magnitude of the reduced polarization for circular interfaces is
always lower than in the planar case. Unfortunately, it seems
impossible to guess the influence of these ingredients based
on physical intuition.

The maximum polarization and density ratios, which are
for planar motility steps solely determined by bulk variables
(v0, D, Dr ) [29,30] thus depend on the interface radius rif in
case of a circular activity step. This suggests that arbitrarily
curved activity steps generally yield geometry-induced contri-
butions to the emergent density-polarization patterns and the
corresponding maximum polarization and bulk density ratio.
To provide further evidence for this conjecture, we now study
the total polarization, which is also solely determined by bulk
quantities in the case of planar interfaces [36], for arbitrary
radially symmetric activity modulations.

V. TOTAL POLARIZATION

Without alignment forces, local polarization in active-
matter systems arises from spacial sorting of particles with
different orientations. Therefore the total polarization vector,
Ptot, defined as the integral

Ptot ≡
∫

V
dr p(r) (36)

over the whole space V , universally vanishes for systems with
no-flux boundary conditions [36].

A more appropriate definition of total polarization induced
by activity landscapes that mediate between two bulk regions
is to restrict the domain of integration V so it connects the
two bulk regions. For planar activity profiles, it is natural
to integrate along a ray of fixed width parallel to the x axis
and thus perpendicular to the interface. Then, the magnitude
Ptot of such defined total polarization is proportional to the
difference in strengths of fluxes, vρ, corresponding to the
two bulk regions [29,30], and thus it acquires the status of a
thermodynamic state variable. For an arbitrary radial activity
profile v(r) that mediates between two bulk regions of, respec-
tively, constant activity, the radial symmetry implies that the
local polarization profile must be of the form p = p(r)r̂, with
r̂ = (cos φ, sin φ)�. To match the planar definition, we define
the magnitude of the total radial polarization as the integral

Ptot ≡
∫ R2

R1

dr p(r) (37)

of the projection p(r) of the polarization vector onto the radial
axis over a ray of fixed infinitesimal width, perpendicular to
the interface, and mediating the inner bulk region at radius R1

and the outer one at R2 (see Fig. 3). Alternatively, and more
naturally from the point of view of polar coordinates, one
could integrate the polarization over an infinitesimal wedge
mediating the two bulks. This would correspond to substitut-
ing r p(r) for p(r) in the definition (37). However, in this case,
the width of the integration region increases with r.

Below we show that Ptot is generally composed of a
contribution proportional to the difference v(R1)ρ(R1) −
v(R2)ρ(R2) of the flux strengths, as for planar interfaces [36],
and a second nonlocal contribution induced by the nonzero
curvature of the interface. A similar expression also holds for
the alternative definition of Ptot with r p(r).

A. Derivation of total polarization

We introduce polar coordinates, x = r cos φ and y =
r sin φ, and the angular variable ψ ≡ θ − φ, which measures
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FIG. 3. A Janus particle at position r = (r cos φ, r sin φ)� ac-
tively propelling along its orientation n̂ = (cos θ, sin θ )�. The
particle’s orientation relative to the radial unit vector r̂ is measured
by the angle ψ . The swimmer’s propulsion speed follows a radially
symmetric activity profile (color coded), which mediates between an
inner (dark blue, R1) and outer (light green, R2) bulk region with
different constant activities.

the particle orientation relative to the radial axis (see Fig. 3).
Under this transformation, the system of three Langevin equa-
tions (1)–(3) reduces to the two-dimensional set

∂t r = v(r) cos ψ +
√

2Dξr, (38)

∂tψ = −v(r)

r
sin ψ +

√
2

(
D

r2
+ Dr

)
ξψ, (39)

where ξr and ξψ denote independent, zero-mean, unbiased
Gaussian white noise processes. The associated FPE for the
stationary probability density f(r, ψ ) for finding the particle
at distance r with relative orientation ψ reads

0 = −∂rJ +
(

D

r2
+ Dr

)
∂2
ψ f + v(r)

r
∂ψ (sin ψf), (40)

where we have introduced the (angle-resolved) flux:

J(r, ψ ) ≡ −D∂rf + D

r
f + cos ψ v(r)f. (41)

Due to the radial symmetry, f and J must be even functions
of ψ , i.e., f(r, ψ ) = f(r,−ψ ), and J(r, ψ ) = J(r,−ψ ). The
Fourier expansion of the flux J thus reads

J(r, ψ ) =
∞∑

n=0

Jn(r) cos(nψ ), (42)

where Jn(r) is the nth Fourier coefficient. Plugging this series
into the FPE (40) and integrating twice over the angle from 0
to ψ yields(

D

r2
+ Dr

)
f(r, ψ ) = f0(r) −

∞∑
n=1

∂rJn(r)
cos(nψ )

n2

− v(r)

r

∫ ψ

0
dψ̃ sin ψ̃ f(r, ψ̃ ).

(43)

The unknown function f0(r) stems from the second inte-
gration. The integration constant from the first integration
renders, after the second integration, a term linear in ψ , and
thus it must be zero to maintain periodicity.

The radial component of the local polarization vector p(r)
is defined by

p(r) ≡
∫ 2π

0
dψ cos ψ f(r, ψ ). (44)

The corresponding tangential component
∫ 2π

0 dψ sin ψf(r, ψ )
vanishes due to the radial symmetry. Multiplying Eq. (43) by
cos ψ , integrating over ψ from 0 to 2π , and using orthogonal-
ity of trigonometric functions renders(

D

r2
+ Dr

)
p(r)

= −π∂rJ1(r) + v(r)

r

∫ 2π

0
dψ sin2 ψ f(r, ψ ). (45)

The integral on the r.h.s. was obtained by interchanging the
order of the double integration [51]. Using the definitions (41)
and (44), we find that the first coefficient J1 of the Fourier
series (42) in terms of f and p reads

J1 = 1

π

∫ 2π

0
dψ J(r, ψ ) cos ψ, (46)

= 1

π

(
D

r
p − D∂rp

)
+ v

π

∫ 2π

0
dψ f(r, ψ ) cos2 ψ. (47)

The distributions f and f and the corresponding po-
larizations p and p are connected via the Jacobian [47]
|∂ (x, y)/∂ (r, φ)| = r, i.e., f = r f and p = r p. Plugging these
transformations and Eq. (47) into Eq. (45) yields

Dr p =D∂r

(
p

r
+ ∂r p

)
− ∂r (v〈cos2 ψ〉) − v

r
〈2 cos2 ψ − 1〉.

(48)

Here, the averaging is defined as

〈•〉 ≡
∫ 2π

0
dψ • f (r, ψ ). (49)

Finally, Eqs. (37) and 2 cos2 ψ − 1 = cos(2ψ ) render the
closed expression for the total polarization,

Ptot = D

Dr

(
p

r
+ ∂r p

)∣∣∣∣
R2

R1

− v

Dr
〈cos2 ψ〉

∣∣∣∣
R2

R1

− I[v](R1, R2),

(50)

where we introduced the functional

I[v](R1, R2) ≡
∫ R2

R1

dr
v(r)

rDr
〈cos(2ψ )〉. (51)

Within bulk regions, we have p(R1/2) = ∂r p(R1/2) = 0 and
f (R1/2, ψ ) = ρ(R1/2)/(2π ). Hence, the first term on the
r.h.s. of Eq. (50) vanishes and the second one simplifies to
〈cos2 ψ〉(R1/2) = ρ(R1/2)/2. The total polarization between
two bulk regions thus reads

Ptot = v(R1)ρ(R1) − v(R2)ρ(R2)

2Dr
− I[v](R). (52)
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The first summand above coincides with the total polarization
found for planar interfaces [29,30]. The second term is a
nonlocal contribution attributed to the nonzero curvature of
the considered activity profile. It vanishes when the activity
profile becomes effectively planar, i.e., when its radius di-
verges while the thickness measured by the distance between
the two bulk regions remains finite.

The (radial) total polarization for curved activity profiles
is thus not solely determined by stationary properties of the
bulk and, in this sense, loses its status of a state variable.
Using Eq. (45), one can show along similar lines as above
that a similar expression would be obtained for the alternative
definition of the total polarization using rρ instead of ρ in
Eq. (37). Specifically, the first term in this total polarization
follows from Eq. (52) after substituting p for p in the first term
on the r.h.s. The curvature-dependent term changes more but
also vanishes for diverging radius of the interface.

We now demonstrate that I[v](R1, R2) in Eq. (52) vanishes
when truncating the exact moment expansion of f (r, ψ ) after
two terms as in Eq. (5) and quantify deviations between the
exact solution and approximate solution of Sec. III.

B. Approximate global sum rule and deviations

Plugging ρ = ρ(r) and p = p(r)r̂ into the truncated mo-
ment expansion (5), the approximate distribution function can
be written as

f (r, ψ ) = 1

2π
[ρ(r) + p(r) cos ψ]. (53)

Using the average (49), the density ρ(r) and polarization p(r)
are given by 〈1〉 and 〈cos ψ〉, respectively. All higher (angular)
moments within the approximation (53) vanish. In particular,
〈cos(2ψ )〉 = 0 and the functional I (51) gives zero. The total
polarization (52) then reads

Ptot = v(R1)ρ(R1) − v(R2)ρ(R2)

2Dr
, (54)

which is the result found for one-dimensional activity land-
scapes [30,36]. For the radial activity profiles considered here,
it only holds within the approximation 〈cos(nψ )〉 = 0 for
n > 1.

To verify the exact analytical result (52) for the total polar-
ization and to assess the scope of the approximation (54), we
numerically calculated the exact distributions f (r, ψ ) [48] for
several radially symmetric activity steps. As in Sec. IV, the
particle propels actively if its radial distance r < rif and its
swimming mechanism is switched off otherwise (see Fig. 1).

The upper panel of Fig. 4 depicts the moments 〈cos(nψ )〉,
n = 0, 1, 2 calculated from Eq. (49) using the exact distri-
bution f (r, ψ ) for Péclet number P = 40. The moments are
normalized by the bulk density ρa in the active region. In
the active region, the second moment 〈cos(2ψ )〉 is up to the
active-passive interface largely negative, rendering its con-
tribution (51) to the total polarization (52) positive. Since
the amplitude of the second moment increases with Péclet
number, the approximate result for the total polarization (54)
underestimates its exact value the more the larger the particle
activity, as can be inferred from the lower panel of Fig. 4.
It shows that the relative deviation between the two reaches

FIG. 4. Moments [Eq. (49), top] and relative deviations of the
total polarization (Eq. (37), bottom) from its approximate value (54)
in the vicinity of a radially symmetric active-passive interface at
r = rif = 10 λp. The particle propels actively if its radial distance
r < rif and only diffuses otherwise. Lengths are measured in units
of λp = √

D/Dr and velocities in units of
√

2DDr. The overall radial
extension of the system was chosen R = 20 λp, and in the top figure
we took the Péclet number P = v0/(2DDr ) = 40. The presented data
was obtained using the exact numerically determined distribution
f (r, ψ ) [48]. The solid line and circles in the bottom panel were
determined from Eqs. (37) and (52), respectively.

roughly 10% for P = 50 and thus the approximation (54)
is reasonably accurate for experimentally realizable Péclet
numbers [29]. The lower panel of Fig. 4 also shows perfect
agreement between the analytical result (52) and polarization
evaluated form Eq. (37) using the numerically determined
density f (r, ψ ).

VI. CONCLUSION

We derived approximate analytical formulas for polariza-
tion and density profiles induced by a radially symmetric
motility step. These results nicely agree with numerically
determined exact solutions even beyond the limit of small
activities. We further evaluated the effect of nonzero curvature
of the active-passive interface on the polarization and density.
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Reduced polarization is smaller than for planar activity steps,
whereas the contrast in the bulk densities is smaller (larger)
for concave (convex) active-passive interfaces. Both the max-
imum polarization and the bulk density ratio depend on the
curvature of the interface.

Furthermore, we derived an exact formula for the (ra-
dial) total polarization induced by an arbitrary radially
symmetric activity landscape. Compared to the result for
one-dimensional activity landscapes, the total polarization
contains a nonlocal, geometry-induced correction. The total
polarization is thus no longer determined solely by bulk vari-
ables. This result proves that curved active-passive interfaces
generally yield a geometry-induced contribution to the emer-
gent density and polarization profiles and the associated total
polarization and bulk density ratio.
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APPENDIX A: POLARIZATION PEAK
AND DENSITY RATIO

Within the active (r < rif) and passive region (r > rif) the
general solution of the respective polarization and density
profiles read [Eqs. (22) and (23)]

pa(r) = CaI1(r/λa), λa =
(

Dr

D
+ v2

0

2D2

)−1/2

, (A1)

pp(r) = CpK1(r/λp), λp =
√

D

Dr
, (A2)

ρa(r) = ρa + Caλav0

D
[I0(r/λa) − 1], (A3)

ρp(r) ≡ ρa(rif ) ≡ ρp = const, (A4)

with ρa ≡ ρa(0). The emerging integration constants Ca and
Cp follow from the continuity conditions

pp(rif ) = pa(rif ), p′
a(rif ) − p′

p(rif ) = v0

2D
ρ(rif ), (A5)

given Eqs. (25) and (26) in the main text. The first condition
implies that

Cp = Ca
I1(rif/λa)

K1(rif/λp)
. (A6)

For the sake of brevity, we introduce the abbreviations
In ≡ In(rif/λa) and Kn ≡ Kn(rif/λp). The second condition in
Eq. (A5) yields

p′
a − p′

p = Ca
I0 + I2

2λa
+ Cp

K0 + K2

2λp
= v0

2D
ρp (A7)

and, using Eq. (A6), we get

Ca

ρp
= v0

2D

(
I0 + I2

2λa
+ I1

K1

K0 + K2

2λp

)−1

. (A8)

Knowing that the polarization peaks exactly at the interface
(see Fig. 2), it follows from Eqs. (B1) and (B3) that the max-
imum relative polarization p(rif )/ρ(rif ) is given by CaI1/ρp.
Using Eq. (A8) and introducing the geometry function (31),

GA(rif ) =
(

I0 + I2

2λaI1
+ K0 + K2

2λpK1

)−1

, (A9)

the maximum relative polarization reads

p(rif )

ρ(rif )
= v0

2D
GA(rif ), (A10)

as given in Eq. (29). The relative density profile, (ρ − ρa)/ρp,
and thus also the bulk density ratio, ρp/ρa, can be obtained
using Eqs. (B4), (B3), (A8), and a similar approach.

APPENDIX B: INTERIOR PASSIVE–EXTERIOR ACTIVE

We now consider the case where the particle is passive for
r < rif, and otherwise active. In analogy to the calculations in
Appendix A, one now has

pp(r) = CpI1(r/λp), (B1)

pa(r) = CaK1(r/λa), (B2)

ρp(r) ≡ ρa(rif ) ≡ ρp = const, (B3)

ρa(r) = ρp + Caλav0

D
[K0(rif/λa) − K0(r/λa)]. (B4)

Note that the argument of I1 (K1) now carries λp (λa) as a
characteristic length scale. Integration constants Ca and Cp

are determined by the same continuity conditions (A5) as in
Appendix A, yielding

Cp = Ca
K1(rif/λa)

I1(rif/λp)
, (B5)

Ca

ρp
= − v0

2D

(
K1

I1

I0 + I2

2λp
+ K0 + K2

2λa

)−1

, (B6)

where we used the abbreviations In ≡ In(rif/λp) and Kn ≡
Kn(rif/λa). Reduced density and polarization profiles, ρ/ρp

and p/ρp, are plotted in Figs. 2(c) and 2(d). Introducing the
geometry function

GP(rif ) ≡
(

I0 + I2

2λpI1
+ K0 + K2

2λaK1

)−1

, (B7)

the (negative) polarization peak and the bulk density ratio are
given by

p(rif )

ρ(rif )
= − v0

2D
GP(rif ), (B8)

ρa

ρp
= 1 − v2

0λa

2D2
GP(rif )

K0

K1
. (B9)

Both quantities are plotted in Figs. 2(e) and 2(f) (dotted lines).
For rif → ∞, both approach their counterparts at straight pla-
nar active-passive interfaces [Eqs. (33) and (35)].
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Abstract – Autonomous active Brownian ratchets rectify active Brownian particle motion solely
by means of a spatially modulated but stationary activity, without external forces. We argue
that such ratcheting requires at least a two-dimensional geometry. The underlying principle is
similar to the ratcheting induced by steric obstacles in microswimmer baths: suitably polarized
swimmers get channeled, while the others get trapped in low-activity regions until they loose
direction. The maximum current is generally reached in the limit of large propulsion speeds, in
which the rectification efficiency vanishes. Maximum efficiency is attained at intermediate activities
and numerically found to be on the order of a few percent, for ratchets with simple wedge-shaped
low-activity regions.

Introduction. – Brownian ratchets are subtle mi-
croscale transport devices operating out of equilibrium [1,
2]. They combine two effects that individually do not
promote directed transport, namely unbiased Brownian
motion and spatially periodic asymmetric environments,
such that a net directed particle current is produced [3–5].
Conventional designs with passive particles usually break
the spatial symmetry by imposing an asymmetric poten-
tial. The non-equilibrium element is often represented by a
time-dependent driving mechanism that, by itself, does not
introduce any directionality [4]. Typical examples comprise
the rocking (or “flashing”) of the potential or the overall
temperature [3, 4, 6, 7]. Ratchets brought out of equilib-
rium by more complex stationary, i.e., time-independent,
temperature fields have also been investigated [8–12].

The self-propulsion of an active Brownian particle (ABP)
represents yet another non-equilibrium mechanism that
one ought to be able to exploit for ratcheting. While it
does transiently break the spatial and temporal symmetry
of equilibrium Brownian motion [13], it does not give rise
to a net macroscopic current by itself. One would however
expect that one of the simplest realizations of an active
Brownian ratchet should consist of an ABP exposed to a
spatially asymmetric (periodic) activity landscape. Yet,
even though a number of ratchet designs with active parti-

cles have been discussed in the literature [14–24], none of
them was based solely on a stationary activity landscape.
Instead, some relied on ABPs placed in a soft potential
in one spatial dimension [17, 19], or in asymmetric hard
potentials in two-dimensions [14–16, 18, 24]. The asym-
metric potentials, so typical of conventional ratchets, can
be relinquished entirely, though, if one exploits the ten-
dency of ABPs to polarize towards low-activity regions
and accumulate there [23, 25–28]. The standard flashing
potential can then be replaced by a dynamic activity land-
scape. Examples include propagating optical activation
pulses that induce aligned or anti-aligned drifts, depending
on the persistence length of the ABP motion relative to
the pulse width and propagation speed [20–22]. In gen-
eral, traveling activity waves induce traveling density and
orientation waves of the ABPs, and can thus plainly be
employed to sort ABPs, e.g., by size [23].

To sum up, ratcheting has been demonstrated for active
particles in spatially asymmetric potential landscapes or
in space-and-time dependent activity landscapes. However,
no fundamental symmetry prevents ABPs from ratcheting
also in stationary spatially asymmetric activity landscapes.
In the following, we show that such ratchets are indeed re-
alizable and explore the maximum current and rectification
efficiency of a class of simple shapes, numerically.
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Model. – We consider the motion of an ABP in a unit-
square arena (thus taking its size as the natural length
unit) with periodic boundary conditions in two dimen-
sions (see Fig. 1). The state at time t is fully charac-
terized by the position r(t) = [x(t), y(t)] and polariza-
tion n(t) = [cos θ(t), sin θ(t)] of the ABP. The transla-
tional and rotational Brownian motion are represented
by mutually independent and unbiased (〈ηi〉 = 0) Gaus-
sian white noises ηi(t), i, j = x, y, θ, of unit strength,〈
ηi(t)ηj(t

′)
〉
= δijδ(t− t′), and diffusion constants Dt and

Dr, respectively. The stationary activity landscape enters
via a superimposed deterministic speed field v[x, y]. The
dynamical equations for the ABP read

9x = v(x, y) cos(θ) +
a
2Dtηx, (1a)

9y = v(x, y) sin(θ) +
a
2Dtηy, (1b)

9θ =
a
2Drηθ. (1c)

We only consider activity fields symmetric in the y-
direction, v(x, 1/2 + y) = v(x, 1/2− y), so that

〈
9y(t)
〉
= 0

and the steady-state current is a scalar I =
〈

9x(t)
〉
. When-

ever I is nonzero, the device exhibits ratcheting.
A few general observations about the dynamics are

gleaned directly from the above equations. First, the es-
sential stochastic ingredient of the model is the rotational
diffusion. If Dr is taken to infinity, the ABP motion looses
its persistence. The model then reduces to a passive gas
locally equilibrated at a spatially modulated (effective)
temperature T = Dt + v2/2Dr, with Boltzmann’s constant
and the friction coefficient set to unity. While such a gas
can move thermophoretically in the presence of a temper-
ature gradient, it cannot maintain a steady current in a
periodic temperature profile. (We comment on the more
subtle limit of a Knudsen gas [29, 30], at the end of the
paper.) The ratcheting effect must thus entirely result
from a clever combination of the more or less persistent
motion in the high- and low-activity regions, respectively.

Below, we show that, in one spatial dimension, one
cannot achieve autonomous ratcheting by any stationary
activity landscape. For conceptual purposes, in two dimen-
sions, it is sufficient to consider piecewise constant spa-
tially periodic landscapes v(x, y), varying discontinuously
between the minimum and maximum values of velocity 0
and v (see Fig. 1 for an example). The dynamics is anyway
low-pass filtered by the translational diffusion process so
that any small-scale details and discontinuities in v(x, y)
will thereby effectively be washed out. Setting the maxi-
mum value of velocity v to a very large (formally infinite)
value amounts to the idealization of strictly ballistic dy-
namics in the high-activity (or simply “active”) regions.
Similarly, retaining a non-vanishing Dt > 0 to avoid an
absorbing state, the minimum value of v(x, y) can safely be
set to zero in the low-activity (or simply “passive”) regions,
without much loss of generality. This choice, which shall
be adopted for the remainder, simply amounts to purely
diffusive dynamics, inside the passive region.

In summary, translational diffusion acts as a regulariza-
tion for discontinuous activity profiles, so that the archety-
pal activity landscape discretely jumps between 0 and
some finite or possibly even infinite value v. In the latter
case, the active region is traversed in no time, so that,
the total dwell time τ of the particle in the unit cell is
equal to the time spent in the passive region. The latter is
independent of v and, at first sight, of Dr. However, Dr
limits the “take-off” of ABPs emerging from the passive
region, and in fact also the whole particle distribution
at the active-passive boundary. For example, the ABP
cannot take off if it emerges with a swim direction point-
ing back into the passive region. Also it can “tunnel”
through narrow edges of the passive region. One there-
fore generally still expects the current I ' τ−1 (in our
unit length setup) and the dwell time τ to depend on
Dt and Dr, even if one takes v → ∞, in the active re-
gion. It is however plausible that for a given geometric
shape of the passive region, one can often find an optimum
choice of Dt ∝ Dr. Brownian dynamics simulations indeed
corroborate this (Fig. 2), with a geometric prefactor com-
patible with (ε(1− 2δx)/2π)

2/2 ' 0.003, as expected from
4Dtτ ' (ε(1−2δx)/2)

2 and 2Drτ ' π2. The corresponding
optimum dwell time τ(Dt, Dr) → τ(Dr) is proportional to
the ABP’s mean reorientation time D−1r , implying I ' Dr,
with a purely geometric prefactor (Fig. 3)). The latter can
only depend on dimensionless features of the shape (such
as the parameters δ and ε in Fig. 1).

These general considerations based on an infinite step
function v(x, y) may not always be practically useful, from
an active-matter perspective. For instance, an experi-
mental realization of our idealized ABP might possibly
only allow for a maximum speed v, below the asymptotic
regime alluded to above (in which the dwell time in the
arena equals the trapping time in the passive region). This
will clearly reduce the ratchet current from its maximum
value, and the dwell time will depend both on Dt ' Dr
and the maximum attainable value of v. This “attenuated”
transport regime, with Dt ' Dr ' v may be of particu-
lar practical interest, if the active speed of the ABP is
regarded as a costly input. The most desirable modus
operandi of the ratchet will then not anymore be that of
maximum current I ' Dr, obtained in the limit v → ∞,
because the ratio I/v vanishes in this limit. Instead, one
will then typically be interested in conditions that optimize
this ratio, which can be interpreted as the rectification
efficiency of the active ratchet, very much in the spirit
of ABP engines and bacterial motors [15, 16, 24]. The
interested practitioner will then generally have to find the
corresponding optimum parameter values Dt, Dr, and v
for a given ratchet geometry, numerically.

The remainder of the paper is dedicated to a more com-
prehensive analysis of the above general considerations.
In particular, we first clarify why stationary active Brow-
nian ratchets can only be realized in at least two space
dimensions. We also estimate realistic values of the maxi-
mum dimensionless current I(v → ∞)/Dr and rectification
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efficiency I/v, for a simple wedge geometry, depicted in
Fig. 1.

One-dimensional activity patterns. – Already in
one spatial dimension, spatially varying activity profiles
accommodate non-intuitive effects. For example, the mean
first passage time may depend non-monotonically on the
distance from a target and the target finding probability
can increase if the activity increases towards the target [31].
This seemingly contradicts the known fact that active par-
ticles spend less time in regions of higher activity. How-
ever, while the latter is a steady-state property, the former
relates to transient behavior. In fact, when an ABP is
oriented along an activity gradient, it accelerates and thus
increases its chance to reach a target before it looses its
orientation. Similarly, an ABP placed in the middle of
a one-dimensional domain with a linear activity gradient
reaches the high-activity end faster and more often than the
low-activity end [32]. Although these effects look promis-
ing with regard to designing autonomous active Brownian
ratchets, e.g., with a sawtooth-shaped stationary activity
landscape, there is a catch. In the cited experiments [31,
32], the particle is placed back in its initial position upon
reaching the target or the boundary of the arena. For
a genuine ratchet, such “deus-ex-machina” type outside
interventions are clearly not a permissible option.

More formally, one can demonstrate the absence of ratch-
eting in one-dimensional activity landscapes, as follows. Ac-
tivity landscape can sort and locally accumulate ABPs ac-
cording to their orientation, but they do not reorient them.
Crucially, and quite in contrast to potential landscapes, ac-
tivity landscapes do not exert any forces or torques on the
ABPs, which are a crucial mechanism underlying the ratch-
eting of ABPs in one-dimensional potential landscapes [17].
As all orientations are thus equally probable in an unbi-
ased ensemble, the spatially integrated total polarization
must vanish. Together with the continuity equation for
particle number conservation [33], this entails that the net
current vanishes, too. More concretely, one may evoke the
continuity of the local polarization profile as a function
of position, which holds even for piecewise continuous ac-
tivity profiles [26–28]. From this one concludes that, for
a vanishing total polarization, there must be at least be
one position x0 in the polarization profile at which the
time-averaged orientation vanishes. The time averaged
current I at this point is given by the time-integral over
v[x(t) = x0] cos θ(t). Up to a constant factor, this is just
the vanishing time-averaged orientation. And since, in one
spatial dimension, the continuity condition implies that
the steady state current is spatially constant, I vanishes
everywhere if it vanishes locally, at x0. We have corrobo-
rated this conclusion by extensive Brownian dynamics sim-
ulations and by numerical solution of the Fokker–Planck
equation, associated with Eq. (1), using the method of
Ref. [34].

Two-dimensional activity patterns. – Compared
to one-dimensional activity landscapes, the situation is

much different in two and higher-dimensional activity land-
scapes. The main reason is that the inevitable zeros of
the polarization do now no longer constrain the overall
current to vanish, unless they cover a whole vertical line
(x0, {y}). The latter is by no means required by the con-
dition on an overall vanishing polarization. Around an
isolated point of vanishing current, the resulting system-
atic flow field (or, equivalently, polarization field) takes the
form of a vortex, as seen in Fig. 1. The sorting and accu-
mulation of ABPs according to their orientation along the
x-direction, which is already possible in one-dimensional
activity landscapes [26–28], and exploited in non-stationary
active Brownian ratchets [20–23], is now modulated along
the second spatial direction y. A particle moving along
the y-direction therefore experiences an effectively time-
modulated activity pattern along the transport direction
x, which has a similar rectifying effect as a dynamical
one-dimensional activity profile.

The stationary but spatially periodically modulated
activity-landscape v(x, y) shown in Fig. 1 provides a proof-
of-principle example and serves as an instructive illustra-
tion of a working ratchet. It features a piece-wise con-
stant activity field with a wedge-shaped passive region,
where v(x, y) = 0, in an otherwise moderately active unit
square with constant v(x, y) = Dr. The landscape is asym-
metric along the x-direction and mirror-symmetric along
the y-direction. The dimensionless numbers δx, δy, and
w = ε(1 − 2δx), with ε ∈ [0, 1], denote the distances of
the edges from the periodic boundaries and the width of
the wedge along its mirror-symmetry axis, respectively.
The extreme geometries correspond to an infinitely thin
passive region (ε = 0) and a convex, triangular passive
region (ε = 1). Both yield sub-optimal ratchets.

While even this simple wedge model is not exactly solv-
able, its performance can qualitatively be understood, using
simple physical arguments. First, the above-mentioned sat-
uration of the ratchet current for infinite speed v → ∞ in
the active region is simply due to the fact that the time
spent by the ABP in the active region becomes negligi-
ble compared to the time τ spent diffusing in the passive
region. This limit is thus amenable to event-driven sim-
ulations. Below, we go one step further and exploit it to
construct a simplified geometric toy model that can provide
semi-analytical estimates for the ratcheting current. Un-
fortunately, as already pointed out above, the conceptually
convenient large-speed limit is somewhat academic. The
practitioner will be interested in more affordable, finite
values of v. Therefore, one should also consider the rectifi-
cation efficiency I/v, which is the current produced by the
ratchet relative to that of a perfectly polarized ABP.

To understand the pertinence of the limits of infinite
or vanishing diffusivities Dr, Dt, recall that ratcheting
is all about the geometric rectification of stochastic mo-
tion. In the limit Dr → 0 (perfect persistence), the ini-
tial orientation is however entirely conserved, while the
limit Dr → ∞ (vanishing persistence) corresponds to ther-
mophoresis within an effective temperature field. So both
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limits do not correspond to genuine active ratcheting. Sim-
ilarly, passive regions, with vanishing speed v = 0, would
all become absorbing for Dt → 0, while in active regions
with a finite v < ∞, Dt → ∞ would wipe out the persis-
tent active motion. Again, both limits are irrelevant for
the discussion of active ratcheting. And even though one
could set Dt = 0 without creating an absorbing state if a
non-vanishing speed v > 0 was maintained in the passive
(or less active) region, this choice would be unnatural, as
it requires passive regions with vanishing (or even “small”)
v to be administratively forbidden. On the other hand,
allowing for some finite Dt À Dr is not very consequential
for the transport in the (more) active regions, where it
merely partially degrades the persistence induced by the
activity. This exposes Dt as a parameter of minor physical
relevance except for its regularizing role in the passive re-
gions. There are however two more reasons for including a
non-vanishing Dt, in the discussion. Firstly, it will actually
matter for the comparison to practical physical realizations
of an ABP ratchet. And secondly, it also serves to reg-
ularize some fine-grained details of the ratchet geometry,
thereby putting a limit on an otherwise potentially limitless
ornamentation of the ratchet design that would in practice
have to be cut off by a physical particle radius. In contrast
to the indispensable finite rotational diffusivity Dr, the
translational diffusivity Dt thus plays a rather technical
role, as a model regularization parameter.

In conclusion, a pertinent discussion of a stationary ABP
ratchet in two dimensions is best conducted for finite diffu-
sivities Dr and Dt. While D−1t may at first suggest itself
as the natural time unit of the ratchet (its dwell time), it
turns out that its physical impact can, for a conceptual
analysis, effectively be taken largely out of the game. The
trick is to set it to an optimum value that maximizes the
rectification efficiency I/v. Our numerical analysis (see
Fig. 2) confirms the expectation that this “best” value is
unique and on the order of Dr, for the simple geometry
shown in Fig. 1. Its physical origin may be understood from
the role played by Dt for controlling the ABP’s escape time
from the passive region. As already pointed out, above, if
Dt � Dr, the ABP will not have lost its polarization when
it leaves the passive region, and therefore typically swim
right back into it, unless that region is narrow enough to
be traversed with a substantial (“tunneling”) probability.
Additionally, the dominance of translational diffusion for
Dt � Dr will unduly degrade the persistence in the ac-
tive region beyond the inevitable minimum, set by Dr. In
contrast, if Dt � Dr, the regularizing effect of the transla-
tional diffusion onto the absorbing state may become less
than optimal, as the initial particle polarization will then
have been lost long before the ABP reemerges from the
passive region. Altogether, this suggests an optimum value
of Dt on the order of Dr, as indeed numerically confirmed
in Fig. 2.

To summarize, the natural length unit of the stationary
active ratchet is set by the domain size, its natural time unit
by the inverse rotational diffusion coefficient D−1r . And it is

active passive

x

y

δx

δyδx

δy

δx

unit cell boundary

Fig. 1: Unit cell of a (unit width) two-dimensional square
ratchet with δx = δy = 0.1, ε = 0.75, v = Dr, and
Dt = 10−4Dr. The background color encodes the probabil-
ity density for the position of the ABP that predominantly
dwells in the wedge-shaped passive region. Arrows show
the mean orientation 〈n〉 of the ABP obtained from Brow-
nian dynamics simulations, colors coding for the angular
variance 1−

`
〈nx〉2+

〈
ny

〉2˘1/2; small values indicate strong
alignment and O(1)-values a random orientation.

conceptually convenient (if not generally highly advisable)
to work with an optimized translational diffusivity Dt ' Dr
of comparable magnitude. The natural scale for the maxi-
mum ratchet current I ' τ−1 ' Dr is then Dr itself, while
that of the natural efficiency I/v is (τv)−1 ' Dr/v. In
practice, both quantities may be expected to be somewhat
reduced by a dimensionless geometrical shape factor. The
crucial message is then that determining the optimum
current I/Dr and efficiency I/v boils down to an infinite
dimensional geometric optimization problem intertwined
with the “thermodynamic” optimizations of the parameters
Dt and Dt, v/Dr, respectively.

Numerical study. – To provide a specific but instruc-
tive example, Fig. 1 illustrates the working principle of
the active Brownian ratchet and its polarization field 〈n〉
for a wedge-shaped passive region in the unit square, with
periodic boundary conditions. As already alluded to above,
the orientation field is indeed seen to form vortices around
the points with vanishing average orientation, which help
to defy the no-go theorem for one-dimensional active ratch-
ets. To create the figure, we solved Eq. (1) by a Brownian
dynamics simulation with time-step dt = 10−4/v. The
central observable is the ratchet current I = x(T )/T , eval-
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uated as the final traversed x-distance of the ABP divided
by the total simulation time T = 107/v. We checked that
the vertical current y(T )/T in the y-direction vanishes, as
expected. As demonstrated in Refs. [26–28], along the
active–passive boundary, the ABP points on average to-
wards the passive region. This may seem surprising, since
it seems to imply a net particle influx into the passive
region. It is an illusion, however, since the swim pres-
sure acting onto an active-passive boundary is not exerted
across it [26]. Actually, the particle can therefore “escape”
from the passive region, against this swim pressure. If it
escapes along the tip-side (right in Fig. 1), it likely ends
up in the indented concave part of the passive region (left
in Fig. 1). On the other hand, if the ABP escapes in the
vertical direction towards the horizontal active channels
of width 2δy (top and bottom in Fig. 1), it can generate
a net current from right to left. As a result, the passive
region blocks particle paths to the right more than those
to the left. Remarkably, active Brownian ratchets relying
on potential forces acting like hard walls [14, 16, 18, 24, 35,
36] are based on the very same principle. The important
difference here is that our setup does not involve any po-
tential forces, and the ABP can thus freely pass back and
forth between the passive and active region. With hard
walls, the ABP would slide along the wedge until it gets
trapped in the pocket or escapes into the channel, thereby
generating a net ratchet current. In our force-free active
ratchet, the sliding motion is replaced by the diffusive
spreading inside the passive region.

For the setup illustrated in Fig. 1, we also investigated
the rectification efficiency I/v for finite activity, v < ∞, as
a function of the diffusivities Dr and Dt. In accord with our
foregoing qualitative considerations, the numerical results
shown in Fig. 2 feature a maximum around I/v ∼ 0.014
for Dr ∼ 0.3v and Dt ∼ 0.001v. These optimum values
are specific for the chosen geometry and cannot be found
without performing the numerical simulation.

A more challenging task is to find the most efficient
ratchet geometry. Here, we restrict this infinite dimensional
optimization problem to the class of wedge or arrowhead
shapes illustrated in Fig. 1. We ask for the optimum depth
of the concave indentation, which is parametrized by ε. For
shallow indentations, the ABP spends more time in the
passive region as needed to loose its polarization. This re-
duces the current and the rectification efficiency compared
to a design with a stronger indentation. However, for very
deep indentations, the passive region becomes too narrow
to allow for a substantial reorientation of the traversing
ABP, and the corresponding “tunneling” of the polariza-
tion eventually nullifies the ratcheting effect (I ∝ ε → 0).
In other words, there is necessarily a non-monotonic de-
pendence of the rectification efficiency on ε. As illustrated
in Fig. 3, this implies that the intermediate optimum value
of ε, once again, needs to be found numerically. This result
also nicely demonstrates the difference between our force-
free active ratchet and its siblings operating with potential
forces. In particular, for ratchets with hard walls around

Fig. 2: Rectification efficiency I/v as function of the inverse
Péclet numbers Dr/v and Dt/v, for the active Brownian
ratchet with the same geometry as
depicted in Fig. 1.

an exclusion zone of the same shape as our passive region,
the ratcheting would always be maintained, regardless of
the wall thickness. The figure also demonstrates that the
non-monotonic dependence of the rectification strength
on the indentation depth is robust against the fine tuning
of the diffusivities, and that the optimization depends on
the interplay between the geometry and the inverse Péclet
numbers Dt/v and Dr/v.

Beyond the indentation depth, one can also consider
the effect of the parameter δy for the lateral width of the
horizontal active channels. The current decreases both as
δy → 0, when the channel width vanishes, and for δy → 1/2,
when the passive volume becomes marginal relative to
the overall domain width. Similarly, as for ε, Dr/v and
Dt/v, the rectification efficiency I/v thus also exhibits
a maximum as a function of δy. Finally, the remaining
parameter δx measures the overall width of the passive
region in the x-direction. When δx → 1/2, the width of
the passive region vanishes, and therefore also the current
I, similarly as for ε → 0. On the other hand, the current
monotonically increases with decreasing δx → 0, until the
passive region spans across the whole domain. This reveals
that δx is a non-essential parameter that can be set to 0 for
conceptual purposes. Together, the shape parameters δx,
δy, and ε control how pointed and asymmetric the passive
region may become. Generally speaking, I/v grows with
increasing asymmetry.

Geometric toy model. – A more mechanistic insight
into the effects of the ratchet geometry on the current
can be obtained from a schematic, purely geometrical toy
model. It is defined by the idealized rules that the particle
moves with infinite speed v → ∞ in the active region
and rotates and spreads sufficiently fast throughout the
passive region to emerge from its surface with uniform
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Fig. 3: Rectification efficiency I/v as a function of indenta-
tion depth, parametrized by 1− ε (δx, δy = 0.1). Various
combinations of Dr and Dt are shown, with colors coding
for the value of Dr/v: 0.1 (red), 0.3 (blue) and 1 (green),
and line style for Dt/v : 10−4 (solid) and 10−3 (dotted).

spatial and orientational distributions, after a dwell time
τ . The ensuing simplifications enable us to bypass the
computationally expensive Brownian dynamics simulations
for qualitative estimates. The path of the ABP in the
active region is then uniquely determined by the ratchet
geometry alone. Once the ABP leaves the passive region
with randomized orientation and position, it immediately
hits either another part of the same passive region or one
of its periodic images, as sketched in Fig. 4.

One can therefore evaluate the probabilities P←, P→,
and PÖ that the ABP leaving the passive region travels
to the left, right, or merely vertically, respectively. If the
dwell time τ is approximated by the average reorientation
time τ = D−1r of the ABP, as would be the case for an
optimum choice of Dt, one estimates the current as

I = Dr(P← − P→). (2)

The resulting probabilities are shown in Fig. 4 as functions
of the dimensionless horizontal width ε of the symmetry
axis of the wedge-shaped passive region. One sees that
P← > P→ for all values of ε, so that the model always
predicts a leftward current I that is numerically roughly
comparable to the optimum currents I ' Dr obtained from
the Brownian dynamics simulations. It naturally overesti-
mates the current for extreme values of ε, corresponding to
concave and vanishing passive volumes, respectively. The
actual reorientation of the ABP is then much less efficient
than assumed by the stylized model, so that the compar-
ison further corroborates the primary role played by the
optimized destruction of the particle polarization in the
passive region, for the rectificaton efficiency of the ratchet.

An iterative evaluation of the toy model provides further

Fig. 4: Geometric toy model for the ratchet of Fig. 1. a:
ABPs are emitted with random orientation from random
positions on the circumference of the passive region. Those
traveling to the left (red disk sectors) or right (blue disk
sector) contribute to the horizontal current (2). The re-
maining ones contribute to the vanishing current in the
vertical direction. b: The probabilities for transitions
depicted in a.

insight into the role played by the active channels separat-
ing the passive image regions. One can find the distribution
of positions where the uniformly distributed ABP ensemble
leaving the active-passive boundary will become trapped
on the boundary again. The resulting position distribution
can be used as the initial condition for the next step, again
assuming uniformly distributed orientations, for simplicity.
After many iterations of this procedure, the position dis-
tribution no longer changes and one can consider it as an
approximate stationary position distribution of the ABP.
The resulting stationary distribution is similar to that ob-
tained from the Brownian dynamics simulations, depicted
in Fig. 1. It exhibits a maximum in the indentation pocket
of the passive region and, for δx = δy = 0, also at the
reverse indentations connecting the passive region with its
periodic images. These particle accumulations would leak
out into the horizontal active channels to constitute the
ratchet current, for any δy > 0.

Let us finally return to the similarities and differences
between our toy model and gases in similar geometries.
Dense gases or fluids, in which frequent mutual particle
collisions can be relied on for establishing local equilibrium,
should not exhibit ratcheting in spatially periodic setups,
like ours. But in so-called rarefied or Knudsen [29] gases,
without an efficient local equilibration mechanism, parti-
cles move ballistically in the space between boundaries,
similarly as ABPs in the active region of our geometric toy
model, so that the analysis of transport largely boils down
to the problem of boundary conditions. This is then a
more subtle issue [30, 37] that would deserve further study.

Conclusion. – Spatially inhomogeneous activity pro-
files can be used to sort active Brownian particles according
to their orientations [26–28]. In one spatial dimension, the
requirements for the overall system’s polarization to vanish,
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together with particle conservation, prevent ratcheting in
time-constant spatially-periodic activity landscapes. In two
and more dimensions, such active ratcheting is possible. We
analyzed a proof-of-principle realization of a wedge-shaped
two-dimensional autonomous force-free active Brownian
ratchet. It demonstrates that active ratcheting does not
require a dynamic activity profile nor help from potential
forces or walls.

Our study can be generalized in several ways. For ex-
ample, it seems worthwhile to find out whether the wedge-
shaped ratchet design maximizes the current or can be
surpassed by more optimized geometries. One can also
study how the ratcheting current would change in activity
profiles moving with a constant velocity or in the presence
of an external force interfering with the ratcheting. An-
other potentially interesting extension could be to ABPs
with translational and/or orientational inertia [38]. And,
eventually, it would be intriguing if the ratcheting currents
in rarefied gases, hinted at by our toy model, could be
experimentally demonstrated.
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Abstract
Stochastic processes with temporal delay play an important role in science and engineering
whenever finite speeds of signal transmission and processing occur. However, an exact
mathematical analysis of their dynamics and thermodynamics is available for linear models only.
We introduce a class of stochastic delay processes with nonlinear time-local forces and linear
time-delayed forces that obey fluctuation theorems and converge to a Boltzmann equilibrium at
long times. From the point of view of control theory, such ‘equilibrium stochastic delay processes’
are stable and energetically passive, by construction. Computationally, they provide diverse exact
constraints on general nonlinear stochastic delay problems and can, in various situations, serve as
a starting point for their perturbative analysis. Physically, they admit an interpretation in terms of
an underdamped Brownian particle that is either subjected to a time-local force in a
non-Markovian thermal bath or to a delayed feedback force in a Markovian thermal bath. We
illustrate these properties numerically for a setup familiar from feedback cooling and point out
experimental implications.

1. Introduction

Consider the stochastic delay differential equations (SDDEs)

ẋ(t) = v(t), (1)

mv̇(t) = F(t) + FD(t − τ) + η(t) (2)

with a nonlinear time-local force F(t) = F(x, v, t) and a linear delay force (τ > 0)

FD(t − τ) = −κτ x(t − τ) − γτv(t − τ), (3)

with constant coefficients κτ and γτ . The dynamics is randomly driven by a possibly non-Markovian,
zero-mean Gaussian stochastic noise η(t). Intuitively, one can think of equations (1) and (2) as describing
the time evolution of the position x(t) and velocity v(t) of a Brownian particle with mass m and driven by
the combined forces η, F, and FD. These forces can arise from various origins, e.g. from the environment
and the experimental apparatus, including some specifically tailored feedback mechanisms. Further
specifications and various interpretations will be provided below. Due to finite speeds of information
transfer and processing and elements with slow response, such equations are ubiquitous in engineering [1],
biology [2–4] and even economics [5–8]. Most frequently, they are applied in modelling of feedback loops
[9–26], neural networks [27–30], population dynamics [31, 32], and epidemiology [33, 34].

Rising interest in SDDEs among physicists [35] is driven by recent experiments. In the so-called
feedback cooling experiments with Brownian particles, one employs a feedback of the particle’s past velocity
to achieve a more localised state [36–39]. In the surging field of active matter [40–42], inevitable time
delays in the control of robotic swarms [18] led to investigations of the stability and localization of
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many-body systems with delayed interactions [18, 21, 22, 25, 43]. In agreement with engineering practice
[1, 10, 11, 44], it was found that delay generally introduces instabilities and oscillations into the dynamics
[22, 43] and increases stability and localization only in special cases [41].

Similarly, inevitable instrumental and feedback delays in micro-manipulation experiments [22, 45] used
to test stochastic thermodynamics [46, 47] has triggered investigation of the thermodynamic aspects of
SDDEs [13, 48–51]. There are interesting consequences of the acausality of time-reversed processes in delay
systems due to the tracking (future) history for the time-reversal. If interpreted as feedback-driven systems
with information inflow, their total entropy production rate, Ṡtot, evaluated as a ratio of forward to
backward path probabilities, is not just the sum, ṠS + ṠNM, of entropy fluxes into the system (S) and into
the bath (B) [48, 49, 51, 52]. This means that the second law Ṡtot � 0 does not imply positivity of ṠS + ṠNM.
These results are generic for the system (1) and (2) with a Gaussian white noise η(t) ∝ ξ(t), 〈ξ(t)〉 = 0,
〈ξ(t)ξ(t′)〉 = δ(t − t′). However, explicit expressions are currently only available for linear systems
[48, 49, 51–53], which fail to describe a broad range of interesting effects observed in presence of nonlinear
forces [48, 49, 51]. The same can be said about the probability densities for SDDEs. They are available only
for simple linear setups [43, 54–63], and nonlinear systems have been treated by various approximate
techniques [18, 43, 60, 61, 64–66].

Even without time delay, an exact treatment of nonlinear systems is indeed difficult. However, their
stationary and relaxation properties are known exactly in thermodynamic equilibrium. In this work, we
extend this property to a certain class of SDDEs. Our results can be of interest not only to the theory of
delay processes but also in applied contexts, like in control theory.

2. Main results

As our main result, we identify a class of nonlinear delay processes that admit a standard thermodynamic
description, including the second law inequality Ṡtot = ṠS + ṠNM � 0. If not driven, they obey Boltzmann
statistics in the steady state. We therefore characterize these processes as ‘equilibrium delay processes’. The
key idea is to accompany the time-delayed feedback force applied to the system with a suitable colored noise
ηFB and interpret the resulting overall system as a particle immersed in an equilibrium reservoir and
controlled by time-local external forces. We further point out how to interpret equations (1) and (2) as a
feedback-driven system and how to apply our results therein. Altogether, we provide three complementary
interpretations for the same stochastic process: a special type of system with time-delayed forces (section 1),
system with time-local forces and a heat bath with memory (section 2.1), and a feedback-driven system
(section 2.3). They differ just in the interpretation of the individual forces on the right-hand side of
equation (2). In table 1, we summarize relations between the three interpretations and the definitions of the
corresponding forces. While the purpose of this paper is to primarily discuss equilibrium delay processes
theoretically, appendix B offers some suggestions regarding possible experimental realizations for
Markovian thermal reservoirs (described by white noise) using state-of-the-art experimental setups similar
to those in [39, 67–69]. In the following, we take Boltzmann’s constant kB as our unit of entropy.

2.1. Mapping to time-local control and non-Markovian heat bath (table 1(B))

In this section, we describe the reinterpretation of the delay system (table 1(A)) as an equilibrium system
with memory (table 1(B)). Consider a delay system described by equations (1) and (2) with the time-local
force

F(t) = FE(x, v, t) + κτ x(t) − γ0v(t). (4)

The specific form of the terms proportional to the constants γ0 > 0 and κτ facilitates the
reinterpretation of the delay force FD in equation (2) as part of a friction force, below. The remaining force
in equation (4),

FE(x, v, t) = −∂xU(x, t) + FN(x, v, t) (5)

is an arbitrary time-local force applied by external agents. It is composed of potential and non-potential
components −∂xU(x, t) and FN(x, v, t). To distinguish the force FE from the force applied via the feedback
loop in the feedback interpretation of equations (1) and (2) (table 1(C)), we call it the ‘ordinary’ external
force.

Equation (2) now assumes the form

mv̇(t) = FE(t) + FF(t) + η(t) (6)

with FF(t) ≡ κτ [x(t) − x(t − τ )] − γ0v(t) − γτv(t − τ ). It resembles the dynamical equation for the
velocity of a particle subjected to an external force FE and immersed in a viscoelastic solvent exerting on the
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Table 1. Three interpretations of the delay Langevin equation (2) employed in this paper and the corresponding
forces. The forces in the three interpretations yield the same change in the momentum mv̇ and thus the same
stochastic process. The term κτ x(t) − γ0v(t) in the force F in the interpretation A is introduced to facilitate the
reinterpretation of the delayed force FD as part of the friction force FF in B. By ‘ordinary external forces’ in A we mean
time-local forces arising from physical interactions and thus not applied via a feedback loop.

A. Delay system mv̇ = F + FD + η

Time-local systematic force: F = FE + κτ x(t) − γ0v(t)
Ordinary (non-feedback) external force: FE = −∂xU(x, t) + FN(x, v, t)

Potential component of FE: −∂xU(x, t)
Non-potential component of FE: FN(x, v, t)

Time-delayed force: FD = −κτ x(t − τ) − γτ v(t − τ)
Total coloured noise from the environment and experimental apparatus: η(t)

B. System with non-Markovian heat bath and time-local control mv̇ = FE + FF + η

Time-local external force: FE

Time-delayed non-Markovian bath friction: FF = κτ x(t) − γ0v(t) − κτ x(t − τ) − γτ v(t − τ ) = κτ x(t) − γ0v(t) + FD

Total force from the non-Markovian heat bath at temperature T: FF + η(t)
Coloured noise from the non-Markovian bath: η(t)

Heat flux into the system from the non-Markovian bath: Q̇NM = 〈(FF + η)ẋ〉
C. Feedback-driven system with Markovian heat bath mv̇ = FE + FFB − γ0v(t) +

√
2T0γ0ξ(t)

Time-local external force: FE

Feedback force: FFB = κτ x(t) − κτ x(t − τ) − γτ v(t − τ) = κτ x(t) + FD + ηFB(t) = FF + γ0v(t)
Non-Markovian noise exerted by the feedback loop: ηFB(t) = η(t) − √

2T0γ0ξ(t)
Total force from the Markovian bath at temperature T0: −γ0v(t) +

√
2T0γ0ξ(t)

Time-local friction from the Markovian bath: −γ0v(t)
White noise from the Markovian bath:

√
2T0γ0ξ(t)

Heat flux into the system from the Markovian bath: Q̇M = 〈(−γ0v + η)ẋ〉

particle the overall force FF + η with systematic component (friction) FF, and stochastic component (noise)
η.

Such noise and friction can be interpreted to arise from an ordinary equilibrium heat bath, i.e. a
many-body system with infinite heat capacity in thermal equilibrium, with a somewhat peculiar memory
that gives rise to an ‘echo’ in the noise and friction (table 1(B)). Notably, for an equilibrium heat bath with
a friction force linear in the variables x and v, such as FF, the time-reversal symmetry of the underlying
microscopic dynamics implies that the friction and noise are interrelated by the so-called second
fluctuation–dissipation theorem or fluctuation–dissipation relation (FDR) [70–73]

〈η(t)η(t′)〉 = TΓ(|t − t′|). (7)

Here T denotes the temperature and Γ(t) is the so called friction kernel defined by the integral

FF(t) = −
∫ t

−∞
dt′ Γ(t − t′)v(t′). (8)

For a given friction FF, the FDR (7) might imply that the noise must be complex valued. However, in order
to admit its ordinary physical interpretation and realisability in a lab, η(t) is required to be a real-valued
function. This condition implies that its power spectrum must be non-negative,

S(ω) =

∫ ∞

−∞
dt 〈η(t)η(0)〉 exp(−iωt) � 0. (9)

For the system of equations (1)–(6), the conditions (7) and (9) can be satisfied for a certain range of model
parameters only, see sections 3 and 4. In this range, equations (1) and (6) can be interpreted as describing a
system with internal Hamiltonian H = U(x, t) + mv2/2 acted upon by a non-potential force FN and
coupled to a non-Markovian ‘equilibrium bath’ at temperature T. Let us now review some general
properties of this system.

2.2. Properties of the mapping (table 1(B))

Average thermodynamics. If the above equilibrium mapping holds, the system’s thermodynamics obeys
standard relations from classical [74] and stochastic [46, 47] thermodynamics. Namely, the average entropy
flux into the non-Markovian heat bath at temperature T is given by the Claussius equality

ṠNM = −Q̇NM/T (10)

3
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where Q̇NM = 〈(FF + η)ẋ〉 is the average heat flux from the heat bath into the system. It can also be
interpreted as the work done by the bath on the system per unit time. Here and below we employ
Stratonovich calculus. The averages 〈•〉 should be performed over many realizations of the stochastic
process.

The average heat flux is related via the first law, d〈H〉/dt = Q̇NM + ẆE, to the average power input,
ẆE = 〈∂U/∂t + FNẋ〉, of the system, due to external manipulations of the potential U and the
non-potential force FN. The sum of the rate of change of the system entropy, ṠS, and the entropy influx ṠNM

in equation (10) is the total entropy production, which obeys the second law of thermodynamics [74]:

Ṡtot = ṠS + ṠNM � 0. (11)

Dynamics. Unlike a general delay system, which can exhibit over-damped, damped oscillatory, but also
diverging behavior [10, 11, 13, 43, 61, 62], systems obeying the mapping of section 2.1 always eventually
relax into a time-independent steady state for time independent parameters, confining potential U, and
stationary non-potential forces FN. If the latter vanishes in equation (5), the stationary probability density
function (PDF) for position and velocity is given by the Gibbs canonical distribution,
p(x, v; T) = px(x; T)pv(v; T), with

px(x; T) = exp[−U(x)/T]/Zx(T), (12)

pv(v; T) = exp(−mv2/(2T))/Zv(T), (13)

normalized by Zx(T) =
∫ ∞

−∞dx exp(−U(x)/T) and Zv(T) =
∫ ∞

−∞dv exp(−mv2/(2T)). This is an

equilibrium steady state and thus the corresponding entropy production rates ṠS, ṠNM, and Ṡtot vanish. For
quasi-static variations of the potential, when the system PDF evolves through a set of such states, the total
entropy change ΔStot =

∫ t
0 Ṡtot(t′)dt′ vanishes and the entropy change in the system, ΔSS, is exactly

balanced by the entropy change in the bath, ΔSNM. The relaxation process to equilibrium is always
accompanied by a decrease in the free energy of the system. This functional thus represents the Lyapunov
function for the relaxation process that can easily be evaluated from stochastic trajectories of the system.
Even stronger restrictions on the relaxation dynamics are imposed by the Evans–Searles fluctuation
theorem [75, 76]. In contrast, besides a limited success [77], it is currently unknown if similar general
restrictions also apply to relaxation towards non-equilibrium steady states.

The validity of these results for an arbitrary potential U(x) follows from general considerations of
equilibrium statistical physics [74] and the FDR [70–73]. However, a closed dynamical equation, e.g. of
Fokker–Planck type [78, 79], for the PDF of a nonlinear delay process is not known [13] making a general
direct verification difficult. In section 5, we provide an explicit test for the specific potential
U(x, t) = k6x6/6 + k3x3/3 using Brownian dynamics (BD) simulations of equations (1) and (2). Besides, we
tested the described results for various other polynomial potentials.

We stress that the described equilibrium-like properties of equilibrium delay processes do not trivialize
their dynamics. As an example, consider a situation when the force F in equation (2) is linear in x and v and
thus the system (1) and (2) is exactly solvable. For fixed initial conditions, one finds that the average
position 〈x(t)〉 and velocity 〈v(t)〉 are identical for equilibrium (ηFB in table 1 determined by the conditions
(7) and (9)) and standard (ηFB = 0) delay processes. The four correlation functions 〈A(t)B(0)〉 for
A, B = x, v may then merely differ in the stationary distribution of the initial conditions.

Fluctuation theorems. From a stochastic-thermodynamics perspective, it is interesting to also consider a
finite-speed protocol rendering the potential time-dependent. Specifically, in section 5, we test two
fluctuation theorems for the stochastic work w =

∫ t
0 ∂U(x, t′)/∂t′ dt′ done on the system, if k6 = k6(t′),

t′ ∈ (0, t) is varied non-quasi-statically, namely the Jarzynski equality [80]

〈exp(−w/T)〉 = exp(−ΔF/T) (14)

and the Crooks’ fluctuation theorem [81]

ρF(w)/ρR(−w) = exp[(w − ΔF)/T]. (15)

Here, ΔF is the free energy difference between equilibrium states corresponding to the final and initial
values of the potential, ρF is the probability distribution for work measured along the process when the
potential changes from U(x, 0) to U(x, t), and ρR is the probability distribution for work measured along the
time-reversed process. For the both fluctuation theorems, the forward process departs from equilibrium.
The validity of Jarzynski’s equality requires the existence of initial and final Gibbs stationary states and
Crooks’ fluctuation theorem additionally requires the FDR and Gaussianity of the noise [82]. The described
processes fulfill all these requirements and, indeed, our simulations confirm equations (14) and (15).
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Perturbative expansions. Even though based on an ad hoc choice of the noise our results represent first
exact analytical solutions to stationary PDFs for a nonlinear SDDE. As such, they might pave the way for
studying steady states and thermodynamic properties of systems controlled by more general nonlinear
SDDEs. We show in section 6 that linear-response theory [72] can be used to calculate time-dependent
averages in perturbed (nonlinear) equilibrium delay systems. Besides such classical linear response, one can
derive some explicit approximate formulas for specific perturbations on the level of moments calculated
directly from the nonlinear system of SDDEs (1) and (2).

2.3. Equilibrium feedback (table 1(C))
The formal interpretation of dynamical equations (1) and (2) as a model for a system immersed in a
non-Markovian equilibrium bath and driven by a time-local force FE, in section 2.1, allowed us to utilize a
wealth of known results. However, in practice, these equations usually describe feedback-driven systems in
contact with a Markovian heat bath exerting a memoryless friction −γ0v and Gaussian white noise√

2T0γ0ξ(t) with 〈ξ(t)ξ(t′)〉 = δ(t − t′). Usually the system’s environment provides such a bath. To
investigate this ‘more natural’ interpretation, we rewrite the dynamical equation for the velocity as

mv̇(t) = FE(x, v, t) + FFB − γ0v(t) +
√

2T0γ0ξ(t) (16)

and interpret it as describing a system immersed in a standard, i.e. Gaussian and Markovian, heat bath at
temperature T0. This system is controlled by the time-local force FE and the feedback force

FFB = κτ [x(t) − x(t − τ)] − γτv(t − τ) + ηFB(t) (17)

composed of the systematic delayed component FF and the ‘feedback’ noise ηFB(t) ≡ η(t) − √
2T0γ0ξ(t),

see table 1(C). Given that the conditions (7) and (9) are fulfilled, we call this process an equilibrium
feedback (EFB) process.

Importantly, the formal results concerning the system dynamics, i.e. the stationary PDFs (12) and (13),
are valid regardless of the interpretation, and thus they apply also for EFB. This means that the EFB is ideal
from the point of view of passivity-based control [83], which is a branch of control theory that aims to
balance the power delivered into the system with its dissipation. Generic feedback can lead to divergences
and instabilities when the energy influx by the feedback gradually increases the internal energy of the
system. However, EFB processes are always stable and passive in the sense that the resulting steady states are
robust against perturbations and all the energy injected into the system is dissipated. In appendix A, we
moreover show that, under realistic conditions, the temperature T corresponding to the Boltzmann PDF
reached by the EFB is always larger than the ambient temperature T0.

The thermodynamics of EFB has to be treated with care. In particular, the total entropy production is
interpretation-dependent. But the stochastic work done on the system by varying the potential remains the
same, and the fluctuation theorems (14) and (15) are still valid. Differences arise in the definitions of the
remaining thermodynamic fluxes. With the present definition of the heat bath, the heat flux reads
Q̇M = 〈(−γ0v +

√
2T0γ0ξ)ẋ〉. And, in addition to the average power ẆE delivered to the system by the

potential and non-potential forces, one has to consider also the power ẆFB = 〈FFBẋ〉 associated with the
feedback force FFB.

In a conventional feedback process, this power is accompanied by an information influx [48, 49, 51, 52]
that, for example, allows the feedback to cool the system [36, 38]. The resulting (effective) temperature of
the system is then smaller than the temperature of the ambient bath, implying a positive heat flux from the
bath into the system, Q̇M > 0. In a steady state, the conventional feedback is thus able to cool the ambient
bath by extracting the power −ẆFB = Q̇M > 0 from it. However, for an arbitrary force FE, the second law
(11) together with the relation Q̇NM = Q̇M + ẆFB = −TṠNM imposes an upper bound Q̇M � TṠS − ẆFB

on the heat delivered from the bath to the system via the EFB. And, in appendix A, we show that under
equilibrium conditions, ∂U/∂t = FN = ṠS = 0, the EFB brings the system to an effective temperature, T,
larger than the ambient temperature, T0. Hence, the heat flux Q̇M is always negative, the EFB performs
network on the system, ẆFB = −Q̇M > 0, and it eventually heats the ambient bath. This means that the
EFB cannot be used for standard (zero non-potential force and time-independent potential) feedback
cooling of the system [36, 38].

Sections 3 and 4 clarify when EFB can be realized with time-delayed forces depending on either the
earlier position or velocity, i.e. when the corresponding feedback noise ηFB in table 1(C) can be constrained
to be real valued. The technical details are given in appendix B. The resulting parameter regimes where the
EFB can be realized in these two situations are depicted in phase diagrams (figure 1 and 2). EFB with
time-delayed forces depending on both delayed position and velocity can be investigated in a similar
manner, but the corresponding phase diagram becomes three-dimensional. In section 5, we verify the
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Figure 1. Phase diagram of the position feedback in the reduced variables κ̃τ = κτ /m and γ̃0 = γ0/m. In the FDR region,
γ̃0 � max(κ̃τ , −0.22κ̃τ )τ and the system has a positive relaxation time tR. Then the system is stable for arbitrary delay and it is
possible to drive it by an equilibrium position feedback. In the no-FDR region, γ̃0 < max(κ̃τ , −0.22κ̃τ )τ and tR > 0, the system
reaches a stable steady state, but the equilibrium position feedback cannot be realized in practice. In the unstable region (tR < 0),
the velocity exhibits exponentially diverging oscillations due to large time delays and thus no steady state exists. For τ = 0, the
process is stable.

Figure 2. Phase diagram of the velocity feedback in the reduced variables γ̃0 = γ0/m and γ̃τ = γτ /m. In the FDR region,
0 � |γτ | � γ0 and the system has a positive relaxation time tR. Then the system is stable for arbitrary delay and it is possible to
drive it by an equilibrium velocity feedback (EFB). In the no-FDR region, γ0 � |γτ | and tR > 0, the system reaches a stable
steady state but the EFB cannot be realized in practice. In the unstable region (tR < 0), the velocity exhibits exponentially
diverging oscillations due to large time delays and thus no steady state exists.

validity of our theoretical results by a BD simulation of the equilibrium velocity feedback. In section 6, we
discuss several perturbative expansions pushing the theory beyond the parameter regime of the equilibrium
delay processes. We conclude in section 7.
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3. Equilibrium position feedback

Let us now consider the situation of the position-dependent feedback force (γτ = 0 in equation (17))

FFB = κτ [x(t) − x(t − τ)] + ηFB(t) = FF + γ0v(t) + ηFB(t). (18)

The generalized friction force FF = κτ [x(t) − x(t − τ )] − γ0v(t) can be written using the friction kernel

Γ(t) = [2γ0δ(t) − κτΘ(τ − t)] Θ(t), (19)

where Θ(.) denotes the Heaviside step function. This result can be verified by direct substitution into
equation (8) and integrating the term including velocity v(t) = ẋ(t) by parts, cf equation (9.14) in reference
[13].

The conditions (7) and (9) on the EFB imply that the friction kernel (19) and the total noise
η(t) = ηFB(t) +

√
2T0γ0ξ(t) (see table 1(A)) must obey the FDR,

〈η(t)η(t′)〉 /T = 2γ0δ(t − t′) − κτΘ(τ − |t − t′|), (20)

and that the corresponding power spectrum must be non-negative,

S(ω) = 2

[
γ0 − κττ

sin(ωτ)

ωτ

]
� 0. (21)

Using max[sin(x)/x] = 1 and min[sin(x)/x] ≈ −0.22, this implies the inequalities

0 � max(κτ , −0.22κτ )τ � γ0, (22)

which specify the parameter regime where the noise η(t) satisfying the FDR (20) can actually be realized in
the lab (for details of noise realization, see appendix B). The inequalities require non-negative γ0 which is
always fulfilled in the EFB interpretation, where γ0 measures the strength of the background friction. For
γ0 � 0, the inequalities (22) bounds the feedback strength κτ as −γ0/0.22 � κτ � γ0.

Under these conditions, the equilibrium position feedback fulfills all the properties described in
section 2. In particular it eventually yields the stable equilibrium distribution (12) and (13) whenever
∂U/∂t = FN = 0. However, the time delay in a general feedback may yield diverging trajectories for certain
parameter values. As an independent check that the parameter regime (22) allowing for equilibrium
position feedback always leads to stable stationary solutions, we investigate the overall stability of position
feedback described by equations (16) and (18) for the case FE = 0, which can be inspected analytically.

Specifically, the process (16) eventually reaches a stable steady state if all the corresponding relaxation
times, tR, are positive. To calculate them, we substitute the feedback force (18), FE = 0, and v = ẋ in
equation (16), set η(t) = 0, and solve the resulting equation using the exponential ansatz x = exp(−λt/τ).4

The obtained transcendental equation

mλ2 = γ0τλ − κτ τ
2
[
exp(λ) − 1

]
(23)

can in general only be solved numerically and has infinitely many solutions. As the relaxation time of the
system, tR, we identify the smallest τ/R[λ] solving equation (23), where R[•] denotes the real part. The
system eventually relaxes into a stable steady state with 〈v(t)〉 = 0 if tR > 0. An approximate explicit
solution to equation (23) can be obtained in the limit of small delay. Expanding the friction FF in
equation (18) up to the first order in τ , we get

mv̇(t) ≈ −(γ0 − κττ)v(t) +
√

2T0γ0ξ(t). (24)

The last two terms can be interpreted as a noise and friction from an equilibrium bath with friction
coefficient γ0 − κττ , which yields stable dynamics where all the energy injected into the system by the
feedback is dissipated (passive dynamics) if

κττ � γ0. (25)

The conditions for the general case are depicted in figure 1. Indeed, the whole parameter regime where the
EFB can be defined according to the FDR (20) (green) is found to be stable. This shows that, as expected,
EFB is passive and stable. Nevertheless, the regime of stability, tR > 0, is broader (orange). Noteworthy, the

4 One can analogously treat systems with a potential U, by linearising it around a (local) minimum and absorbing the resulting linear
time-local force into κτ .
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system can be stable even for γ0 < 0 if the feedback strength κτ is also sufficiently negative. This could have
been anticipated from the approximate condition for stability (25), which predicts the boundary between
stable and unstable regimes for γ̃0τ � −2 remarkably well. The approximate dynamics allows to define an
effective FDR with an effective temperature Teff = T0/(1 − κτ τ/γ0). However, beyond the small delay
approximation, the existence of such effective FDR is not guaranteed. For smaller values of γ̃0, higher order
terms in the delay make the system more unstable than expected from the linear analysis. In the unstable
regime (blue), the mean velocity exhibits exponentially increasing oscillations [43, 62].

4. Equilibrium velocity feedback

Next, we perform the same analysis as in the previous section for the velocity-dependent feedback force
(κτ = 0 in equation (17))

FFB = −γτv(t − τ) + ηFB = FF + γ0v(t) + ηFB. (26)

The friction FF = −γτv(t − τ ) − γ0v(t) now corresponds to the friction kernel

Γ(t) = [2γ0δ(t) + γτ δ(t − τ)] Θ(t). (27)

in equation (8). The FDR relation (7) for the total noise η(t) = ηFB(t) +
√

2T0γ0ξ(t) (see table 1(A)) now
reads

〈η(t)η(t′)〉 /T = 2γ0δ(t − t′) + γτ δ(|t − t′| − τ), (28)

and thus the condition following from the positivity of the power spectrum (9) reads

S(ω) = 2 [γ0 + γτ cos(ωτ)] � 0. (29)

The equilibrium velocity feedback thus can be realized if the inequality

0 � |γτ | � γ0, (30)

holds (for detail of the realization, see appendix B). As we have seen for the equilibrium position feedback,
γ0 must be non-negative, which is fulfilled in the EFB interpretation. For γ0 � 0, the inequalities (30)
impose that the amplitude γτ of the delayed component of the friction cannot exceed that of the Markov
component. Different from the corresponding inequality for κτ in the position feedback, this condition is
now symmetric with respect to γτ = 0.

Similarly as in the case of the position feedback, we inspect the region of stability of the general linear
velocity feedback for FE = 0 and compare it to the region (30) allowing to realize the stable EFB. To this
end, we insert the feedback force (26) and FE = 0 in equation (16), set η(t) = 0, and solve the resulting
equation using the exponential ansatz v(t) = exp(−t/tR + iωt), with real parameters tR and ω. Solving the
resulting algebraic equation for the relaxation time tR, we find

tR =
τ

R
(
γ̃0τ − W

[
−γ̃τ τ exp(γ̃0τ)

]) , (31)

where W[.] stands for the Lambert W function, R(.) denotes the real part, and γ̃0 = γ0/m and γ̃τ = γτ/m.
The Lambert W function is a multivalued function and, in order to assess stability of the system, we
numerically determine the smallest tR resulting from equation (31). In this case, the small-delay expansion
of the friction FF in equation (26) yields

mv̇(t) ≈ −(γ0 + γτ )v(t) + γτ τ v̇(t) +
√

2T0γ0ξ(t) (32)

and thus it suggest that the system will be stable for γτ > −γ0 (positive effective friction coefficient) and
γτ τ/m < 1 (positive effective mass). It also allows to define an effective FDR with an effective temperature
Teff = T0/(1 + γτ/γ0) valid for small delays.

These formulas correctly yield the bottom boundary between the unstable and stable regions in the
phase diagram generated using the exact conditions (30) and (31) depicted in figure 2. As for the position
feedback, the region where the FDR (20) and thus the equilibrium velocity feedback can be defined (green)
is indeed stable. And the regime of stability, tR > 0, is broader than the FDR regime and still extends to
region of negative friction coefficients γ0 < 0 (orange). In the unstable regime (blue), the mean velocity
again exhibits exponentially increasing oscillations [43, 62].
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Figure 3. Stationary PDFs for x (a) and v (b) for the potential (36) with k6 = k3 = 1 in the parameter regime τ ≈ 0.28,
γ̃τ τ ≈ 0.28 (optimized for relaxation times of feedback processes with U = 0, see appendix C). The data for the EQ and
equilibrium velocity feedback (EFB) perfectly agree with the corresponding Boltzmann PDFs (12) and (13). Concerning the
PDFs for generic velocity feedback (NEFB), no exact analytical formula for the shown PDFs is known. For all figures, simulation
data was obtained from 50 000 trajectories of length 10 with time-step 0.001.

5. Demonstration of equilibrium velocity feedback

Let us now discuss a specific realization of the equilibrium velocity feedback and show that it indeed has all
the properties described in section 2. As detailed in appendix B a possible (parsimonious) form of the total
noise η(t) = ηFB(t) +

√
2T0γ0ξ(t), which fulfills the FDR (28) for equilibrium velocity feedback, is obtained

by setting ηFB(t) =
√

ατξ(t − τ). The parameters of the corresponding feedback force FFB(t) (26),

FFB(t) = −γτv(t − τ) +
√

ατξ(t − τ), (33)

can be tuned to represent various equilibrium velocity delay process. As a benchmark for the EFB, we
consider three processes distinguished by values of the coefficients γτ and ατ above: (i) equilibrium process
(EQ) with γτ = ατ = 0 and thus FFB(t) = 0; (ii) non-equilibrium (generic) velocity feedback (NEFB) with
γτ > 0 and ατ = 0 and thus FFB(t) = −γτv(t − τ); and (iii) equilibrium velocity feedback (EFB) with
γ0 � γτ > 0 and ατ > 0 obeying equation (B.2). The last condition is compatible with an equilibrium state
at arbitrary temperature T > T0, if we set

ατ = 2γ0 (T − T0) , (34)

γτ = ±2γ0

√
T0

T

√
1 − T0

T
, (35)

where T0/T � 1. Thus, in agreement with the discussion in appendix A, the additional noise present in the
EFB always agitates or ‘heats’ the system above the ambient temperature T0. Note that the above expressions
do not depend on the delay τ .

5.1. Dynamics
To gain intuition concerning the behavior of the equilibrium velocity feedback process, we now consider the
specific system obeying equations (1) and (16) with the feedback force (33) and the force FE = −∂U/∂x
induced by the potential

U(x) =
k6

6
x6 +

k3

3
x3. (36)

We solve the dynamical equations using BD simulations for the NEFB, EFB and EQ described above. In all
our illustrations, we use 1/γ̃0 as our time unit and

√
T0/m as our length unit. Velocity is thus measured

in units of γ̃0

√
T0/m. We show results from BD simulations for the two parameter sets (γ̃0τ , γ̃τ τ) ≈

(0.28, 0.28) and (γ̃0τ , γ̃τ τ) ≈ (0.42, 0.24). The first one yields fast relaxation of both feedback processes for
U = 0. The second one is optimised to provide small velocity variance for EFB for U = 0. For more details,
see appendix C.

In figure 3 and 4 we show the stationary PDFs for x and v obtained for the first and second parameter
set, respectively. In both figures, the simulated PDFs for EQ and EFB perfectly overlap with the
corresponding analytical Boltzmann PDFs (12) and (13) providing numerical evidence for our claims in
section 2. As expected, the position and velocity fluctuations are always smallest for the NEFB and largest
for the EFB.
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Figure 4. The same as in figure 3 in the parameter regime τ ≈ 0.42, γ̃τ τ ≈ 0.24 (optimized for velocity variance of EFB, see
appendix C). Other parameters are the same as in figure 3. The insets magnify the regions around the global maxima of the
PDFs. The data for the EQ and equilibrium velocity feedback (EFB) again perfectly agree with the corresponding Boltzmann
PDFs (12) and (13).

To compare the relaxation dynamics of the three processes, we show in figure 5 the corresponding mean
values 〈x〉 and 〈v〉 and variances σ2

x and σ2
v as functions of time for the initial condition (v, x) = (1, 0) for

t � 0. Interestingly, the first moments corresponding to the EFB (solid yellow line) relax faster than those
for the NEFB (dot-dashed blue line) and much faster than those for the EQ process (broken green line).
This is clearly a nonlinear effect because, for U = 0, the EFB and NEFB share the relaxation time (31).
Especially for the EFB the relaxation is considerably faster for the first parameter set (panels (a)–(d)) than
for the second choice (panels (e)–(h)). This suggests that at least some intuition gained from the linear
regime U = 0 also applies to the nonlinear dynamics. In accord with figures 1 and 2, the position and
velocity fluctuations are always smallest for the NEFB and largest for the EFB. Smaller velocity but also
position variance for the EFB is obtained for the second parameter set.

For the NEFB we were not able to analytically predict both the time evolution of the depicted variables
and their asymptotic values. To solve the full transient dynamics for the EQ and EFB is also a difficult
problem. However, figure 5 shows that the moments in question converge to the values calculated from the
corresponding Boltzmann distributions (12) and (13) with temperatures T0 (EQ) and T > T0 (NEQ),
which provides further numerical evidence for our claims in section 2.

5.2. Heat flux
Let us now investigate the heat flux Q̇M =

〈
(−γ0v +

√
2T0γ0ξ)ẋ

〉
from the ‘proper’ Markovian bath into

the system due to the feedback, see table 1(C) and section 2.3. In appendix A, we show that for a general
EFB with a positive delay time τ the heat flux always reads

Q̇EFB
M = γ0

(
(σEQ

v )2 − (σEFB
v )2

)
=

2γ0

m
(T0 − T) < 0. (37)

The EFB thus always performs work on the system, which is eventually dissipated in the bath. Figure 6
displays how the heat flux in the system evolves during the relaxation processes for EQ, EFB and NEFB
discussed in figures 5(e)–(h). After the initial transient period, the heat flux for EFB converges to the
negative value given by equation (37) and thus it heats both the system, as the corresponding stationary
variances are larger than for the EQ process, and the proper bath. For EQ, the stationary heat flux is zero as
imposed by the second law. For NEFB, the heat flux converges to a positive value. Thus the NEFB cools the
system while absorbing heat from the proper bath.

The result (37) applies for arbitrarily small positive delay τ . The specific form of the feedback force (33)
allows us to also inspect what happens for vanishing delay. Then the system is still in the Boltzmann
equilibrium state (12) and (13) with temperature T. However, the corresponding total noise
η(t) = (

√
2γ0T0 +

√
ατ )ξ(t) and friction FF = −(γ0 + γτ )v(t) can now be interpreted as a joint influence

of the standard heat bath at temperature T0 and an additional ‘feedback heat bath’ at temperature
TF = ατ/2γτ =

√
T/T0 − 1T/2. The laws of thermodynamics imply that heat flows from hot to cold and

thus Q̇M is positive for TF/T0 > 1 which occurs for T > 2T0. Further, the heat flow is zero for T = 2T0,
where TF = T0 and thus there is one global temperature only, and negative otherwise. Evaluating the heat
flux Q̇EFB

M from equations (16) and (33) with τ = 0 using the approach of appendix A, we find the
expression

Q̇EFB
M =

γ0T0

m

√
T

T0
− 1

(
1 −

√
T

T0
− 1

)
(38)
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Figure 5. Relaxation dynamics of first two central moments of velocity and position for NEFB, EFB and EQ processes departing
(with certainty) from the initial condition x = 0, v = 1 for t � 0. In (a)–(d) we show results for parameters used in figure 3 and
in (e)–(h) for those used in figure 4. The horizontal lines depict stationary values of the shown moments obtained analytically
using the Boltzmann distributions (12) and (13) in figures 3 and 4.

which indeed obeys the described properties.
Since Q̇EFB

M is strictly negative for τ > 0 and can be both positive and negative for τ = 0, it exhibits a
discontinuity at vanishing delay, in accord with the results described in reference [51]. Note that the
presented situation with τ = 0 is physically weird since it seems impossible to record the noise and feed it
back into the system without any delay. It also yields a strange behavior as the heat flux vanishes at the point
where temperatures TF and T0 are equal but T = 2T0. This means that we constructed a bath at
temperature T > T0 by using two strictly identical reservoirs at same the temperature T0 to which the
system couples via different friction coefficients. The two baths provide the same realizations of the white
noise ξ(t), and thus the total noise intensity is given by the sum

√
2γ0T0 +

√
ατ of the intensities of the two

noises. In contrast, connecting a system to two standard heat reservoirs always leads to equilibrium
(vanishing heat flux) when the temperatures of the two baths are equal. The mathematical reason is that
different reservoirs necessarily correspond to different noise realizations, regardless of their temperatures.
As an example, consider heat baths A and B with friction and noise forces given by −γA,Bv,√

2γA,BT0ξA,B(t), with independent Gaussian white noises ξA,B(t). Then the joint action of these baths is
described by the total friction −(γA + γB)v and noise

√
2(γA + γB)T0ξ(t), where ξ(t) is a unit variance

Gaussian white noise (correlated with ξA,B(t)). To sum up, the formal identification of the feedback force
FFB and noise ηFB for τ = 0 as effects of a standard heat bath correctly determines the sign of the heat flux
Q̇M in equation (38), but it is physically problematic.

5.3. Fluctuation theorems
We conclude the numerical part of the paper by testing the work fluctuation theorems (14) and (15). To this
end, we let the system relax into the steady state corresponding to the parameter regime of figures 4(e)–(h)
and then we switch on the time-symmetric protocol

k6 = 1 + 0.9 sin(πt) (39)
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Figure 6. Heat fluxes Q̇M from the (proper) Markovian bath into the system for NEFB, EFB, and EQ processes discussed in
figures 4(e)–(h). The horizontal lines depict the stationary values of the corresponding heat fluxes. For the EQ process, the
stationary value is 0. For the EFB process, it is given by equation (37). For the NEFB, we have no universally valid prediction for
the stationary value of Q̇M. However, the small-τ expansion (32) leads to Teff < T0 and thus it suggests a positive value of Q̇M.

Figure 7. Test of the Crooks fluctuation theorem. (a) Probability densities for work for NEFB, EFB and EQ processes departing
from the stationary state of figure 4 and driven with a time symmetric protocol (39) for the potential (36). The remaining panels
show the function (41) for NEFB (b), EFB (c), and EQ (d). The data suggest that the theorem holds for EFB and EQ, where
C(w) ≈ 0. The shown results were obtained from 5 × 106 runs of BD simulation with time-step dt = 10−3. Except for the
time-dependent driving, all parameters are the same as in figure 4.

with t ∈ (0, 1) for the potential (36). During the time-dependent driving, we measure the stochastic work

w =

∫ 1

0
dt

∂U[x(t), t]

∂t
=

∫ 1

0
dt k̇6x6(t)/6 (40)

and sample its PDF ρ(w). Due to the symmetry of the protocol, the time-reversed process (R) and the
forward process (F) in the fluctuation theorems (14) and (15) coincide and the free energy difference ΔF
vanishes. Validity of the Crooks fluctuation theorem (15) for the acquired PDFs thus implies that

C(w) ≡ log

[
ρ(w)

ρ(−w)
exp(w/T)

]
= 0. (41)

In figure 7(a) we show the resulting PDFs for work obtained for the NEFB, EFB, and EQ processes. The
panels (b)–(d) then show that from the three processes only the EFB (c) and EQ (d) yield C(w) = 0 and
thus fulfill the Crooks fluctuation theorem (41).

12
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Figure 8. Test of the Jarzynski equality for work PDFs from figure 7. The vertical lines for the individual processes correspond to
temperatures evaluated from the stationary variance of the velocity as 1/βX = m 〈v2〉 assuming equipartition theorem. For the
EFB and EQ this temperature equals to the temperature measured in any other way (e.g. from position or velocity PDF). The
NEFB in general induces a non-equilibrium steady state and thus corresponding temperatures measured in different ways are in
general different [84, 85].

The validity of the Jarzynski equality is tested in figure 8, where we show values of averages
〈exp(−βXw)〉 over the sample PDFs for work as functions of the parameter βX. For EFB and EQ, we find
that the average equals to one for βX = 1/T and 1/T0, respectively, proving the validity of Jarzynski equality
(14) with ΔF = 0 in these cases. For the NEFB, the system starts out of equilibrium so that it is not clear
which (inverse) temperature should be used in equation (14). In the figure, we at least tested that choosing
the temperature obtained from the variance of the velocity, 1/βX = 2σ2

v , does not yield 〈exp(−βXw)〉 = 1.

6. Beyond equilibrium feedback

In this section, we discuss possible analytical extensions of the equilibrium delay processes that might help
to better understand general delay processes.

6.1. Classical linear response theory
Any Langevin equation where the friction and noise obey the FDR (7) can be thought of as a result of
coarse-graining the full set of Hamiltonian equations for the system of interest and the corresponding bath
over the bath degrees of freedom. This means that, the system with equilibrium delay can be regarded as a
standard Hamiltonian system, which implies applicability of the classical linear response theory [70, 72, 73].
It states that the time-evolution of the mean value 〈A(t)〉 induced by perturbations of the equilibrium
system with Hamiltonian H = U + mv2/2 in the form H + εf(t)B starting at time t = 0 reads [72]

〈A(t)〉1 = 〈A(t)〉0 +
ε

T

∫ t

0
ds f (s)

〈
A(t − s)Ḃ(0)

〉
0
. (42)

One assumes that the averages in the perturbed system can be expanded as 〈. . . 〉 = 〈. . . 〉0 + ε〈. . . 〉1 + . . . ,
where the subscript 0 denotes average taken over the unperturbed Boltzmann PDF corresponding to
Hamiltonian H (12) and (13), the subscript 1 denotes averages taken over the exact PDF up to the order ε,
and so on.

We test the linear response theory using the specific equilibrium velocity feedback system discussed in
section 5. We perturb the Hamiltonian by the term εf(t)x. This term corresponds to a homogeneous
time-dependent force −εf(t) and thus the dynamical equation for velocity reads

mv̇(t) = −∂U

∂x
+ FFB − γ0v(t) +

√
2T0γ0ξ(t) − εf (t). (43)

The potential U is given by equation (36) and the feedback force by equation (33). We consider the
parameter regime of figure 4 and the specific perturbation

εf (t) = ε sin(πt/10). (44)
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Figure 9. Linear response theory: (a)–(d) response functions from BD simulations used to evaluate the time evolution of the
first two central moments of velocity and position (e)–(h) in the equilibrium system of figure 4 perturbed by the time-dependent
force (44). As expected, agreement between the approximate theory (dashed lines) and simulation (noisy solid lines) is better for
smaller ε = 0.1 (black and gray lines) than for the larger one ε = 0.2 (pink and orange lines).

In figures 9(a)–(d) we show the time correlation functions 〈A(t)ẋ(0)〉0 = 〈A(t)v(0)〉0, A = x, v, x2, v2

obtained using BD simulations of this system with ε = 0. The first two central moments of velocity and
position obtained using equation (42) with force (44) via these time correlation functions are depicted in
figures 9(e)–(h) together with the corresponding quantities obtained from BD simulation of the perturbed
system. The figures show good agreement between simulations and linear response theory, which improves
for smaller ε.

The validity of the linear response theory can be rationalized as follows. Even though we do not have an
exact dynamical equation for the PDF for the equilibrium delay system, we know that the PDF for system
and bath obeys a Liouville equation. The corresponding Liouville operator is composed of the system
Hamiltonian H, the bath Hamiltonian, and the system-bath interaction energy. Even though it is hard to
identify the latter two, one can rely on this Liouville equation as a starting point for perturbation theories
around the parameter regime of the equilibrium delay. For example, one can derive equation (42) using the
textbook approach of reference [72].

6.2. Langevin equation
The classical linear response theory (42) applies only for perturbations that can be subsumed into the
Hamiltonian of the system. Other perturbations can be treated, e.g. on the footing of linear irreversible
thermodynamics [74] or directly on the level of the Langevin equations (1) and (2). In order to present two
simple examples of the latter type, we write these equations in the form of the equilibrium interpretation of
table 1(B)

ẋ = v, mv̇ =

(
−∂U

∂x
+ FF + η

)
+ εg, (45)

where the term proportional to ε is a perturbation. Perturbations dependent on time and/or time-delayed
variables again require evaluation of time-correlation functions, which can rarely be obtained analytically.
Perturbations that depend only on position can be absorbed into the potential, and the stationary PDF can
be evaluated exactly. To obtain non-trivial analytical results, we will investigate two properties of steady
states induced by perturbations of the form g = g[v(t)], i.e. which depend solely on velocity. However, the
obtained general restrictions (47) and (48) on the system dynamics apply for an arbitrary function g. In
particular, g can, for these expressions, be a nonlinear function of position and velocity in the past. In such
a case, the resulting process (45) is a truly nonlinear delay differential equation.
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Figure 10. Test of the explicit result (49) (dashed lines) against the simulation (solid line). (a) ε = 0.2 and n = 1. (b) ε = 0.01
and n = 3. Other parameters are the same as in figure 4.

Virial theorem. The viral theorem states that twice the average kinetic energy of a system equals to the
virial − 〈Fx〉 [86]. For the system at hand, the total force F is given by the right-hand side (rhs) of
equation (45). For the unperturbed system, this implies that

m
〈
v2

〉
= −

〈(
−∂U

∂x
+ FF + η

)
x

〉
(46)

as can be checked directly from the Langevin equations after multiplying equation (1) by x, equation (45)
with ε = 0 by v, summing the result, and taking the stationary ensemble average so that the time derivative
of the cross-correlation 〈xv〉 vanishes. Repeating this procedure for nonzero perturbation in equation (45),
we find that if 〈g(v)〉0 = 0 the unperturbed virial theorem (46) remains valid up to first order in ε because
〈xg(v)〉0 = 〈x〉0〈g(v)〉0. More generally, we find that

m
〈
v2

〉
n
+

〈(
−∂U

∂x
+ FF + η

)
x

〉

n

= −ε〈xg(v)〉n−1 (47)

holds for all corrections of order n � 1. Even though this result cannot be evaluated explicitly for n > 1
since εn〈xg(v)〉1 is unknown, it can provide a stringent consistency check for simulations.

Power. The power 〈Fv〉 exerted by the total force F on the rhs of equation (45) vanishes in the steady
state of the unperturbed system since the time-derivative of

〈
v2

〉
vanishes. With the perturbation switched

on, we find 〈(
−∂U

∂x
+ FF + η

)
v

〉

n

= −ε〈vg(v)〉n−1. (48)

Besides providing another set of expressions useful as consistency checks in simulations, this equation
provides an explicit non-trivial result for n = 1. Then the rhs −ε〈vg(v)〉0 is in general non-zero and can be
evaluated as average over the PDF (13). For example, for g(v) = v, we find

˙̃W ≡
〈(

−∂U

∂x
+ FF + η

)
v

〉

n

= −εT. (49)

Figure 10 verifies this approximate result by BD simulations for n = 1 and n = 3 and the same unperturbed
dynamics as in section 6.1 above.

7. Conclusion

Using the second FDR, we have identified situations where one can interpret time-delayed feedback forces
proportional to velocity or position in Langevin equations as friction forces imposed by an equilibrium
bath. Our analysis reveals a previously unnoticed class of nonlinear SDDEs, which can be treated
analytically. They describe processes that obey standard thermodynamic constraints. In particular, their
long-time distributions are of Gibbs canonical form and they obey standard fluctuation theorems. From the
point of view of control theory, especially passivity-based control, the corresponding EFB processes are
automatically stable and passive. However, their dynamics retains the full complexity of generic delay
processes. One disadvantage is that the EFB always heats up the system and thus, unlike generic feedback
protocols, cannot be used for standard feedback cooling.

As a practical demonstration, we have realized the equilibrium velocity feedback using BD simulations
and shown that it exhibits all the formally derived properties. For so-called equilibrium velocity feedback,
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not only the velocity at an earlier time but also the noise at that time are used to drive the system at present.
As outlined in appendix B, we think it would be worthwhile to attempt to realize this feedback mechanism
in actual laboratory experiments with Brownian particles [12, 14–16, 22, 24, 26, 39] or robots [18, 21, 25].
In particular, the so-called velocity damping protocols for feedback cooling of trapped microscopic particles
record the particle velocity and later, after an experimental latency, apply to the particle a force proportional
to that velocity [39, 69]. Assuming that the thermal bath is Markovian and position and velocity
dependence of the systematic force in the dynamical equation for particle motion is known, measuring both
the velocity and position at time t allows to determine the thermal noise, which can then be applied to the
particle in the future, similarly as the velocity-dependent force. The potential drawback of this approach is
that the measured noise will be affected by measurement uncertainties and finite measurement time
resolution. As detailed in appendix B, large velocity measurement uncertainties might render the realization
of the EFB impossible. On the other hand, the finite measurement time resolution just means that the
obtained noise will effectively be integrated (low-pass filtered) over one measurement frame, which is also
the case in our BD simulations. Other promising setups, where the EFB might be realised, are
state-of-the-art bath engineering experiments [68] or experiments with feedback-driven overdamped
Brownian particles [22]. Finally, EFB of the same type as in our computer simulations could be realised in
experimental setups where artificial noise completely overshadows thermal noise. An example is shaken
granular matter [67], where the noise is realised by shaking the granular system.

From a theoretical perspective, we believe that our results will shed further light on investigations of the
dynamics and thermodynamics of nonlinear SDDEs, which are known to be immensely resistant to
analytical treatments. For example, the known stationary distributions for the equilibrium delay processes
can serve as starting points of new perturbation theories valid for arbitrarily large delays. And, the known
thermodynamics of the equilibrium delay processes can help to better understand the individual
contributions to the total entropy production derived for nonlinear SDDEs as studied in references
[48, 49, 52].
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Appendix A. No feedback cooling with EQ feedback

Consider the heat flux Q̇EFB
M from the proper bath into the system in the steady state created by an EFB. The

force applied by the proper bath on the system is −γ0v(t) +
√

2T0γ0ξ(t) and thus

Q̇EFB
M = −γ0〈v2〉 +

√
2T0γ0〈ξ(t)v(t)〉 (A.1)

with 〈v2〉 = limt→∞〈v(t)2〉 = σEFB
v = T/m. To calculate 〈ξ(t)v(t)〉, we use the formal solution

v(t) =
1

m

∫ t

0
dt′

[
F[x(t′), v(t′), t′] + FD[x(t′ − τ), v(t′ − τ)] +

√
2T0γ0ξ(t′) + ηFB(t′)

]
. (A.2)

For a positive delay, τ > 0, the causality implies that all terms on the rhs except for ξ(t′) are independent of
the white noise ξ(t) at time t (values of velocity and position at time t′ � t were not affected by the white
noise yet, and it is also reasonable to assume that the feedback noise ηFB(t′) cannot be constructed in such a
way that it would depend on ξ(t)). In symbols we obtain

〈ξ(t)v(t)〉 =
1

m

∫ t

0
dt′√2T0γ0δ(t − t′) =

1

m

√
T0γ0

2
. (A.3)

Using σEQ
v = T0/m we get the stationary flux Q̇M induced by the EQ feedback in the form

Q̇EFB
M = γ0

(
(σEQ

v )2 − (σEFB
v )2

)
=

2γ0

m
(T0 − T) . (A.4)
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As might have been anticipated from the beginning, the EQ feedback can cool the proper bath (Q̇EFB
M > 0)

only if it leads to a smaller velocity variance (effective temperature) than the proper bath. Let us now show
that this can happen only if the feedback force contains also a time-local term in velocity.

Inserting the total noise η(t) =
√

2T0γ0ξ(t) + ηFB(t) (see table 1) into the FDR (7), we find

〈η(t)η(t′)〉 /T = 2(γ0 + δ)δ(t − t′) + · · · = (2T0γ0 + ε)/Tδ(t − t′) + . . . . (A.5)

The first line corresponds to the time-local component of the friction kernel. Specifically, the term
proportional to γ0 corresponds to the background friction γ0v(t). And the term proportional to δ stems
from the time-local component of the feedback force. The remaining terms abbreviated by . . . are
determined by time non-local components of the friction kernel. The second line corresponds to the actual
noise correlations. The term proportional to 2T0γ0 is obtained from the background noise and the term
proportional to εδ(t − t′) originates from the time-local (t − t′ = 0) component of 〈ηFB(t)ηFB(t′)〉. The
remaining terms are given by the cross correlations 〈ξ(t)ηFB(t′)〉 and the t − t′ = 0 component of
〈ηFB(t)ηFB(t′)〉.

Demanding that prefactors in front of the δ-functions in equation (A.5) equal, we find

T0

T
=

2(γ0 + δ) − ε/T

2γ0
. (A.6)

Since ε is the variance of the feedback noise ηFB(t), it must be positive. The feedback can thus cool the
system and the ambient bath (T < T0 and Q̇EFB

M > 0) only if it contains a strong enough time-local
component of the friction −δv(t), δ > ε/2T. Otherwise T � T0 and Q̇EFB

M � 0 and thus the cooling by EFB
is not possible. Realizing a feedback force containing a term proportional to a non-delayed velocity of the
system seems technologically impossible and thus we conclude that, unlike generic feedback, the EFB
cannot be used to cool the system in practical setups [36, 38].

Appendix B. Noise generation in practice

An arbitrary Gaussian noise with a given positive power spectrum, and thus also any noise η(t) fulfilling the
conditions (7) and (9), can be realized in practice using one of the standard procedures for generating a
Gaussian process with given autocorrelation function [87–89].

Concerning the position delay of section 3 in the parameter regime (22), our brute-force
implementation of the spectral method using equation (35) in reference [87] does not yield satisfactory
results. However, we can recommended the method of references [88, 89] based on a discrete representation
of the noise η(t) by Mte, where e is a column vector of independent Gaussian white noises and the matrix
Mt is given by a square root of a matrix describing the autocorrelation function (20).

A noise fulfilling the conditions (28) and (30) corresponding to the velocity delay of section 4 can be
constructed analytically by introducing the ansatz

η(t) =
√

α0ξ(t) +
√

ατξ(t − τ). (B.1)

Here, α0 = 2T0γ0, ξ(t) is the zero-mean, unit-variance, Gaussian white noise, i.e. 〈ξ(t)〉 = 0,
〈ξ(t)ξ(t′)〉 = δ(t − t′). For τ > 0, such η(t) obeys equation (28) if (α0 + ατ )/T = 2γ0 and

√
α0ατ/T = γτ .

Solving these equations with respect to α0 and ατ , we obtain the two roots

α0/T = γ0 ±
√

γ2
0 − γ2

τ , ατ/T = γ0 ∓
√

γ2
0 − γ2

τ , (B.2)

which are equivalent due to the symmetry α0 ↔ ατ of the noise leading to the same dynamics of v(t). In
agreement with our discussion of the power spectrum (29), this mapping breaks down if γ0 < |γτ | when
η(t) becomes complex.

To realize (B.1) in practice, one needs to measure the (thermal) noise at time t − τ , record it, and feed it
back by some feedback mechanism at time t. However, from a practical perspective, the white noise ξ(t)
represents an unreachable mathematical abstraction, as the trajectories are always measured with a finite
time resolution. This applies not only to experiments but also to standard BD simulations, where the
stochastic differential equation v̇(t) = f (t, t − τ) + σξ(t) is usually integrated over a time interval
[t, t + dt]. This yields the update rule v(t + dt) = v(t) + f (t, t − τ)dt + σ

√
dt L(t), where the so-called

Wiener process
√

dt L(t) =
∫ t+dt

t dt′ξ(t′) is a zero-mean Gaussian random variable with variance dt. The
equilibrium velocity delay process (4) with the noise (B.1) has the form v̇(t) = f (t, t − τ) +

√
α0ξ(t) +√

ατξ(t − τ). And we simulate it using the update rule
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v(t + dt) = v(t) + f (t, t − τ)dt +
√

α0dt L(t) +
√

ατ dt L(t − τ). To simulate the process, one thus has to
keep track of the sequence L(t′), t′ ∈ [t − τ , t] of the integrated noise.

An analogous procedure can in principle be applied to realize the required feedback noise in
experiments with Markov heat bath described by white noise. Let us assume that we can measure the
velocity v(t), and we apply at time t a known force f(t, t − τ ) (this force can already contain the feedback
noise). Subtracting f(t, t − τ )dt from the measured change in the velocity v(t + dt) − v(t) per one
measurement frame of length dt gives the integrated white noise

√
α0dt L(t) at time t. This noise can be

recorded and fed back into the system similarly as in the BD simulations. Let us now briefly discuss possible
complications, which can arise in real-world experiments where the idealized mathematical abstraction
might fail. (i) Computer simulations based on the model

ẋ = v, mv̇ = FE + FFB − γ0v +
√

2T0γ0ξ(t), (B.3)

introduced in table 1(C), are in good agreement with measurements performed both in the underdamped
and overdamped regime. An example of the former is the velocity damping experiments, where an
optomechanically trapped particle diffusing in a dilute gas is cooled using velocity feedback [38, 39].
Overdamped experiments are usually performed with colloidal particles diffusing in water [22]. The only
notable complication concerning equation (B.3) is that the friction and noise terms, −γ0v and

√
2T0γ0ξ(t),

in the experiments do not originate solely from the thermal bath. Instead, they arise as a combined effect of
the bath, feedback apparatus, and trapping mechanism. However, the total noise and friction affect the
particle dynamics in the same way as noise and friction induced by a Markov equilibrium bath described by
an effective temperature T0 and friction coefficient γ0. (ii) In the suggested experimental realization of the
EFB, we assumed precise measurements of velocity. However, concerning underdamped setups, such
measurements can nowadays be only performed in specialized apparatuses with charged particles [38].
Other underdamped experimental setups predict the particle velocity from its position, e.g. by using the
so-called Wiener filter [39]. The result of such a measurement is instead of the real velocity v a velocity
v + δv, where δv is the measurement error. This error has two effects. First, when a feedback force
proportional to the measured velocity is applied to the system, the noise is not only increased by the error
of the feedback loop, but also by the measurement error δv. The second effect, important for the
experimental realization of the velocity feedback, is that the difference in the measured velocities does not
equal to v(t + dt) − v(t) but to v(t + dt) − v(t) + δv(t + dt) − δv(t). Therefore, the procedure for
realization of the EFB suggested above is feasible only if the measurement noise δv(t + dt) − δv(t) is much

smaller than the integrated ‘thermal’ noise
√

2T0γ0

∫ t+dt
t dt′ ξ(t′). (iii) Under overdamped conditions,

equation (B.3) simplifies to
γ0v = FE + FFB − γ0v +

√
2T0γ0ξ(t), (B.4)

and the problems with velocity measurements affect only the magnitude of the effective temperature. This is
because the integrated noise can now be calculated directly from the particle displacement x(t + dt) − x(t)

during the interval dt as
√

2T0γ0

∫ t+dt
t dt′ ξ(t′) = [x(t + dt) − x(t) − FE(t) + FFB(t)]/γ0. The position

measurements can be performed with sufficient precision to make this procedure feasible. To sum up, the
suggested method for experimental realization of equilibrium velocity feedback should be realizable in a
number of real-world applications with overdamped dynamics, while underdamped systems could be
problematic if the velocity cannot be measured with sufficient precision. To close this section, we note that,
even though the noise in equation (B.3) is often white, this is not valid generally. However situations with
colored thermal noises are beyond the scope of this paper and will be covered elsewhere.

Appendix C. Parameter sets used in figures 3 and 4

The two parameter sets considered in figures 3 and 4 are chosen as follows. The first one
(γ̃0τ , γ̃τ τ) ≈ (0.28, 0.28) minimizes the ratio

tR

tEQ
R

=
γ̃0τ

R
[
γ̃0τ − W

(
−eγ̃0τ γ̃τ τ

)] (C.1)

of the relaxation time tEQ
R ≡ 1/γ̃0 for the EQ process and tR (31) for the EFB and NEFB for U = 0. The

second one (γ̃0τ , γ̃τ τ) ≈ (0.42, 0.24) minimizes the measure

tR

tEQ
R

(
σEFB

v

σNEFB
v

)2

(C.2)

of the trade-off between the relaxation time ratio (C.1) and the ratio of stationary velocity variance
(σv)2 =

〈
v2

〉
for EFB and NEFB. For NEFB we take the variance for U = 0, when it can be calculated
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analytically as
(
σNEFB

v

)2 ≡ σ2
v =

T0

m

γ̃0[Ω + γ̃τ sinh(Ωτ)]

Ω [γ̃0 + γ̃τ cosh(Ωτ)]
, (C.3)

where Ω =
√

γ̃2
0 − γ̃2

τ . For EFB, the variance
(
σEFB

v

)2
= T/m follows for any U from equipartition.

In addition, we also tested the parameter set (γ̃0τ , γ̃τ τ) ≈ (0.34, 0.034) which minimizes the ratio
σEFB

v /σNEFB
v but due to the small magnitude of the feedback force the numerical results for NEFB, EFB, and

EQ are hardly distinguishable and we decided not to show them.

Appendix D. Derivation of equation (C.3)

Consider the simple velocity process

v̇(t) = −γ̃0v(t) − γ̃τ v(t − τ) +
√

αξ(t). (D.1)

In the steady state, 〈v〉 = 0 and the variance σ2
v =

〈
v2

〉
can be evaluated as follows.

The general solution to equation (D.1) reads [43]

v(t) = λ(t)v0 − γ̃τ

∫ 0

−τ

dt′ λ(t − t′ − τ)v(t′) +
√

α

∫ t

0
dt′ λ(t − t′)ξ(t′), (D.2)

where v0 = v(0). The Green’s function λ(t) solves equation (D.1) with vanishing noise term (α = 0), i.e.

λ̇(t) = −γ̃0λ(t) − γ̃τ λ(t − τ), (D.3)

and the initial condition λ(t < 0) = 0 and λ(0) = 1. The most straightforward way for finding λ(t) is to
employ a Laplace transformation in time. The result is [62]

λ(t) =

∞∑

l=0

(−γ̃τ )l

l!
(t − lτ)l e−γ̃0(t−lτ)Θ (t − lτ) . (D.4)

In the stable regime, tR > 0 (cf equation (31)), where the Green’s function eventually decays to zero,
limt→∞ λ(t) = 0, the general solution (D.2) to equation (D.1) can be used for calculation of the
time-correlation function, C(t) = limt0→∞ 〈v(t0 + t)v(t0)〉. The stationary variance σ2

v = C(0), we are
actually interested in, comes as a by-product of this calculation.

We find that for t > 0 (see also reference [43])

C(t) = α lim
t0→∞

∫ t0

0
dt′ λ(t + t0 − t′)λ(t0 − t′). (D.5)

This expression can already be used for plotting the time correlation function, however, it is not very
suitable for inferring its properties. Following the approach in references [43, 61], we take the time
derivative of equation (D.5) and use equation (D.3) for the Green’s function to obtain the dynamical
equation

Ċ(t) = −γ̃τ C(t − τ) − γ̃0C(t) (D.6)

valid for t > 0 due to the nonanalyticity of λ(t) at t = 0. The solution to this equation is given by
equation (D.2):

C(t) = λ(t)C0 − γ̃τ

∫ 0

−τ

dt′ λ(t − t′ − τ)C(t′) (D.7)

and thus the decay time of the time-correlation function is given by the decay time (31) of the Green’s
function λ(t). To evaluate the above expression, we need to find the stationary variance α0 ≡ C(0) and the
delayed initial condition C(t) for t ∈ (−τ , 0). This can be done as follows. Employing the symmetry
C(t) = C(−t) of the stationary time-correlation function, we rewrite equation (D.6) as

Ċ(t) = −γ̃τ C(τ − t) − γ̃0C(t). (D.8)

For t ∈ (0, τ), we can differentiate this equation once again. The result is

C̈(t) = Ω2C(t), (D.9)

where we used equation (D.6) and defined the (possibly imaginary) frequency Ω =
√

γ̃2
0 − γ̃2

τ . From
equation (D.9), we find that for t ∈ [−τ , τ]

C(t) = C0 cosh (Ωt) + Ċ0Ω
−1 sinh

(
Ω|t|

)
. (D.10)
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Here, Ċ0 = limt→0+ Ċ(t) denotes the time-derivative of the time-correlation function, that is discontinuous
at t = 0 [61], for t > 0 infinitesimally close to 0. From equation (D.5), we find that

Ċ0 = α lim
t0→∞

∫ t0

0
dt′ λ̇(t0 − t′)λ(t0 − t′) = −0.5α lim

t0→∞

∫ t0

0
dt′ d

dt′ λ
2(t0 − t′)

= −0.5α lim
t0→∞

[
λ2(0) − λ2(t0)

]
= −0.5α.

In order to evaluate C0, we note that Ċ0 also follows from equation (D.8) with t = 0, yielding
Ċ0 = −0.5α = −γ̃τ C(τ) − γ̃0C0. Using C(τ) = C0 cosh (Ωτ) − 0.5αΩ−1 sinh (Ωτ) given by
equation (D.10) for t > 0, we finally get the desired result

C0 = σ2
v =

α

2

Ω + γ̃τ sinh(Ωτ)

Ω [γ̃0 + γ̃τ cosh(Ωτ)]
. (D.12)

For γ̃0 = 0, we obtain Ω = i
√

γ̃τ . Using the identities sinh(ix) = i sin x and cosh(ix) = cos x, the formula
(D.12) can be written as

σ2
v =

α

2γ̃τ

1 + sin(γ̃τ τ)

cos(γ̃τ τ)
, (D.13)

which is the result derived in references [43, 61].
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Active particles bound by information flows
Utsab Khadka1, Viktor Holubec 2,3, Haw Yang 1 & Frank Cichos 4

Self-organization is the generation of order out of local interactions. It is deeply connected to

many fields of science from physics, chemistry to biology, all based on physical interactions.

The emergence of collective animal behavior is the result of self-organization processes as

well, though they involve abstract interactions arising from sensory inputs, information

processing, storage, and feedback. Resulting collective behaviors are found, for example, in

crowds of people, flocks of birds, and swarms of bacteria. Here we introduce interactions

between active microparticles which are based on the information about other particle

positions. A real-time feedback of multiple active particle positions is the information source

for the propulsion direction of these particles. The emerging structures require continuous

information flows. They reveal frustrated geometries due to confinement to two dimensions

and internal dynamical degrees of freedom that are reminiscent of physically bound systems,

though they exist only as nonequilibrium structures.
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Active particles serve as simple microscopic model systems
for living objects such as birds, fish, or people and mimic
in particular the propulsion of bacteria or cells without

the complexity of physical properties and chemical networks in
living objects1. They consume energy to propel persistently and as
such they have given considerable insight into collective behaviors
of active materials already2–6. With their bare function of self-
propulsion they are, however, missing the important ingredients
of sensing and feedback, which most living objects from cells up
to whole organisms have in common. All of their living relatives
have signaling inputs which they use to gain information about
the environment. Employing external information, organisms
interact such that birds and fish are able to self-organize into
flocks or schools7–9 and, on a microscopic level, cells may regulate
gene expression10,11. Using sensing, information processing and
feedback, living systems may go beyond what is prescribed by
physical interactions such as the Coulomb, van der Waals or
hydrophobic interactions. For cells/bacteria the information
about cellular density (quorum sensing) is, for example, inferred
from the concentration of signaling molecules released by the
cells leading to a regulation of various physiological activities such
as biofilm formation10. Concentration gradients of nutrients may
serve as sensory input leading to a directed motion termed che-
motaxis12. For birds, the information used for the formation of
flocks is suggested to be the visual perception of the number of
neighboring birds8. In this respect all information that is pro-
cessed by the organism is linked to a physical representation13

(e.g. concentration, number of objects, orientation,…), but the
resulting structure and dynamics is disconnected from a direct
physical interaction. In the particular examples mentioned above,
though, the structure formation depends on the active response of
the organism and its ability to steer based on its recognition of the
environment7,14–16. While active particles do not have sensory
inputs, information processing units and feedback mechanisms
built in yet, suitable control mechanisms may introduce this
complexity fostering the exploration of new emergent phenom-
ena. An information exchange between active particles has not
been tackled so far, but seems to be a natural step towards
extending their functionality.

Like bacteria, active particles have to break the time symmetry
of low Reynolds number hydrodynamics in order to propel. They
have to provide asymmetries to generate directed motion. In
many cases this asymmetry is built into the structure in form of
two hemispheres with different chemical or physical properties,
so called Janus particles1,17. As the propulsion direction is bound
to the symmetry axis of the particle, rotational diffusion becomes
a relevant process that limits the control of Janus particles18,19.
The self-propulsion mechanism presented below relies on a
scheme for generating self-thermophoresis20; unlike past
approaches our new scheme utilizes the spatially controlled
asymmetric input and release of energy around a symmetric
particle. This scheme delivers a precise control of each individual
particle in a larger ensemble, and allows us to demonstrate how
active particles may form structures just by the exchange of
information on other particle positions using a feedback control
mechanism for steering the particles.

Results
Particle control. Our active particle is constructed of a melamine
resin sphere with 30% of the surface uniformly decorated by gold
nanoparticles of about 10 nm diameter (Supplementary Fig. 1).
Illuminating the particle asymmetrically by a deflectable focused
laser beam generates an inhomogeneous surface temperature and
results in the desired self-thermophoretic motion based on
thermo-osmotic surface flows21,22 (Fig. 1a). This design allows for

a new control scheme for active particle steering. To control the
particle propulsion direction, we place the laser beam’s focal spot
near the circumference of the particle. The propulsion direction is
then the vector from that heated circumferential spot to the
particle center. Different from standard active particles, the
timescale of the rotational diffusion of the particle is irrelevant
due to the missing particle asymmetry (Supplementary Fig. 5).

We first evaluate properties of a single active particle and the
control accuracy in an experiment driving the particle between
two target positions and confining it for a certain time at the
targets (Fig. 1b). We extract the dependence of the active particle
propulsion velocity on the heating power from this experiment
finding a non-linear scaling (Fig. 1c) as the particle slips away
from the focus during the camera exposure time. Incorporating
this slipping process in a model (Supplementary Note 1)
reproduces this nonlinear increase qualitatively (Supplementary
Fig. 4). The confinement at the target position can be

characterized by a positioning error σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rtð Þ2� �q

– the

standard deviation of the probability density of the particle–target
distance in the steady state. Here, r and rt are the coordinates of
the swimmer and target, respectively. The positioning error obeys
two regimes18,19,23,24. When the displacement of the particle due
to the propulsion is smaller than the diffusive displacement
during the exposure time Δtexp, the positioning error is reflected
by a simple sedimentation model. A constant particle speed vth
drives the particle radially towards the target position against the
Brownian motion with a diffusion coefficient D0. Hence, the
density distribution in the steady state is exponential with a
characteristic length scale (the sedimentation length in two
dimensions) ρ ¼ ffiffiffi

6
p

D0=vth as indicated by the red dashed curve
in Fig. 1d19. When the active particle speed increases, an
overshooting of the particle over the target position due to the
finite sampling of the position of the particle with the camera
exposure time Δtexp defines the positioning error25. The over-
shooting distance equals the traveled distance within the time
between two frames Δtexp and increases linearly with the velocity
of the active particle as shown by the black dashed line. The sum
of both contributions determines the positioning error σ which is
depicted for different particle speeds from the experiments
(triangle markers, forward and backward motion in Fig. 1b)

together with the predicted curve σ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D2

0=c2v
2
th þ c2v2thΔt

2
exp

q

with no free parameters (solid black curve). A minimum
positioning error of σ= 370 nm is found for the exposure time
of Δtexp= 80 ms, a diffusion coefficient of D0= 0.23 μm2 s−1

(experimentally found as compared to theory D0= 0.20 μm2 s−1)
and a velocity of vth= 1.3 μm s−1. A factor c= 2 accounts for the
fact that the particle travels twice the distance due to the feedback
delay of one exposure time Δtexp.

Multiple active particles, swarms and structures. Multiple par-
ticle control is introduced by illuminating multiple particles at
suitable positions at their respective circumferences. In the cur-
rent setup, an acousto-optic deflector multiplexes the focused
heating laser spot between different particle positions within one
exposure of duration Δtexp (Methods). The incident heating
power is therefore available for a time Δtexp/N to each of the N
particles and the average heating power per particle decreases
when keeping the overall incident laser power constant. Figure 2a
depicts the control of six individual active particles in a spatially
fixed pattern of six target positions, arranged as the nodes of a
symmetric hexagon (Supplementary Movie 2). The particles were
initially distributed randomly in the field of view. Once the
control was initiated, each of the particles was first driven towards
its nearest target, after which it was confined there. The resulting
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steady state distribution of the particles overlaps with the dis-
tribution of the assigned target coordinates, as shown in Fig. 2b.
The accuracy of the particle control follows the dependencies
revealed earlier in Fig. 1. In contrast to optical tweezers, the
applied scheme does not involve external forces, but just dis-
sipative fluxes and is thus physically different from common
trapping24. An active particle always dissipates energy even if it
appears stationary, i.e., in a collision with a wall, while this is not
the case for a particle driven by external forces through a liquid.
Yet, the stationary position distribution of each particle around its
target may be realized by external forces25,26 and appears in the
example of Fig. 2 to be similar to what has been achieved with the
help of holographic optical tweezers27,28.

A collection of particles may be driven to a target either by first
arranging them into a structure and subsequently translocating
the structure, or by driving each particle directly to the target
without prior structural arrangement, as demonstrated in the
Supplementary Movies. While the former approach results in a

collective motion resembling the transport of an organized fleet of
vehicles (see Supplementary Movie 2), in the latter case the
unstructured collective driving results in a swarm-like motion
determined by the active particles steric repulsion, Brownian
motion and the propulsion towards the target (see Fig. 2c). In
addition to the switching of propulsion directions, the local
modulation of the propulsion speed may also lead to a well-
controlled effective potential sculpting the particle probability
density distributions according to p(r)∝ 1/vth(r) much like in the
motility-induced phase transitions observed in active particle
ensembles29,30.

Self-organized active particle molecules. The described multiple
particle control scheme opens the realm of feedback-induced
virtual interactions for active particles. Here, particles are allowed
to exchange information via the real-time tracking feedback loop
of the microscopy system. It is similar to a situation where birds
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Fig. 1 Symmetric self-thermophoretic active particle and its properties. a Scheme of the self-thermophoretic active particle composed of a melamine resin
particle (R= 1.09 μm) covered at 30% surface area by 10 nm gold nanoparticles. The nanoparticles can be heated by an incident laser beam (beam waist
ω0) to generate an inhomogeneous temperature profile along the particle surface. This profile causes a thermo-osmotic slip flow propelling the particle at
vth away from the laser. The velocity of the particle is determined by the displacement δx of the laser focus from the particle center. The scale bar has a
length of 1 μm. b The particle velocity and control accuracy is derived from an experiment driving the particle between two target positions and confining it
for 100 frames at each position. Example trajectory points (laser positions (green), particle position during trapping (orange), particle positions during
driving (red)) (see Supplementary Movie 1). c Extracted particle speed as a function of the heating power. The error bars reflect the standard deviations
from at least driving periods as shown in Supplementary Fig. 5. The nonlinear dependence is analyzed in the Supplementary Information. d Control
accuracy as a function of the particle speed determined from the experiment in Fig. 1b. The upwards and downwards triangles correspond to the data from
the left and right target, respectively. The dashed lines are the contributions from the 2-dimensional sedimentation (red) and the particle overshooting
(black). The solid black curve represents the sum of both contributions

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06445-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3864 | DOI: 10.1038/s41467-018-06445-1 | www.nature.com/naturecommunications 3



or fish react to the action of their neighbors to form flocks and
schools or to escape predators. It introduces a signaling channel
between the particles, which can be tweaked almost arbitrarily to
design virtual interactions and paves the way for a vast amount of
studies from the self-organization of new structures to the
information flow in flocks9, or the application of machine
learning to study adaption and the emergence of collective
patterns31. Moreover, it provides a minimal scalable robotic
system with a simple propulsion and intrinsic noise due to
Brownian motion. Here, we demonstrate the structure formation
by defining a pairwise control, which intends to keep the active
particles at a prescribed separation distance req by just changing
their propulsion direction, but not the speed. If the in-plane
distance rij between two particles (i and j) is below the separation
distance req, the particles are pushed away from each other, each
with a speed vth. In the case rij > req, the particles are pushed
towards each other with the same speed, which results in an

effective V-shaped interaction potential for a pair of active par-
ticles. For a number of N interacting particles, this feedback rule
is represented for particle i by the velocity

viðtÞ ¼ �vth eiðtÞ; ð1Þ

where the propulsion direction is determined by

eiðtÞ ¼

PN
j≠i

sign rijðt � δtÞ � req
� �

eij

PN
j≠i

sign rijðt � δtÞ � req
� �

eij

�����

�����
ð2Þ

with rij= |rj(t− δt)− ri(t− δt)| and eij= (rj(t− δt)− ri(t− δt))/
rij. As stated by Eq. (1), the speed of motion is always vth, while its
direction ei(t) is defined by the positions of the other active
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Fig. 2 Controlling multiple self-thermophoretic active particles. a Darkfield microscopy snapshot (inverted grayscale) of six active particles (R= 1.09 μm)
arranged at the nodes of a symmetric hexagon (7.1 μm edge length) with the help of the particle control procedure described in the text. The incident laser
power per particle is P= 0.2 mW. The scale bar has a length of 2 μm. b Corresponding trajectory points of the particles over a time period of 11 s with Δtexp
= 110ms exposure time/inverse frame rate. c Dark-field microscopy image series (inverted grayscale) of six active particles driven between two target
positions separated by 14.2 μm. Targets are colored for clarity. The incident heating power per particle is P= 0.2 mW and the time resolution of the
experiment is Δtexp= 80ms. The scale bar has a length of 7 μm
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particles. The interaction rule is implemented in a real-time
particle tracking loop (Methods) detecting the center positions of
the active particles and steering the heating laser to the corre-
sponding spots at their circumferences. Position measurements
and action are separated by one exposure time Δtexp introducing
the feedback delay δt= Δtexp.

After a short self-organization phase, the particles arrange into
freely diffusing dynamic structures that are reminiscent of simple
molecules (see Supplementary Movies 4–9). They are not
prescribed by a given potential energy landscape, but arrange
due to the defined rules. Figure 3 depicts snapshots of 6 self-
organized structures all with req= 7.1 μm. Active particle
molecules with N= 2 and N= 3 particles (dimer, Fig. 4 and
trimer, Fig. 5a) form structures where all average interparticle
distances correspond to the adjusted value of req (measured 〈rij〉
= 7.23 μm). All clusters with a larger number of particles (N ≥ 4)

are structurally frustrated due to the confinement in two
dimensions. Four active particles cannot form a tetrahedral
structure with equilateral triangular faces. Instead a 2-
dimensional structure with two “isomers” is found (Fig. 5b,
shown together with a timetrace of the isomerization process in
Fig. 5c). Larger active particle molecules (N > 4) form frustrated
structures with interparticle separations of less than the defined
value req. Figure 3b highlights snapshots of a pentamer (middle
right), a hexamer (bottom left) and a dodecamer (bottom right).
The dodecamer, for example, forms a transient square structure
out of 4 right angle subunits of 3 particles.

A detailed picture on the experimentally observed dynamics of
the active particle structures is obtained from a principle
component analysis (PCA)32 of the displacement vectors of the
individual particles between successive frames in the center of
mass frame Δ~rCOMi . The identified eigenvectors correspond to a
set of 2N− 2 orthogonal directions with the largest displacement
variances in the COM frame. Figure 4b presents the two modes
for the dimer structure (stretch and rotation, N= 2) and Fig. 5a
the four modes of the trimer (symmetric stretch, bending mode,
asymmetric stretch, and rotation, N= 3) where the modes agree
well with the normal modes of an equilateral triangular structure
in two dimensions. The appearance of a rotational mode is at first
glance surprising as the feedback is designed to act along the
connecting line between the bound particles. Due to the feedback
delay and Brownian motion, the laser heating position along the
circumference is fluctuating as well and introducing a coupling
between the translational and rotational motion. The oscillatory
motion as indicated for the two modes of the dimer (Fig. 4a) is a
fundamental feature of a time-delayed negative feedback system
and inherent to electronic oscillators, but also appearing at all
levels of biological systems33. In our active particle assemblies the
dynamics is controlled by three parameters, the feedback delay δt,
the propulsion speed vth, and the single particle diffusion
coefficient D0. Using these parameters and restricting the analysis
to the dynamics of the dimer along the connecting line (stretch
mode), we can model the stretch mode dynamics with an
overdamped Langevin description,

_r12ðtÞ ¼ �2vth sign r12ðt � δtÞ � req
� �

þ ffiffiffiffiffiffiffiffi
4D0

p
η12ðtÞ: ð3Þ

Here η12(t) is a zero-mean, unit-variance Gaussian white noise,
i.e., 〈η12(t)〉= 0 and 〈η(t)η(t′)〉= δ(t− t′), such that the variance
of the noise term in Eq. (3) corresponds to 4D0. As the bond
length involves the relative motion of two particles, the relative
velocity 2vth and the relative diffusion coefficient 2D0 enter the
equation. Its solution yields the observed oscillatory motion with
a triangular shape and an oscillation period of T= 4δt
(Supplementary Note 3). Accordingly, the oscillatory dynamics
vanishes for zero feedback delay and stiff structures appear. The
amplitude of the motion linearly depends on the delay and the
active particle velocity (Δr12= 2vthδt). A feedback delay of
δt= 0.11 s and a propulsion velocity vth= 3.4 μm s−1 (Pheat=
0.75 mW per particle) delivers T= 0.44 s and Δr12= 0.75 μm,
which compares well to the experimental data for the dimer
Texp= 0.44 s and the amplitude of the stretch mode

ffiffiffiffiffiffiffiffiffi
A2
0h i

p ¼
0:72 µm obtained from the first eigenvalue of the PCA, A0. The
effect of the last term in Eq. (3) is to introduce phase and
amplitude noise to the oscillatory motion. The oscillations are
therefore losing coherence and the autocorrelation Ci(t)= 〈Ai(τ)
Ai(τ+ t)〉τ/〈Ai(τ)2〉τ of the oscillating modes Ai(t) decays. The
timescale of this damping is the dephasing time, which is termed
T2 in molecular spectroscopy. Using an approximate solution of
Eq. (3) for the dimer (see Supplementary Note 3), we find a
dephasing time T2 � 32Δr212π

�4D�1
0 , which scales inversely with

the strength of the noise given by the diffusion coefficient (see
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a

Fig. 3 Feedback rule and self-organized active particle structures. a Pair
interaction rule used to “bind” the active particles to each other. Particles
are propelled with a speed vth. If the distance is below req, the particles are
moved away from each other, if above, they are propelled towards each
other. The scale bar has a length of 1 μm. b Example snapshots of 6
different “active particle molecules” that are bound by the interaction rule
in a. The structures are highly dynamic (see Supplementary Movies 4–9).
The scale bar has a length of 7 μm. The experimental images are compared
to snapshots of corresponding numerical simulations involving Brownian
motion and a simple delayed feedback as in the experiment (not drawn to
scale, see Supplementary Note 2). The smaller central circle marks the
center of mass. An effective potential description (not included) also
reveals equivalent structures up to the pentamer
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Supplementary Note 3). For the dimer bond length oscillation
displayed in Fig. 4c we find a dephasing time of T2= 0.8 s
(dashed line). In larger structures, each particle contributes to the
total noise such that coherent oscillations as observed for the
dimer disappear quickly with growing size of the cluster.

Discussion
The presented symmetric active particles and the introduced
manipulation technique allow us to self-assemble structures by
designed feedback controlled interaction rules. Similar structures
of passive colloidal particles have been assembled in previous
work with the help of external forces in optical tweezers
setups27,28. The structures there are commonly based on a pre-
scribed optical potential energy landscape in which the particles

occupy energetic minima and fluctuate according to Boltzmann
statistics in equilibrium.

The assemblies created in our experiments are conceptually
different as there is no external force acting on the particles17 and
more importantly, the structures do only exist in nonequilibrium.
The particles need to be propelled continuously to form the
assemblies much like living systems need nonequilibrium to
maintain their shape and function. The fluctuations of the
structures are nonequilibrium even for a vanishing feedback delay
and thus they are not tied to a well-defined temperature or
Boltzmann statistics. Moreover, as demonstrated for the oscilla-
tory motion, non-zero delay in our setup leads to additional
oscillations/fluctuations determined by the propulsion speed and
feedback delay.
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Fig. 4 Dynamics of a self-organized active particle dimer. a Change of the dimer bond length parallel (blue) and perpendicular (orange) to the connecting
line of the two particles. The dimer bond length is oscillating with a triangular shaped elongation with a period of T= 0.44 s. The period corresponds to four
times the feedback delay time δt= 0.11 s. b Left: trajectory points of the two bound particles in the center of mass (COM) frame. Middle and right: principle
components of the particle displacements in the center of mass frame as obtained from a principle component analysis (PCA). c Left: principle component
amplitudes as calculated for the two modes in b. Middle and right: autocorrelation functions for the displacements of the particles in the center of mass
frame of the two eigenvectors obtained from the PCA. The two modes reveal a damped oscillation due to the Brownian motion of the active particles. The
middle graph shows in addition the theoretical prediction for the oscillation (black solid line) and the exponential decay due to the dephasing (black dashed
line)
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In artificial active particle systems several sources of structure
formation and local density enhancement may exist. Active
particles are observed, for example, to cluster based on chemical,
composition, or temperature gradients mimicking tactic
behavior34. In the case of chemotaxis of artificial microswimmers
the propulsion speed is modulated as direct physical consequence
of the local concentration of a substance. In fact, a modulation of
the propulsion speed will lead to local enhancement or depletion
of active particle concentrations35 in steady states as it is observed
also in motility induced phase transitions with a mutual locking
of particles3,36.

With the feedback rule applied in our experiments, we now
remove also the modulation of the speed as particles are con-
stantly propelled with the same speed. Yet there is a structure
forming contribution resulting from the feedback loop. It stems
from the fact that we determine the particle positions in a mea-
surement and decide on the required action, i.e., the velocity
direction. It is this particular processing of the information of the
particle positions which extracts entropy from the system to form
the structures. Analyzing the entropy production in the system,
we can identify several contributions (see Supplementary Fig. 6).
On one side, there is the entropy production rate maintaining the
temperature gradients. This “housekeeping” entropy production
amounts to the fraction of the incident laser power absorbed by
the gold nanoparticles Pa divided by the temperature of the
surrounding liquid T to which this power is dissipated. It is
required for the mobility although only a fraction of it is used
during propulsion37. This entropy flux is still not sufficient for the
structure formation. The propulsion speed and the dissipated
power are constant over the trajectory of the particle no matter if
it is driven on a random path or is bound in the active particle
molecule. Consequently, it is not a spatial modulation of this
dissipation which is causing the structure formation.

The feedback process is extracting entropy from the system by
steering the propulsion direction and not modulating their speed.
A theoretical analysis of the entropy fluxes can be obtained by
relating the feedback process to the thermodynamics of resetting

processes as described by Fuchs et al.38 (see Supplementary
Note 4). According to that, it is the continuous loss of structure
due to Brownian motion which one has to correct for with the
feedback. To form a stable stationary structure, the entropy
extracted per time unit in the feedback loop has to compensate at
least the increase of entropy per time unit due to Brownian
motion. The structure formation is thus the result of the infor-
mation flow in the feedback loop only. Overall, the structure
forming entropy production rate is very small as compared to all
other entropy fluxes (see Supplementary Note 4) but sufficient to
create well-defined active particle assemblies.

Returning to the previous example of chemotaxis, one may
argue that the response of an artificial active particle to a chemical
gradient may be seen as an information based interaction as well
even if it is the direct physical consequence of osmotic pressure
differences. The local chemical gradient is the information that is
available to the particle and causes a response in form of a
modulated propulsion speed. While this interpretation of physical
interactions may also be valid, we restrict our definition of
information based interactions to situations, where the physical
interactions are irrelevant. In the well-known thought experiment
of Maxwell, for example, a small daemon uses the information on
the speed of particles to sort them into two boxes (slow and fast)
just by actuating a shutter between the boxes. The physical
interactions of the particles are irrelevant there for the appearing
temperature difference between the two boxes. A correct physical
description not violating the laws of thermodynamics, however,
requires to include the entropy of information the daemon uses.
In a very similar way, it is the information flow in the feedback
loop that is required for a correct physical description of the
assembled active particle molecules in our experiment.

In conclusion, propulsion speed, Brownian motion as well as
the feedback related information flow shape the morphology and
dynamics of these artificial self-organized active structures. They
require nonequilibrium conditions to exist and contrary to
structures assembled by optical tweezers they are not bound to
Boltzmann statistics, equipartition or global detailed balance.

a
Symmetric stretch

10

10

5

5

0

0

–5

–5
–10

10

5

0

–5

–10

10

5

0

–5

–10

10

5

0

–5

–10
–10

t = 10 s t = 45 s t = 90 s

1050–5–10 10

x [μm]x [μm]x [μm] x [μm]

y 
[μ

m
]

y 
[μ

m
]

y 
[μ

m
]

y 
[μ

m
]

50–5–10 1050–5–10

Bending

1
2

3 4

1 2

3 4

1
2

3 4

b

Asymmetric stretch Rotation

d1

d1

d2

d2

c

9
8
7
6
5D

is
ta

nc
e 

[μ
m

]

120100806040200

Time [s]

Fig. 5 Principle components of the trimer and isomerization of the tetramer. a The principle components of the trimer as calculated from a principle
component analysis (PCA) of the particle displacements in the center of mass coordinate system. Depicted are the symmetric stretch, bending motion,
asymmetric stretch, and the rotation sorted by the magnitude of the eigenvalue found in the PCA. b Isomerization of the tetramer. The images represent
the observed dark-field images of the 4 active particles at three different times (t= 10 s, t= 45 s, t= 90 s). Particles have been labeled to keep track of
their position. c Timetrace of the distance d1 of particle 1 and d2 of particle 2 from the center of mass indicating the isomerization. The distances d1 and d2
exchange in size after a time period of about 75 s. The isomerization is driven by Brownian motion

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06445-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3864 | DOI: 10.1038/s41467-018-06445-1 | www.nature.com/naturecommunications 7



Nevertheless, the dynamics of the structures carries a number of
features, which are found in equilibrium as well. Using the
described method, almost any type of interaction can be designed
to create large scale interacting assemblies or new self-organized
shapes which may not be accessible by conventional interactions,
i.e., which do not need to obey the action–reaction principle.
Fundamental interaction and signaling rules for emergent complex
behavior of cells up to animals may be explored with our model
system in the same way as concepts of nonequilibrium thermo-
dynamics. The applied technique provides a direct interface to
machine learning algorithms including predictive information or
reinforcement learning. The details of information flows in large
ensembles may be studied easily and can be connected to different
timescales of delayed information processing. Especially the latter
type of application including coupled active feedback networks
with different inherent timescales shall ignite a vast variety of
research on emergent collective and crowd dynamics.

Methods
Sample preparation. Samples consist of commercially available gold nanoparticle
coated melamine resin particles of a diameter of 2.13 μm (microParticles GmbH,
Berlin, Germany). The gold nanoparticles are covering about 30% of the surface
and are between 8 and 30 nm in diameter (Supplementary Fig. 1). Glass cover slips
have been dipped into a 5% Pluronic F127 solution, rinsed with deionized water
and dried with nitrogen. The Pluronic F127 coating prevents sticking of the par-
ticles to the glass cover slides. Two microliters of particle suspension are placed on
the glass cover slides to spread about an area of 1 cm × 1 cm to form a 3 μm thin
water film. The edges of the sample have been sealed with silicone oil to prevent
water evaporation.

Microscopy setup. Samples have been investigated in a custom-built inverted
microscopy setup (Supplementary Note 5). The setup is based on an Olympus IX 71
microscopy stand. Optical heating of the active particles is carried out by a CW 532
nm laser. The laser intensity is controlled by a Conoptics 350–50 electro-optical
modulator. An acousto-optic deflector (AOD) together with a 4-f system (two f= 20
cm lenses) is used to steer the 532 nm wavelength laser focus in the sample plane.
The AOD is controlled by an FPGA (National Instruments) via a LabVIEW pro-
gram. The calibration of the AOD for precise laser positioning is carried out using a
2D projection method. A Leica 100x, infinity-corrected, NA 1.4–0.7 (set to 0.7), HCX
PL APO objective lens is used for focusing the 532 nm laser to the sample plane as
well as for imaging the active particles. Active particles are imaged under dark-field
illumination using an oil immersion dark-field condenser. The scattered light from
the sample is collected with the Leica objective lens and imaged with a f= 30 cm tube
lens to an emCCD camera (Cascade 650). A region of interest (ROI) of 200 × 200
pixels is utilized for the real time imaging, analysis and recording of the particles,
with an exposure time Δtexp of 0.08 s or 0.110 s.

Single particle tracking and real-time feedback loop. The active particles appear
as rings in dark-field microscopy images and are tracked in real time in a LabVIEW
program. A Matlab node in the LabVIEW determines the centers of the particles
using a Hough transform function of Matlab. The particle coordinates are used to
calculate the position of the laser focus for each individual particle. During one
camera exposure of Δtexp, the laser is shared among the particles selected for
feedback control. The switching is done using the AOD as mentioned above.

For the control experiments (Fig. 1), the controlled particle is driven back-and-
forth between two prescribed target positions. Upon reaching a target, it is actively
positioned there for 100 frames first, before being driven to the the target. This
procedure is repeated several times (5–7) with different laser powers up to 1 mW.
The particle positions around the targets are used to determine the localization
error σ ¼ ffiffiffiffiffiffiffiffiffiffi

δr2h ip
, where δr= r− rt is the 2-d position vector from the target to

the particle. Velocities are determined by projecting the particle displacement
between two subsequent frames onto the unit vector given by the laser position and
the particle center 〈v〉= 〈(r(t+ Δtexp)− r(t)) · elp〉/Δtexp, where elp= (r− rlaser)/|r
− rlaser|.

Principle component analysis of the dynamics. The experiments sample the
position vector ri(t) for each of the N particles in Nsteps= tmeas/Δtexp+ 1 time
instants. The particle coordinates are converted into the center of mass frame of the
structure. In two dimensions, we obtain Ndata= 2 ×N ×Nsteps data points, which
we analyze using the principal component analysis.

First, we construct the 2N time-series of displacements of the individual degrees
of freedom in our experiment (coordinates of the individual N particles). Second,
we put all these displacements for a given t into a single vector: S(t)= (Δx1(t),
Δy1(t),…, ΔxN(t), ΔyN(t)). Then, we construct the matrix X containing in its lines
the vectors S(t) corresponding to the individual measurement times, so the element

[i, j] of this matrix is given by Xij= Sj((i− 1)Δtexp). The matrix X thus has 2N
columns and Nsteps− 1 rows. The matrix X is used to calculate the covariance
matrix M=XTX. This matrix M is a symmetric 2N × 2N matrix with the elements

Mij =
PNsteps�1

k¼1 XkiXkj =
PNsteps�1

k¼1 Si ðk� 1ÞΔtexp
� �

Sj ðk� 1ÞΔtexp
� �

. The diagonal

thus contains the variances corresponding to the degrees of freedom measured in
the experiment, i.e., of the displacements of the positions of the individual particles.

We determine all 2N− 2 nonzero eigenvalues Ai and normalized eigenvectors
Vi of the matrix M.

The individual eigenvectors determine new 2N− 2 collective degrees of
freedom, which are mutually independent. For example for the dimer, the
eigenvector with the largest eigenvalue determines the vibrational mode and the
corresponding collective coordinate is proportional to the vector connecting the
two particles.

The vector form of the time series corresponding to the mode given by the
column eigenvector Vi can be obtained by projecting the eigenvector Vi onto the
matrix X, i.e., Ki=X ·Vi. The elements of the Ki represent the time series Ai(t) of
the motion along the eigenvector Vi. To access the dynamics of the mode we
calculate its autocorrelation Ci(t)= 〈Ai(τ)Ai(τ+ t)〉τ/〈Ai(τ)2〉τ. The subscript τ
denotes that the correlation function is obtained from the time average
(Supplementary Note 2).

Data availability
All data is available from the corresponding author on request.

Received: 16 March 2018 Accepted: 6 September 2018

References
1. Bechinger, C. et al. Active particles in complex and crowded environments.

Rev. Mod. Phys. 88, 045006 (2016).
2. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living

crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).
3. Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions

of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).
4. Solon, A. P., Fily, Y., Baskaran, A., Cates, M. E. & Kafri, Y. Pressure is not a

state function for generic active fluids. Nat. Phys. 11, 673–678 (2015).
5. Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. Dynamic

clustering in active colloidal suspensions with chemical signaling.
Phys. Rev. Lett. 108, 268303 (2012).

6. Fily, Y. & Marchetti, M. C. Athermal phase separation of self-propelled
particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012).

7. Pearce, D. J. G., Miller, A. M., Rowlands, G. & Turner, M. S. Role of projection
in the control of bird flocks. Proc. Natl Acad. Sci. USA 111, 10422–10426
(2014).

8. Ballerini, M. et al. Interaction ruling animal collective behavior depends on
topological rather than metric distance: Evidence from a field study.
Proc. Natl Acad. Sci. USA 105, 1232–1237 (2008).

9. Attanasi, A. et al. Information transfer and behavioral inertia in starling flocks.
Nat. Phys. 10, 691–696 (2014).

10. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Ann. Rev. Microbiol.
55, 165–199 (2001).

11. Tkacik, G., Callan, C. G. & Bialek, W. Information flow and optimization in
transcriptional regulation. Proc. Natl Acad. Sci. USA 105, 12265–12270 (2008).

12. Micali, G. & Endres, R. G. Bacterial chemotaxis: information processing,
thermodynamics, and behavior. Curr. Opin. Microbiol. 30, 8–15 (2016).

13. Landauer, R. The physical nature of information. Phys. Lett. A 217, 188–193
(1996).

14. Katz, Y., Tunstrøm, K., Ioannou, C. C., Huepe, C. & Couzin, I. D. Inferring the
structure and dynamics of interactions in schooling fish. Proc. Natl Acad. Sci.
USA 108, 18720–18725 (2011).

15. Swain, D. T., Couzin, I. D. & Ehrich Leonard, N. Real-time feedback-
controlled robotic fish for behavioral experiments with fish schools. Proc. IEEE
100, 150–163 (2012).

16. Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent
sensing of complex environments by mobile animal groups. Science 339,
574–576 (2013).

17. Kroy, K., Chakraborty, D. & Cichos, F. Hot microswimmers. Eur. Phys. J. Spec.
Top. 225, 2207–2225 (2016).

18. Selmke, M., Khadka, U., Bregulla, A. P., Cichos, F. & Yang, H. Theory for
controlling individual self-propelled micro-swimmers by photon nudging I:
directed transport. Phys. Chem. Chem. Phys. 20, 10502–10520 (2018).

19. Selmke, M., Khadka, U., Bregulla, A. P., Cichos, F. & Yang, H. Theory for
controlling individual self-propelled micro-swimmers by photon nudging II:
confinement. Phys. Chem. Chem. Phys. 4, 1–12 (2018).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06445-1

8 NATURE COMMUNICATIONS |  (2018) 9:3864 | DOI: 10.1038/s41467-018-06445-1 | www.nature.com/naturecommunications



20. Jiang, H. R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by
self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302
(2010).

21. Bregulla, A. P., Würger, A., Günther, K., Mertig, M. & Cichos, F. Thermo-
osmotic flow in thin films. Phys. Rev. Lett. 116, 188303 (2016).

22. Bickel, T., Majee, A. & Würger, A. Flow pattern in the vicinity of self-
propelling hot Janus particles. Phys. Rev. E 88, 012301 (2013).

23. Bregulla, A. P., Yang, H. & Cichos, F. Stochastic localization of
microswimmers by photon nudging. ACS Nano 8, 6542–6550 (2014).

24. Qian, B., Montiel, D., Bregulla, A., Cichos, F. & Yang, H. Harnessing thermal
fluctuations for purposeful activities: the manipulation of single micro-
swimmers by adaptive photon nudging. Chem. Sci. 4, 1420–1429 (2013).

25. Jun, Y. & Bechhoefer, J. Virtual potentials for feedback traps. Phys. Rev. E 86,
061106 (2012).

26. Braun, M., Bregulla, A. P., Günther, K., Mertig, M. & Cichos, F. Single
molecules trapped by dynamic inhomogeneous temperature fields. Nano Lett.
15, 5499–5505 (2015).

27. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers.
Opt. Commun. 207, 169–175 (2002).

28. Padgett, M. & Di Leonardo, R. Holographic optical tweezers and their
relevance to lab on chip devices. Lab Chip 11, 1196–1205 (2011).

29. Cates, M. E. & Tailleur, J. When are active Brownian particles and run-and-
tumble particles equivalent? Consequences for motility-induced phase
separation. Eur. Phys. Lett. 101, 20010 (2013).

30. Cates, M. E. Diffusive transport without detailed balance in motile bacteria:
does microbiology need statistical physics? Rep. Prog. Phys. 75, 042601 (2012).

31. Palmer, G. & Yaida, S. Optimizing collective fieldtaxis of swarming agents
through reinforcement learning. Preprint at http://arXiv.org/abs/1709.02379
(2017).

32. Jolliffe, I. T. Principal component analysis. (Springer, New York, NY, 1986).
Springer series in statistics.

33. Smith, H. An introduction to delay differential equations with applications to
the life sciences. (Springer, New York, 2011). Texts in Applied Mathematics..

34. Baraban, L., Harazim, S. M., Sánchez, S. & Schmidt, O. G. Chemotactic
behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed.
52, 5552–5556 (2013).

35. Schnitzer, M. J. Theory of continuum random walks and application to
chemotaxis. Phys. Rev. E 48, 2553–2568 (1993).

36. Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. Sedimentation and
effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105,
088304 (2010).

37. Bregulla, A. P. & Cichos, F. Size dependent efficiency of photophoretic
swimmers. Faraday Discuss. 184, 381–391 (2015).

38. Fuchs, J., Goldt, S. & Seifert, U. Stochastic thermodynamics of resetting.
Eur. Phys. Lett. 113, 60009 (2016).

Acknowledgements
Discussions with J. Shaevitz (Princeton University), K. Kroy (Universität Leipzig) and
help with the sample preparations by D. Cichos (Berlin) are acknowledged. H.Y. and U.
K. acknowledge support by the Betty and Gordon Moore foundation (grant # 4741). V.H.
is supported by a Humboldt grant of the Alexander von Humboldt Foundation and by
the Czech Science Foundation (project No. 17-06716S). F.C. is supported by grant CI 33/
16-1 and the CRC TRR 102 “Polymers under multiple constraints” of the German
Research Foundation (DFG).

Author contributions
U.K. and F.C. designed the experiments. U.K. and F.C. performed the experiments and
analyzed the data. V.H. contributed to the theoretical analysis. H.Y. provided the
experimental equipment. U.K., V.H., H.Y., and F.C. wrote the manuscript. All authors
discussed the results and commented on the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-06445-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06445-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3864 | DOI: 10.1038/s41467-018-06445-1 | www.nature.com/naturecommunications 9



Supplementary Information - Active Particles Bound by

Information Flows

Utsab Khadka1, Viktor Holubec2,3, Haw Yang1, Frank Cichos4*

1 Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
2 Institute for Theoretical Physics, Universität Leipzig, 04103 Leipzig, Germany.
3 Charles University, Faculty of Mathematics and Physics, Department of Macromolecular
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Supplementary Note 1: Symmetric Active Particle Velocity

The active particle used throughout the experiments is symmetric in structure, with 30 % of
the melamine resin particle surface covered with gold nanoparticles (AuNP). The propulsion
velocity vth is the result of an asymmetric illumination with a highly focused laser at a
wavelength of λ = 532 nm, which heats the gold nanoparticles at the surface and thus creates
a surface temperature gradient and corresponding thermo-osmotic creep flows. A sketch of
the particle and a corresponding electron microscopy image is shown in Supplementary Figure
1.

R

a b

Supplementary Figure 1 | (a) Sketch of the symmetric active particle of radius R. For
the experiments a melamine particle of R = 1.09µm covered with 10 nm gold nanoparticles
at 30 % of its surface is heated with a focused laser. The scale bar corresponds to 1µm.(b)
Electron microscopy image of the gold nanoparticle at the surface of the melamine resin
particle (kindly provided by Santiago Muiños Landin, Molecular Nanophotonics Group).

Active particle velocity and laser focus displacement. As explained in the main
text, the magnitude and the direction of the expected active particle velocity depends on the
displacement of the heating laser focus from the center of the particle. The displacement of
the laser focus from the particle center is also responsible for the nonlinear power dependence
of the propulsion velocity. To model this nonlinear dependence, we simplify the 3-dimensional
geometry and only consider the 2-dimensional situation sketched in Supplementary Figure
2. The z-direction denotes the direction perpendicular to the sample plane, while the x-
direction lies in the sample plane. For heating the gold nanoparticles at the surface of the
active particle, we assume a Gaussian heating beam with an intensity profile

I(x) = I0 exp(−(x− δx)2/2ω2
0). (1)

Here ω0 is the beam radius and the center of the Gaussian is displaced by δx with
respect to the particle center as indicated in Supplementary Figure 2. The beam radius
is assumed to be constant in the sample region and thus independent of the z-position.
To obtain an expression for the propulsion velocity as a function of the laser displacement
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Gaussian beam

active particle

beam propagation direction

Supplementary Figure 2 | Definition of symbols for modeling the nonlinear power depen-
dence of the active particle velocity. An one dimensional intensity profile I(x) representing
a Gaussian beam with a beam waist of ω0 is assumed to propagate along the z-direction.
The beam center is displaced by δx from the center of a symmetric swimmer of radius R.
To calculate the resulting propulsion velocity we consider the intensity at an angle θ on the
particle surface.

δx, we need to determine the temperature profile along the particle surface, i.e., the circle
circumference in the described model geometry. To do so we project the Gaussian intensity
profile to the circle of radius R by substituting x = −R sin(θ) into supplementary equation 1.
Assuming that the temperature increment due to the heating is proportional to the incident
laser intensity, ∆T (θ, δx) ∝ I(θ, δx) we obtain the temperature increase as compared to the
ambient temperature T0 along the circumference of the circle as

∆T (θ, δx) = T (θ, δx)− T0 = ∆T0 exp(−(R sin(θ)− δx)2/2ω2
0). (2)

∆T0 indicates the maximum temperature increase at the particle circumference. The
tangential temperature gradient along the circumference is then

∇||T =
∂∆T (θ, δx)

∂θ
= −∆T (θ, δx)

R cos(θ)(R sin(θ)− δx)

ω2
0

. (3)

This tangential temperature gradient leads to a quasi thermo-osmotic slip velocity vs =
χ∇||T setting the hydrodynamic boundary condition at the particle surface (with the thermo-
osmotic mobility coefficient χ) [1,2] . The propulsion velocity vth of the active particle is then

3



the surface average (circumference average here) of the slip velocity vector (supplementary
equation 4). For symmetry reasons all components perpendicular to the x-axis cancel out
and only the components along the x-direction represented by the additional cos(θ) factor
need to be considered. The propulsion velocity along the x-axis is therefore

vth(δx) =
χ

2π

∮

θ

∆T (θ, δx)
R cos2(θ)(R sin(θ)− δx)

ω2
0

dθ. (4)

To obtain the dependence of the particle velocity on the laser displacement δx, we nu-
merically integrate supplementary equation 4. Supplementary Figure 3 shows the obtained
particle velocity as a function of the beam displacement δx for two different beam radii ω0 in
the left panel. The right panel is indicating the laser displacement for the maximum particle
velocity as a function of the particle radius. Accordingly, to obtain the maximum velocity
the laser has to be placed at about a distance corresponding to the particle radius.
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Supplementary Figure 3 | (a) Calculated active particle propulsion velocity as a function
of the displacement δx of a Gaussian heating laser beam from the center of the particle
according to supplementary equation 4 for R = 1.09µm and a beam radius of ω0 = 0.3µm
(solid line) and ω0 = 1µm (dashed). (b) Dependence of the displacement δx from the
particle center for a maximum velocity vmax

th as a function of the particle radius R.

Power dependence of the active particle velocity The nonlinear power dependence
of the velocity of the active particle is the result of the dependence of the velocity on the
laser displacement δx and the finite exposure time ∆texp. Within the exposure time, the
laser is placed at the particle rim to cause the maximum velocity according to the previous
section. The particle starts to move and the instantaneous velocity drops as the laser is
spatially fixed. The average velocity observed is then

< vth >=
1

∆texp

∆texp∫

0

vth(δx(t))dt (5)
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Supplementary Figure 4 | Numerical solution of supplementary equation 7 showing the
average speed as a function of the maximum speed (proportional to the incident heating
power) for ω0 = 1µm and δx = 1µm. The dependence captures the nonlinear increase
of the detected active particle velocity as a function of the incident heating power. The
nonlinearity is due to the particle moving out the laser beam during the exposure time.

The displacement δx increases with the instantaneous velocity vth(δx) of the particle
itself. We assume the following approximate function for the velocity

vth(δx) = −v0(P )
δx

[µm]
· e− δx

2

2σ2 (6)

with a velocity amplitude v0 ∝ Pheat, which depends linearly on the incident heating
power Pheat, a width σ and [µm] denoting that the unit of δx is removed. The total displace-
ment within a time period ∆texp is then obtained from integrating dδx = vth(δx) dt resulting
in

∆texp∫

t=0

dt = ∆texp = −
δx+∆x∫

δx

[µm]

v0δx′
e
δx′ 2

2σ2 dδx′ = −
[µm]

{
Ei
(

(δx+∆x)2

2σ2

)
− Ei

(
δx2

2σ2

)}

2v0

=
∆x′

< vth >
.

(7)
Supplementary equation 7 has to be solved to determine the total displacement ∆x′ of

the active particle during the time period ∆texp and thus for the average velocity. A solution
is only available by numerical integration. The obtained velocity as a function of the max-
imum velocity v0 is displayed in Supplementary Figure 4 and captures the trend observed
experimentally. Note that in the case of multiple particles being heated, the exposure time
has to be replaced by the heating time ∆theat = ∆texp/N (N is the total number of par-
ticles interacting), which is due to the multiplexing of the heating beam. A more detailed
description of the properties of the symmetric active particles will be published elsewhere.

Active particle motion The experimental results shown in Figure 1 b–d of the main text
have been obtained from a driving of the particle back and forth between two target positions
(see Supplementary Fig. 5a) and a localization for 100 frames at each of the target positions.

5



ba

Supplementary Figure 5 | (a) Positions (x, y) of a single active particle driven between
two target locations along the x-direction as presented in Figure 1b of the main text. The
incident laser power is P = 1 mW. (b) Mean squared displacement (msd) calculated from
the driving periods of the experiments shown in (a). The graph displays the msd (inset:
double log scale) for three different driving periods as a function of time for a single particle
at an incident laser power of P = 1 mW as well as the predicted parabolic time dependence
according to the measured velocity of vth = 3.9µm s−1 (dashed line).

As the rotational diffusion of the particle is not influencing the motion, the mean squared
displacement during these driving periods should be purely parabolic. Supplementary Figure
5 shows the mean squared displacement during three different driving periods taken from
the experiments shown in Figure 1 b–d of the main text. The particle is propelled with
an incident laser power of P = 1 mW. The resulting velocity is vth = 3.9µm s−1. The
experimental mean squared displacement is purely parabolic over the time period of 3.5
seconds and agrees well with the expected one for a driven motion with constant velocity
(dashed line).

Supplementary Note 2: Simulated Structures

Brownian simulations of the active particle molecules have been carried out to obtain com-
parative snapshots of the formed structures (Figure 3 main text) not aiming at a quantitative
comparison. Simulations use the Processing environment (http://www.processing.org). For
each particle we define a velocity and a noise amplitude to take care of the propulsion and
the Brownian motion of the particles. The speed of the active particle has been set to 6
pixel/frame. Gaussian distributed noise with a variance of 1 pixel has been added to the
particle positions at each frame. The propulsion direction is set according to the rules defined
in the main text with a defined value of req corresponding to 80 pixels. The feedback delay is
set to one frame, meaning that the positions in the previous frame are used to calculate the
directions of propulsion. Similar to the experiments, particle self-organize into a dynamic
structure from which snapshots are taken and depicted in Figure 3 of the main text.

Supplementary Note 3: Analytical Description of the Particle Dy-
namics
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Dimer bond length oscillation To evaluate the active particle molecule dynamics we
consider the special case of a dimer. For two active particles at the positions r1(t) and r2(t)
we may write down two Langevin equations in the overdamped limit to study their dynamics,

ṙ1(t) = v1(t) +
√

2D0η1, (8)

ṙ2(t) = −v1(t) +
√

2D0η2. (9)

The two equations can be combined to give the dynamics of the bond vector r12(t) = r1(t)−
r2(t):

ṙ12(t) = 2v1(t) +
√

4D0η12 = −2vthsign (|r12(t− δt)| − req) e12(t− δt) +
√

4D0η12, (10)

where η12 is a zero-mean, unit-variance Gaussian white noise (vector), i.e., (〈η12(t)〉 = 0 and
〈η(t)η(t′)〉 = δ(t− t′)) such that the variance of the noise term in supplementary equation 10
corresponds to 4D0. The velocity |v1| = vth is the propulsion velocity and δt the feedback
delay time. Note that for δt 6= 0 it is not guaranteed that the vectors r12(t) = r12e12(t) and
e12(t−δt) are parallel. For vanishing thermal noise (D0 = 0), however, the situation simplifies
because then the vectors r12(t) = r12e12(t) and e12(t−δt) are always parallel and the motion
of the dimer becomes effectively one-dimensional. Setting D0 = 0 in supplementary equation
10 and taking the scalar product of the result and e12(t) = e12(t− δt) we obtain the formula

ṙ12(t) = −2vthsign (|r12(t− δt)| − req) . (11)

This equation can be solved with the result

r12(t) = req + Axtr(t+ φ0), (12)

where A = 2vthδt is the amplitude of oscillations and

xtr(t) =
8

π2

∞∑

k=0

(−1)k
sin (2π(2k + 1)ft)

(2k + 1)2
(13)

denotes a triangular wave with amplitude 1 and period T = 1/f = 4δt. The phase shift
φ0 is determined by the initial condition which is assumed to be drawn from the interval
[req − A, req + A] attained by the solution 12 in the stationary state.

Scalar multiplication of supplementary equation 10 by the vector e12(t) yields

ṙ12(t) = −2vthsign (|r12(t− δt)| − req) cosα +
√

4D0η12, (14)

where cosα = cosα(t, t − δt) = e12(t) · e12(t − δt). For experimentally relevant parameters
(the distance diffused in the direction perpendicular to e12(t− δt) per δt is small compared
to the minimal inter-particle distance req − A), it is reasonable to assume that cosα ≈ 1.
Then we arrive at the formula

ṙ12(t) = −2vthsign (|r12(t− δt)| − req) +
√

4D0η12. (15)

Numerical analysis of this equation reveals that the nonzero noise leads to damped av-
eraged oscillations of the bond. Although the exact analytical calculation of the damping
constant seems to be beyond our reach due to the non-analytical nature of the force, an
approximate solution can be found.
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Time correlation function for the bond length The normalized time correlation func-
tion C(t) of the dimer bond length fluctuations ∆r12(t) = r12(t)− req is defined as

C(t) =

n/f∫
0

dτ ∆r12(τ)∆r12(τ + t)

n/f∫
0

dτ ∆r2
12(τ)

. (16)

Here, the time integration runs over n periods of the oscillations with frequency f measured
in the experiment. To obtain an approximate time dependence of the correlation function
including the effect of dephasing due to the Brownian motion of the particles we investigate
the influence of the noise on the first term of the series 13. In this approximation the bond
length is given by

∆r12(t) = 8A/π2 sin(2πft+ φ(t)), (17)

where the effect of the noise is summarized in φ(t) and solely caused by thermal fluctu-
ations of the dimer (amplitude A fluctuations are neglected). We assume that φ(t = 0) = 0
and thus the wave without noise evolves according to ∆rD0=0

12 (t) = 8A/π2 sin(2πft). The
distance ∆x(t) between the noise free and and the noisy solution within a time t is then
given by

∆x(t) = ∆rD0=0
12 (t)−∆r12(t) =

8A

π2
[sin(2πft)− sin(2πft+ φ(t))] . (18)

Assuming that φ(t) is small, one can expand the right-hand side with the result

∆x(t) = ∆rD0=0
12 (t)−∆r12(t) ≈ 8A

π2

[
− cos(2πft)φ(t) + sin(2πft)

φ(t)2

2
+ . . .

]
. (19)

Using the first order term we obtain

φ(t) ≈ π2∆x(t)

8A
(20)

assuming that the maximum phase shift is given when | cos(2πft)| = 1. If the displacements
∆x(t) obey a Gaussian distribution

p(∆x) =
1√

4πD∆t
e−

∆x2

4D∆t (21)

with D = 2D0 due to the relative motion, where D0 is the diffusion coefficient of a free
individual active particle, one can calculate the approximate damping constant as follows.

Inserting supplementary equation 17 into the time-correlation function 16 and assuming
additivity of the phase shift φ(t+ τ) = φ(t) +φ(τ) gives C(t) = cos(2πft+φ(t)). Averaging
this expression over the ensemble of Brownian displacements 21 yields

C(t) =

∞∫

−∞

p(φ) cos(2πft+ φ)dφ =
π2

8A

∞∫

−∞

p(∆x) cos

(
2πft+

π2∆x

8A

)
d∆x. (22)
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The oscillations with frequency f and phase shift φ sum up to form an exponentially decaying
oscillation

C(t) = e−π
4D t/64A2

cos(2πft). (23)

The time constant of the exponential decay is therefore T2 = 64A2/π42D0. It is named
T2 due to its analogy with the dephasing time in optical spectroscopy or magnetic resonance.
Inserting the amplitude A yields

T2 =
256v2

thδt
2

2π4D0

. (24)

The dephasing time is therefore decreasing with increasing noise, i.e., increasing diffusion
coefficient D0.

Supplementary Note 4: Entropy Fluxes

Without the feedback driving, the colloidal particles would start from an initial configuration
gradually spreading out due to Brownian motion. During such a process, the entropy SB of
the water (bath) remains constant and the entropy of the bond lengths between the individual
colloids (system) S increases. The diffusion of the center of mass of the colloidal molecule is
insensitive to the feedback and the corresponding entropy always increases. To address the
structure formation caused by the feedback, we thus consider the distribution of the bond
lengths only. The total entropy production rate during the process reads Ṡtot = Ṡ > 0. A
similar time evolution is observed if one switches on the laser and targets random locations at
the circumference of the particles, without using the information about the relative positions
of the particles. In that case, a part of the laser power P a is absorbed by the particles and
gradually dissipated to the bath, leading to ṠB = Pa/T > 0, where T is the bath temperature.
The total entropy production rate during the process thus reads Ṡtot = Ṡ + ṠB > 0. In
addition to that, the particles now spread faster than without the heating. Utilizing the
information about particle positions according to the rules described in the main text in
placing the laser implies a qualitatively different evolution of the system. The particles
form localized structures which fluctuate due to the Brownian motion and oscillate due to
the feedback. After long times, the system attains a non-equilibrium steady-state with a
time-independent probability distribution of interparticle distances. The laser heating still
produces nonzero entropy flux to the bath, but the system entropy is now time-independent.
The total energy input into the system both in the situation without aiming the laser and
with the aiming is the same, given by Pa. When comparing the random driving and the
structure formed, the structure has a lower entropy than the random particle distribution
which is due to the utilization of the information. It is the processing of this information
which requires the additional energy input. More precisely, the information processing is
necessarily accompanied with a positive entropy flux ṠF, which is bounded from below by
the Landauer’s principle. The total entropy production rate in the steady-state thus reads
Ṡtot = ṠB + ṠF > 0.

The feedback loop uses the information about the particle positions to balance the particle
spreading due to the diffusion. Differently speaking, the feedback introduces a negative
entropy influx Ṡ− into the system. The described entropy fluxes through the system in the
non-equilibrium steady-state are depicted in Supplementary Figure 6.
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ṠF > 0 Ṡ = 0
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Supplementary Figure 6 | Thermodynamic diagram of the system.

In order to evaluate the negative entropy influx Ṡ−, it is possible to follow the analysis
of reference [3] devoted to entropy production in stochastic systems with resetting. Let us for
simplicity consider just the dimer case, which can be straightforwardly generalized to more
particles. We denote as ρ(x, t) the probability distribution for the bond length x = r12 at
time t. The rate of change of the Shannon entropy of this distribution reads

Ṡ = −kB

∫ ∞

−∞
dx ln ρ(x, t)

∂ρ(x, t)

∂t
. (25)

Intuitively, this function is large after switching on the feedback in an unstructured system
and decreases towards zero while the system relaxes to a time-independent non-equilibrium
steady state, where ∂ρ(x)/∂t = 0, ρ(x) = limt→∞ ρ(x, t).

The dynamical equation for ρ(x, t) can be written as

∂ρ(x)

∂t
= 2D0

∂2

∂x2
ρ(x) + L[ρ(x, t)], (26)

where the fist term stands for the change of the density due to the diffusion and the second
one due to the driving. Inserting supplementary equation 26 into equation 25 we obtain for
the entropy change in the steady-state

Ṡ = −2D0kB

∫ ∞

−∞
dx

∂2

∂x2
ρ(x) ln ρ(x) + S− = 0. (27)

Regardless the specific form of the operator L[ρ] in supplementary equation 26, the negative
entropy influx due to the feedback is determined by the stationary distribution ρ(x):

Ṡ− = 2D0kB

∫ ∞

−∞
dx ln ρ(x)

∂2

∂x2
ρ(x) = −2D0kB

∫ ∞

−∞
dx

1

ρ(x)

[
∂

∂x
ρ(x)

]2

< 0. (28)

Let us now consider the case of vanishing time delay δt. Then the feedback creates the
effective V-type potential U(x) = γvth ||x| − req| for the bond length, where γ = 6πηR is
the Stokes friction coefficient. The stationary distribution of the bond length thus reads
ρ(x) = exp(−γvth ||x| − req| /kBT )/Z and the formula (28) gives us

Ṡ− = −2D0kBβ
2γ2v2

th = −2kBβγv
2
th = −2

γv2
th

T
= −2η

Pa

T
. (29)

Here ηPa denotes the fraction of the absorbed light power (efficiency η, absorbed power
Pa), which is used for the particle propulsion, β = (kBT )−1 and Z as the equilibrium partition
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function. Quite intuitively, the entropy influx is stronger (more negative) for larger velocities.
Its absolute increase with decreasing temperature is not so intuitive. Considering a more
general potential of the form kxn we find that Ṡ− ∝ (k/T )2/nT . Thus the increase of |Ṡ−|
with decreasing T is slower for stronger potentials/more localized distributions and for n ≥ 2
the absolute entropy influx even increases with T .

Supplementary Note 5: Experimental Setup

dark-field
condenser

objective
lens

lamp

piezo stage
& sample

ADC LabVIEW

D

EM CCD

AOD

532nmEOM

Supplementary Figure 7 | Experimental setup for the feedback controlled active particles.
The following abbreviations are used: AOD – acousto-optic-deflector, EOM – electro-optical
modulator, emCCD – Electron Multiplying CCD, FPGA – Field Programmable Gate Array,
D – Dichroic mirror. All the other components are lenses, mirrors and a standard microscopy
lamp.

Samples have been investigated in a custom built inverted microscopy setup. The setup
is based on an Olympus IX 71 microscopy stand (see Supplementary Figure 7). Optical
heating of the active particles is carried out by a CW 532 nm wavelength laser. The laser
intensity is controlled by a Conoptics 350-50 electro-optical modulator (EOM). An acousto-
optic deflector (AOD) together with a 4-f system (two f = 20 cm lenses) is used to steer
the 532 nm wavelength laser focus in the sample plane. The AOD is controlled by a Field
Programmable Gate Array (FPGA, National Instruments) via a LabView program. The
calibration of the AOD for precise laser positioning is carried out using a 2D projection
method developed in the lab A Leica 100x, infinity-corrected, NA 1.4 - 0.7 (set to 0.7), HCX
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PL APO objective lens is used for focusing the 532 nm laser to the sample plane as well as
for imaging the active particles. Active particles are imaged under dark field illumination.
When the sample is placed under the microscope, an oil immersion dark field condenser
(Olympus 1.2 NA) is approached from the top. The scattered light from the sample is
collected with the Leica objective lens and imaged with a f = 30 cm tube lens to an emCCD
camera (Cascade 650). A region of interest (ROI) of 200 pixels x 200 pixels is utilized for
the real-time imaging, analysis and recording of the particles, with an exposure time of 80
ms or 110 ms.
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Abstract
A time-delayed responseof individual living organisms to information exchangedwithinflocks or swarms
leads to the emergence of complex collective behaviors.A recent experimental setupby (Khadka et al2018
Nat.Commun.93864), employing syntheticmicroswimmers, allows to emulate and study suchbehavior
in a controlledway, in the lab.Motivatedby these experiments,we study a systemofNBrownianparticles
interacting via a retardedharmonic interaction. For N 3 , we characterize its collective behavior
analytically, by solving thepertinent stochastic delay-differential equations, and forN>3byBrownian
dynamics simulations. Theparticles formmolecule-likenon-equilibriumstructureswhichbecome
unstablewith increasingnumberof particles, delay time, and interaction strength.We evaluate the entropy
and informationfluxesmaintaining these structures and, to quantitatively characterize their stability,
develop an approximate time-dependent transition-state theory to characterize transitionsbetween
different isomers of themolecules. For completeness,we include a comprehensive discussionof the
analytical solutionprocedure for systemsof linear stochastic delay differential equations infinite
dimension, andnew results for covariance and time-correlationmatrices.

1. Introduction

1.1. Feedback systems
From the synchronized response of aflock of starlings [1] avoiding an attack of a predator to the formation of
colonies of living bacteria [2, 3], the surging field of activematter provides awide range of fascinating
phenomena. Its ultimate aim is to develop amicroscopic understanding of the behavior of large numbers of
interacting, active and energy consuming ‘agents’ [4, 5], with a focus on emergent collective behavior [6].Most
of the quantitativemodels, such as theVicsekmodel [7], neglect thefinite speed of information transmission
between the individual particles. However, recent studies [8–11] have shown that a time delay in the interaction
may significantly affect the systemdynamics.Moreover, experimental realizationsmimicking natural
interacting systems require implementing the non-physical interactions, such as a reaction of a bird to its
environment, via a feedback loop [10–13]. Finite processing of the information in the feedback loop then
inevitably introduces time delay into the systemdynamics.

Current (mainly optical)micromanipulation techniques allow to realize such feedback systems on
microscale [11, 13–19].Many [13, 18, 19] of these techniques are based on spherical Janus particles [20, 21]with
hemispheres coatedwith differentmaterials in order to excite surface flows to propel them actively upon
illumination or in presence of other energy sources (e.g. chemical fuel added to the solvent). In order to steer
these particles, one usually has towait until the rotational diffusion reorients them towards the desired location.
This issuewas resolved by the setup introduced byKhadka et al [11] based onBrownian particles, symmetrically
decorated by gold nanoparticles, that thermophoretically self-propel in the direction determined by the position
of the laser focus on their circumference. In the feedback experiment, the particles are trackedwith a camera
withfinite exposure time and the position of the heating laser is determined by positions of the particles in the
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previous frame. The setup allows to create arbitrary time-delayed interactions in themany-body system. In [11],
an interaction leading to constant absolute values of velocities of the individual particles was considered.

In the present paper, we theoretically analyze a system similar to that considered byKhadka et al [11], but
with harmonic interactions between the individual particles. Similarly to the case of [11], the two-dimensional
N-particle system is described by a set of 2N coupled nonlinear stochastic delay differential equations (SDDE).
For small enough values of the delay, highly symmetric non-equilibriummolecular-like structures form after a
transient period, which fluctuate due to thermal noise. The resulting structures strongly differ from the
molecules createdwith the constant-velocity protocol studied in [11], which oscillated, even for vanishing noise
amplitude, due to the nonzero delay. Another difference between the two realizations is that our setup leads, for
large delays, to oscillations with amplitudes exponentially increasing in time, while, in the setup of Khadka et al,
they are always bounded. The specific formof the interaction considered in our setupmoreover allows us to
linearize the underlying set of SDDE and to studymany aspects of themodel behavior analytically. For dimer
(N=2) and trimer (N=3), we use the linearizedmodel to calculate properties of the resultingGaussian
probability distributions for the bond length, namely itsmean values, covariancematrix, and time-correlation
matrix.We verify the validity of these results by Brownian dynamics (BD) simulations of the completemodel.
Moreover, we use the BD simulations to show that the behavior of largermolecules (N>3) is qualitatively the
same as that of the dimer and the trimer, with the difference that the critical value of the delay, beyondwhich the
molecules become unstable, decreases inversely in the particle numberN. If wewould scale the interaction
strength by the particle number, as it is common in toymodels ofmany-body systems, the critical value of the
delaywould thus be constant. If we label the individual particles, we can distinguish between several isomers of
the respectivemolecules according to their ordering. In the course of time, the noise induces jumps of a given
molecule between the individual isomers.We utilize our analytical results for the dimer and for the trimer to
evaluate the corresponding transition rates using Kramers’ theory [22, 23] and amore recent theory by
Bullerjahn et al [24].We compare the results with the rates calculated fromour BD simulations and identify a
useful formula for the transition rate that provides good predictions for small andmoderate values of the delay.

1.2. Stochastic delay differential equations
In general, delay differential equations (DDE’s) [25, 26]may generate rich dynamics [27]. Their solutionsmay
converge tofixed points or limit cycles, behave chaotically, and exhibitmultistability [28]. For systems affected
by noise, theDDEs are generalized to SDDE [29], which exhibit non-Markovian dynamics. Due to delay-
induced temporal correlations, the corresponding Fokker–Planck equation (FPE) cannot bewritten in a closed
form [30–32]. Instead, one obtains an infinite hierarchy of coupled FPEs for the n-time joint probability
densities for which generally nofinite closure is known.

For nonlinear systems, there are three established approximate approaches how to tackle the infinite
hierarchy: (i) the so called small delay approximation [30], which employs a Taylor expansion in the delay to
make the equations time local; (ii) also, if the delayed terms in the SDDE are small so that the systemdynamics is
almostMarkovian, a perturbation theory can be applied, leading to closed FPEs for the individual joint
probability densities [33]; (iii) a closed equation for the 1-time probability density valid in the steady state can be
obtained by linearization of all equations of the FPE hierarchy except for the first one [32].

So far, the only exactly solved problem is a one-dimensional linear stochastic delay equationwithGaussian
white noise, whose n-time probability densities are given bymultivariate Gaussians. Its stationary solution and
the conditions for its existence were discussed in [30, 31, 34]. Recently, a full time-dependent solution for 1- and
2-time probability densities was found byGiuggioli et al [35]. Employing the so-called time-convolutionless
transform introduced in the 1970s [36–40], these authors transformed the non-Markovian linear delayed
Langevin equation (LE) into a time-local form. Afterwards, they utilized this result in a derivation of analytically
solvable time-local FPEs for 1- and 2-time probability densities.

Even though an analytical treatment is thus rather complicated, there is a great interest in understanding
DDE’s and SDDE’s, due to their broad range of applications. Prominent examples are found in population
dynamics [41, 42], where the delay results frommaturation times, economics [43–46]when the limited reaction
times of themarket participantsmatters, or engineering [47]. In biology, finite transition times can play a
significant role in physiological systems [48–50] and neural networks [28, 51–53]. Recently [54–56],first efforts
were alsomade to incorporate a time delay into the language of stochastic thermodynamics [57, 58] in order to
evaluate energy and entropy fluxes in time-delayed stochastic system.

1.3.Outline
The rest of the paper is structured as follows. In section 2we first introduce the generalmodel and formulate the
underlying equations ofmotion in terms of SDDEs. After appropriate linearization, we study them analytically,
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considering both transient and stationary properties of the probability distributions for ‘bond’ lengths in
‘molecules’ self-assembling from two and three particles. Larger systems are studied in section 3. In section 4, we
apply the obtained results for evaluation of the entropy outflux (or information influx) from the systemdue to
the feedbackmaintaining the non-equilibrium stationary structures. In order to obtain amore quantitative
characterization of the stability of the non-equilibriummolecules, we utilize our analytical description of the
dimer and trimer for analytical and numerical investigation of the isomer transitions and back up the results by
BD simulations in section 5. In order to assess the robustness of ourfindings, section 6 addresses the role of the
functional formof thememory kernel considering negative delays and exponentialmemories.We summarize
ourfindings and conclude in section 7.Most of the technical details are given in appendices A–C. In appendix A,
we review the known results concerning the solution of systems of LDDEs. In appendix B, we showhow to
generalize these results for linear SDDEs. Finally, we apply the obtained results in appendix C for the calculation
of the time-correlationmatrix and the covariancematrix for systems of linear SDDEs.

2. Stochastic dynamics

Weconsider a two-dimensional systemofN overdamped Brownian particles coupled via time-delayed
harmonic pair interactions given by the potential

V r t
k

r t R
2

, 1ij ij2
2t t- = - -[ ( )] [ ( ) ] ( )

depicted infigure 1 by springs connecting the individual particles. In equation (1),R>0 denotes the
equilibrium spring length, k their stiffness, and r t t tr rij i jt t t- = - - -( ) ∣ ( ) ( )∣ is the distance between the
particles i and j located at positions ri and rj at an earlier time t− τ. Clearly, the picture of linear springs can
properly represent the time-delayed interactions only for a vanishing time delay τ.

Altogether, the particles diffuse in the composity potential

V V r
1

2
, 2

i j
ij

,
2å= ( ) ( )

( )

where the summation runs over all pairs (i, j), so that the ith particle is driven by the force VFi i= - =
V V,x yi i

¶ ¶( ). Because at time t the particle feels the value of the potential corresponding to its position at time
t−τ, here xi and yi denote theCartesian coordinates of the position vector ri in the past. In effect, theN-particle
system therefore obeys the set of nonlinear delayed Langevin equations

t
k

r t R t D t i Nr e 2 , 1, , . 3i
j i

ij ij i0å h
g

t t= - - - - + = ¼
¹

˙ ( ) [ ( ) ] ( ) ( ) ( )

The unit vector eij=rij/rij points fromparticle j to particle i and the diffusion coefficientD0=(βγ)−1 is related
to the inverse temperatureβ=1/kBT and the friction coefficient γ via the Einstein relation (kB denotes the
Boltzmann constant). The vectors ih comprise independentGaussianwhite noises satisfying the relations

Figure 1.Panel (a) displays stochastic trajectories of N 18= Brownian particles bound by delayed harmonic forces. At long times and
short enough delays, the particles formmolecular-like vibrating structures, while for long delays, they exhibit exponentially diverging
oscillations. In (b), we depict themodel as a systemofN=3 Brownian particles interconnected by ideal springs with stiffness k and
equilibrium lengthsR, whose response to deformation is time-delayed by evaluating rij at an earlier time t−τ.
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Thenumbersα andβ label the components of the vector ih , while i refers to the specificparticle.Note that thenoise
and the friction in equation (3) are relatedby thefluctuation-dissipation theorem [59] for a vanishingdelayτ= 0
only, and that the system is always out of thermodynamic equilibrium forτ>0 [56]. In order toobtain amodel that
wouldobey thefluctuation-dissipation theorem, one should consider adifferentnoise correlation function (4).

For small enough values of the time delay, the particles form, after an initial transient period, highly
symmetricmolecular-like structures, some ofwhich are displayed infigure 4(a) in section 3. ForN=2 (dimer)
andN=3 (trimer) the steady-state structures occupy the globalminimumof the potentialV. ForN>3 the
globalminimumbecomes inaccessible due the chosen two-dimensional geometry and the resulting structures
are thus frustrated in the sense that some of the springs do not reach their equilibrium length in the steady-state.
The structures are dynamical, due to the Brownianmotion of the particles, which persistently kicks the system
out of theminimumof the potential energy (2). The effect of the delay is that the systemmay exhibit
exponentially decaying oscillations on its return to the energyminimum. The decay rate of these oscillations
decreases with increasing delay, and, for delays larger than a certain threshold, their amplitude exponentially
increases. This is because large delays induce in the system a ‘swing effect’, when the repulsive force fromone
side of the potential propels the particle to a ‘higher’ position at its opposite side, and so on.

Within the equilibriummodel that obeys thefluctuation-dissipation theorem, the stationary probability density
function (PDF) for positions of the individual particleswould simply be theBoltzmanndistribution V Zexp b-( )
withpotentialV, inverse temperatureβ, andnormalizationZ.However, the physical situation at hand,where the
delay is interpreted as a result of a feedback controlmechanismand thus is independentof thenoise, requires the
more involveddescriptionwith equation (4) that leads tonon-trivial non-equilibriumsteady states.Consequently,
theBoltzmanndistribution canno longerbe assumed. For the simplest caseof a dimerwith short delay time,wewill
findan approximatelyGaussiandistribution, corresponding to a (‘deformed’)Boltzmann factor at an effective
temperature. For larger particle numbers and longer delay times, the situationbecomesmore complicated.

A similar systemwith a quasi-constant force between the particles (constant upto a change of sign at distance
R), i.e. obeying the set of Langevion equations

t
k r t R t

r t R t
D tr

e

e
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i=1,K,N,with sign(x)denoting the signum function,was discussed earlier in [11]. Themaindifference fromour
setting (3) is that, in equation (5), the absolute value of the force doesnotdependon the interparticle distances and the
particle numberN. Themainbenefit of assuming theharmonicpotential in equation (3) is that it allowsmuchmore
complete analytical treatment. To allow for an easy comparisonof the twomodels,we illustrate our results using
parameters inspiredby [11]. In the following,wefirst review someanalytical results for stochastic dynamics of dimers
and trimers.On this basis,wewill return to thediscussionof the emerging structures in section3.

2.1. Center ofmass
Similarly as for the dynamics considered in [11], the center ofmass coordinate Nr ri

n
ic 1º å =( ) of the system

obeys the Langevin equation

t D tr 2 , 6cc ch=˙ ( ) ( ) ( )
where 2i

N
ic 1h hº å = denotesGaussianwhite noise satisfying equation (4) (with the labels i, j replaced by c)

and the diffusion coefficientDc=D/N. Regardless of the interactions, the center ofmass performs ordinary
Brownianmotion and, assuming the center ofmass is at time t=0 located at the point r0, the PDF for rc reads

P t
N

Dt
N

Dt
r

r r
,

4
exp

4
. 7N

c 0
2

p
= -

-⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

2.2.Dimer
Let us now consider the simplest case of two interacting particles. ForN=2, equation (3) yields the systemof
four coupled equations ofmotion:

t
k

r t R t D tr e 2 , 81 1hg
t t= - - - - +˙ ( ) [ ( ) ] ( ) ( ) ( )

t
k

r t R t D tr e 2 , 92 2hg
t t= + - - - +˙ ( ) [ ( ) ] ( ) ( ) ( )

wherewe have used the abbreviations e(t)≡e12(t) and r(t)≡ r12(t). In the previous section, we have already
resolved the dynamics of the center ofmass coordinate for arbitraryN. Now,we consider only the dynamics of
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the relative coordinate r=r12=r1−r2 which obeys the equation ofmotion

t r t R t D tr e 4 10rhw t t= - - - - +˙( ) [ ( ) ] ( ) ( ) ( )
with frequency

k2 11w gº ( )
and 2r 1 2h h hº -( ) describingGaussianwhite noise satisfying equation (4)with the vector components i, j
replaced by the label r.

Projecting equation (10) on the direction of the bond at time t (bymultiplicationwith
t t te cos , sinj j=( ) ( ( ) ( ))) and on the direction perpendicular to the bond (bymultiplying it with

t te sin , cosj j= -j ( ( ) ( ))), we obtain the equations
r t r t R t t D tcos , 4 , 12r

rw t j t h= - - - - +˙ ( ) [ ( ) ] [ ( )] ( ) ( )
t

r t R

r t
t t

D

r t
tsin ,

4
, 13

2 rj w
t

j t h=
- -

- + j˙ ( ) ( )
( ) [ ( )] ( ) ( ) ( )

wherej(t, t−τ)=j(t)−j(t−τ) denotes the change of orientation of the vector e(t−τ) during time τ.
Above, we used the formulas r≡ re, r rr e ejº + j˙ ˙ ˙ and e er

r r rh h hº + j
j.

From symmetry considerations, it follows that the stationary PDF for the orientationmust be constant inj.
To gain analytical insight into the dynamics and PDFof the bond-length r, we linearize the coupled Langevin
equations (12) and (13). If the angle dependent stiffness k t t2 cos ,g j t-[ ( )] in equation (12) is strong
enough such that the terms proportional to [r(t−τ)−R]/R can safely be neglected independently of the noise
strength, the formula (13) for the angle assumes the form5

t
D

R
t

4
. 14

2 rj h= j˙ ( ) ( ) ( )
The corresponding transition PDF (Green’s function) for change of the orientation byj(t, t−τ)=j(t)− j
(t− τ) during the time interval τ reads [60–62] p t t m t t, , 2 cos ,m

1 1
1j t t p p j t- = + å -- -

=
¥[ ( ) ] ( ) [ ( )]

m D Rexp 2 2 2t-[ ]. Using this function, we average equation (12) overj(t, t−τ) obtaining

r t r t R D t4 , 15r
rw t h= - - - +t˙ ( ) [ ( ) ] ( ) ( )

where D Rexp 2 2w w t= -t ( ) is the natural relaxation rate. Note that the same formulawithωτ substituted by
ω is obtained by simply assuming that the change of the orientationj(t, t−τ) of the bond per delay time τ is
small, i.e. for D R2 12t  . Themain difference between the two approximations is thatD/R2 does not
necessarily have to be small in the first case.Wewill discuss the regime of validity of the equation (15) inmore
detail around equation (25) below.

Equation (15) is a linear SDDEwhich can be solved analytically for r ,Î -¥ ¥( ). In our setting, r 0 and
thuswe should solve equation (15)with a reflecting boundary at the origin. However, sincewe have assumed
that r t R r t 1t- - ∣ ( ) ∣ ( ) , we alreadywork in the regimewhere r only seldom significantly deviates fromR
and thus the solution of equation (15) on the full real axis should approximate well the desired solution on the
positive half-line. The solution of equation (15) for r ,Î -¥ ¥( ) and t 0 in terms of deviations of the bond
length from its equilibrium length (whichwe call as shifted bond length),

x t r t R, 16= -( ) ( ) ( )
can be derived by severalmethods.We review two of them (time-convolutionless transform andGaussian
ansatz) for a generalmultidimensional linear SDDE in appendices A–B.Here, we present just themain formulas.
Assuming that the systemwas initially in state x(0)=x0 and that x(t)=0 for t<0, the formal solution of
equation (15) for r ,Î -¥ ¥( ) and t 0 reads

x t x t D s t s s4 d , 17
t

r
0

0
ròl l h= + -( ) ( ) ( ) ( ) ( )

where the dimensionless Green’s function

t
k

t k t k 18
k

k
k

0
ål

w
t q t=

-
- -t

=

¥

( ) ( )
! ( ) ( ) ( )

solves equation (15)with D 0= , t 0l =( ) for t< 0 and 0 1l =( ) . The symbol θ(x) in equation (18) stands for
theHeaviside step function. For an arbitrary initial condition x(t), t<0 and x(0)= x0, the expression x0λ(t) in
equation (17)must be substituted by x t s t s x sd0

0
òl w l t- - -t t-

( ) ( ) ( ). Based on the value of the reduced
5
In equation (13), we set r= [(r−R)/R+ 1]R, expand it in (r−R)/R, and neglect all terms proportional to (r−R)/R.
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delayωττwhich is a dimensionlessmeasure for the relevance of the delay relative to the natural relaxation time,
theGreen’s functionλ(t) in equation (17) exhibits three different dynamical regimes discussed in detail in
appendixA, infigureA1 and also below: (i)monotonic exponential decay to zero for short delays e0 1 w tt ,
(ii)oscillatory exponential decay to zero for intermediate (‘resonant’)delays e1 2 w t pt , and (iii)oscillatory
exponential divergence for longdelaysωττ>π/2.

The stochastic process x(t) in equation (17) arises as a linear combination of white noises and thus the
corresponding PDFsmust beGaussian. Indeed, wefind that one- and two-time conditional PDFs for x(t)with
the initial condition δ(x) for t<0 and δ(x−x0) at t=0 read

P x t x
t

x t

t
, , 0
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2
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2
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⎪
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⎨
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where t t 0 ¢ and

t x t x t , 210m lº á ñ =( ) ( ) ( ) ( )
t x t t D s s4 d , 22

t
2 2

0

2òn m lº á ñ - =( ) ( ) ( ) ( ) ( )

w t t
x t x t t t

t t

D

t t
s t s t s,

4
d 23

t
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l l¢ º
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¢
=

¢
- ¢ -

¢( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

denote themean of the shifted bond-length (16), its variance, and normalized time correlation, respectively.
The function P x t x x, , 0 d1 0( ∣ ) stands for the probability that the systemwhich departs with certainty from

state x0 at time 0 is found at time t somewhere in the interval (x, x+dx). Similarly, P x t x t x x x, ; , , 0 d d2 0¢ ¢ ¢( ∣ )
denotes the probability that the (shifted) bond length is in the interval x x x, d¢ ¢ + ¢( ) at time t ¢ and at a later time
t in (x, x+dx) under the condition that it has started at time t=0 at x0. The one-time PDFP1 possesses the
same structure as the corresponding PDF for τ=0 [63]. The non-Markov character of the process (15)with
nonzero delaymanifests itself in the fact that the two-time PDFP2 cannot be constructed from the one-time PDF
P1, while this is always possible for aMarkov process.

TheFPEs corresponding to thePDFs (19) and (20) are givenby equations (B.6) and (B.7) in appendixB,
respectively. Interestingly enough, thediffusionanddrift terms in theFPEs are givenby thenatural scales 2D andωτ
only in the limitτ→0.Moreover, both coefficients acquire a timedependence, determinedby the functionλ(t).

Specifically, thediffusion anddrift coefficients in equation (B.6) forP1 read D t D t s s td d
t2

0
2 2òl l l=t

⎡⎣ ⎤⎦( ) ( ) ( ) ( )
td and t t tw l l= -t ( ) ˙ ( ) ( ), respectively6.While thedrift coefficient in equation (B.7) forP2 is also givenbyωτ(t),

thediffusion coefficient reads D t D t s t s t s t t2 4 d d d
t

0òl l l l+ - ¢ -t
¢( ) ( ) [ ( ) ( ) ( )] . Thisdifference in

diffusion coefficients is the reasonwhy thePDFP2 canbe constructed fromP1 in the standardway forMarkov
processes only forτ=0,wherebothdiffusion coefficients coincide.

Forτ=0 thePDFP1 always eventually relaxes to a time independent stationary statewhichdoesnotdependon
the initial condition andwhich is describedby the equilibriumGibbs formula P x x x D, ; , 0 exp 21 0

2w¥ µ -( ) ( ).
For anonzerodelay in the regimes (i) and (ii), i.e.when thenoiseless solution (18) and thus themeanvalue
μ(t)=x0λ(t)ofx converges to 0 for t  ¥, the systemrelaxes into a time-independent non-equilibriumsteady
state P x x x D, ; , 0 exp1 0

2w¥ µ - ¥ ¥t t( ) [ ( ) ( )]with w w¥ ¹t ( ) and D D2¥ ¹t ( ) , seefigure 8 in
section5.1. In these cases, our approximatemodel thus predicts that, in the long run, thedelaymerely ‘deforms’ the
(approximate)Gaussian equilibriumdistribution through aparameter renormalization.This state is characterizedby
anonzero entropyproduction rate [56]. For long timedelays, no stationary state exists. In comparison to the
analogous settingwith apiece-wise constant force discussedpreviously [11], this destabilization for longdelay times τ
is a new feature, due to increasingly high systematic forces thatmayoccur for longdelays.

In the regimes (i) and (ii), the variance t x t x t2 2n = á ñ - á ñ( ) ( ) ( ) converges to the stationary value
[30, 31, 34]

6
The case ofλ(t)=0, where these coefficients diverge, is discussed inmore detail in section 5.1.
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ssn n
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w t

w t
= =

+
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t

t¥
( ) ( )

( ) ( )

The derivation of this formula is given in appendix C,wherewe also derive an analytical expression for the
stationary time correlation function C t x s x s tlims= á + ñ¥( ) ( ) ( ) . Note that the variance (24) diverges upon
entering the unstable regime (iii) for 2w t pt .

The formula (24)finally allows us to specify the regime Rss
2n  where the approximation

r t R r t 0t- - »[ ( ) ] ( ) used in the derivation of equation (15) from equations (12) and (13) is reasonable
because the PDF for r is relatively sharply peaked around themean bond lengthR. Aswe already noted,
equation (15) is also valid in the case D R2 12t  when the bond rotates only slightly in each delay interval and
thus the anglej(t, t−τ) in equations (12) and (13) is small. However, also in this case we need to additionally
assume that Rss

2n  in order to ensure that the error caused by considering thewrong boundary condition at
r=−R is negligible. Altogether, the used approximation is expected to give good results if the condition

R 25ss
2n  ( )

is fulfilled.
An example of the stochastic evolution of the dimer obtained fromBD simulations of the exact system (12)

and (13) is depicted infigure 2(a). Infigure 2(b), we compare the results obtained fromBD simulationswith the
time evolution of the average shifted bond length (21) for different values of the equilibrium lengthR. As
expected, the approximate analytical formula (21) describes well the exact result for large enoughR satisfying the
inequality (25). For larger values of νss/R

2, the analytical result underestimates the correct value. This is because
the bond length in the BD simulation is obtained from equation (12)with the reflecting boundary at the origin,
while we allownegative values of r(t) in the approximate analytical description. Similarly as for themean value,
the analytical formula (22) for the bond length variance ν(t) approximates verywell the value obtained fromBD
simulations for large enoughR, as shown infigure 2(c). Infigure 2(d), we depict themonotonous rapid

Figure 2.Dimer dynamics in Brownian dynamics simulations and theory Comparison of the approximate analytical description of
the bond dynamics (full and dashed lines in panels (b)–(d)) and the behavior of the completemodel obtained using Brownian
dynamics simulations of equations (12)–(13) (symbols). Panel (a): Typical trajectory obtained from the simulation of a dimerwith
equilibriumbond lengthR=R1=10μm.Panel (b), we show the average shifted bond length (21) for a large value ofR=R1 and
the initial value x(0)=1μm (solid line), where the analytical approximationworks very well, and also for amoderate value of
R=R2=2.5μmand x(0)=0.25μm (dashed line). The convergence of the variance (22) of the bond length to its stationary value νss
(24) (dotted lines) for τ1=0.1 s, where the system operates in the oscillatory regime (ii) (solid line), and for τ2=0 s, where the bond
length decays exponentially toR (dashed line), is shown in panel (c). The divergence of the stationary value of the variance with
increasing τ is depicted in panel (d). If not specified otherwise in the description of the individual panels, we used the experimentally
reasonable parameters:ω=2k/γ=10 1 s−1, τ1=0.1 s,D=1μm2 s−1, andR=10μm. In the BD simulation, we averaged over
104 trajectories with time step dt=10−3 s.
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divergence of the stationary variance (24) as the time delay τ reaches the unstable regime (iii). Thismeans that
the delay tends to delocalize structures. On the other hand, the variance can be optimized as a function of the
frequencyωτ. The best localized structure is obtained for the frequency fulfilling the formula cos w t w t=t t( ) ,
i.e.ωτ≈0.74/τ and thus k D R2 0.74 exp 2 2t g t» ( ). For the corresponding value 0.74 of the reduced delay
ωττ the system is in the dynamical regime (ii)with exponentially decaying oscillations.

2.3. Trimer
Let us now consider the system composed of three particles. Then, equation (3) gives the systemof six coupled
equations ofmotion:

t
k

r t R t r t R t D t

t
k

r t R t r t R t D t

t
k

r t R t r t R t D t

r e e

r e e

r e e

2 ,

2 ,

2 .

1 12 21 13 31 1

2 12 12 32 32 2

3 32 23 31 13 3

h

h

h

g
t t t t

g
t t t t

g
t t t t

= - - - + - - - +

= - - - + - - - +

= - - - + - - - +

˙ ( ) {[ ( ) ] ( ) [ ( ) ] ( )} ( )

˙ ( ) {[ ( ) ] ( ) [ ( ) ] ( )} ( )

˙ ( ) {[ ( ) ] ( ) [ ( ) ] ( )} ( )

For the relative coordinates r12(t)=r1(t)−r2(t)we obtain

t r t R t r t R t

r t R t D t t

r e e

e

1

2
1

2
2 , 26

12 12 12 13 13

32 32 1 2h h

w t t t t

t t

=- - - - + - - -

+ - - - + -

{
}

˙ ( ) [ ( ) ] ( ) [ ( ) ] ( )

[ ( ) ] ( ) [ ( ) ( )] ( )
where k2w g= and similarly for tr13˙ ( ) and tr32˙ ( ). To get analytical results for bond lengths r t trij ij=( ) ∣ ( )∣, we
multiply the formulas for trij˙ ( ) by the corresponding unit vectors t t te r rij ij ij=( ) ( ) ∣ ( )∣and linearize the
resulting equations. To this end, we need to deal with the expressions eα(t−τ)·eβ(t),α,β=I,K, III, where
we introduced roman numbers as a shorthand indexing I≡12, II≡13, III≡32. For a vanishing delay τ=0,
eα·eα=1 and the scalar products eα·eβ describe the angles of the triangle formed by the three particles (see
figure 1 in section 2).We find that up to the leading order in the equilibriumbond lengthR the triangle is
equilateral and thus the internal angles areπ/3, leading to the relations eI·eII=eI·eIII=−eII·eIII≈1/2+
O[(rα−rβ)/R]with a correction that is on the order of (rI−rII)/R for eI·eII and similarly for the other scalar
products. The linearized equation for the relative coordinate xα≡rα−R thus reads

x t x t x t x t D t te
1

4

1

4
2 ,

1 1 0
1 0 1
0 1 1

, 27
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⎛
⎝
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⎞
⎠
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˙ ( ) ( ) ( ) ( ) ( ) · ( )

( )

where the lower index mod IIIa aº is considered as periodic with the period 3, i.e. xIV≡xI and xV≡xII.
Similarly as in the case of the dimer, equation (27) describes the dynamics of xα(t)well for large equilibrium
bond lengthsR and for time delays small compared to reorientation times of the unit vectors eα.

For an analytical treatment, it is advantageous to rewrite the system (27) in thematrix form

t M t D tx x 2 , 28xw t= - - +˙ ( ) ( ) ( ) ( )
for the three-dimensional column vector t x t x t x tx , ,I II III

=( ) [ ( ) ( ) ( )] . In equation (28), the noise vector tx ( ) is
given by t A t A t1 1 2 2x h hº +( ) ( ) ( )with the auxiliary noise vectors t , ,j j j j

1 2 3
h h h hº( ) [ ] , j=1, 2, containing

the jth components of the original noises tih ( ), i=1,K, 3. From the system (27) follows that thematricesM,A1

andA2 read
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( )

where e j
a denote jth component of the two-dimensional unit vector eα. The time-correlations between the three

components of the noise vector tx ( ) are notmutually independent and read

t t A A A A t t M t t2 . 301 1 2 2
D D

 x x d dá ¢ ñ = + - ¢ = - ¢a b ab ab( ) ( ) ( ) ( ) ( ) ( )
Due to the linearity of equation (28) andGaussianity of the noise, theGreen’s function for the one-time PDF

P tr r, , 01 0( ∣ ) is Gaussian [37], and determined by themean value t txm = á ñ( ) ( ) and the covariancematrix
t t t t tx x  m m= á ñ -( ) ( ) ( ) ( )[ ( )] .We review in detail the derivation of these functions in appendices A

andB.2.
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For the initial condition x(t)=0, t<0 and x(0)=x0 we get

t t x , 310m l=( ) ( ) ( )
t DM s s4 d , 32

t

0

2 ò l=( ) ( ) ( )
whereλ(t) denotes theGreen’s function for equation (28) given by

t
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t k t k . 33

k

k
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ål

w
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¥

( ) ( )
! ( ) ( ) ( )

Multiplyingλ(t)by the vector 1, 1, 1[ ] , using the formula M 1, 1, 1 3 2 1, 1, 1 =[ ] [ ] and comparing the
result to the one-dimensionalGreen’s function (18), wefind thatλ(t)undergoeswith increasing t (i)monotonous
exponential decay to 0 for e0 3 2 1wt< , (ii)oscillatory exponential decay to 0 for 1/e<3ωτ/2<π/2 and
(iii)oscillatory exponential divergence forπ/2<3ωτ/2. In the regimes (i) and (ii) the stationary value of the
covariancematrix reads

t
D M

M
lim

2 sin

cos
, 34ss

t
 


w

wt
wt

= =
+

¥
( ) ( )

( ) ( )

where  denotes the identitymatrix. This formula follows from the results of appendix C after substituting the
matricesω and ss from the formula (C.7) in the appendix byωM and 4DM. In the appendix, we also derive an
analytical expression for the stationary time correlationmatrix C t s s tx xlims

= á + ñ¥( ) ( ) ( ) . The regime of
stability 3ωτ/2<π/2 of the trimer can also be determined from the condition that thematrix Mcos wt( ) is not
singular, i.e. its determinant cos 3 2 cos 32 wt wt( ) ( ) is nonzero.

Due to the symmetry of the problem, all diagonal elements of thematrix ss are identical and the same holds
also for all its off-diagonal elements. The approximate analytical, time-dependent solution (32) for the
covariancematrix is compared to the exact covariancematrix obtained byBD simulations of the complete
model infigure 3. Given the approximationsmade, wefind very good agreement. The analytical results only
slightly underestimate the diagonal elements (probably for the same reason as for the dimer) and overestimate
the off-diagonal elements. The behavior of the covariancematrix as a function of the frequencyω and delay τ is
similar to the behavior of the variance (24) for the dimer. Specifically, the diagonal elements of ss monotonicly
increase (the PDF for the bond lengths become broader)with τ and exhibit aminimumas functions ofω,
opening a possibility to optimize thewidth of the bond length PDF. The off-diagonal elements of ss
monotonously increase (the individual bonds of the trimer becomemore correlated) bothwith the delay and
with the natural relaxation frequency.

3. Structure formation

The approximate analytical study of the dimer and trimer revealed that both systems obey three dynamical
regimes: (i) and (ii) amonotonous and an oscillatory exponential relaxation towards a steady state with the
average bond length Rm ¥ =( ) , respectively, and (iii) an exponential divergence. The performed BD
simulations confirmed that for largeR, when themodel is well described by the approximate analytical formulas,
these regimes can indeed be observed also in the completemodel (3). Furthermore, the analytical study

Figure 3. (a)Diagonal and (b) off-diagonal elements of the covariancematrix t( ) as functions of time for two values 0 s (dashed red
lines and squares) and 0.2 s (full blue lines and circles) of the delay τ. The full and dashed lines are calculated from the approximate
analytical formula (32) and the symbols come from aBD simulation of the completemodel. The horizontal dotted lines depict the
elements of the stationary covariancematrix ss given by equation (34). Parameters used:ω=1 s−1,D=1μm2 s−1, rij(0)=12μm,
andR=10μm. In the BD simulation, we averaged over 105 trajectories with time step dt=10−3 s.
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predicted that the dimer is in the unstable regime (iii) forωτ>π/2 and the trimer forωτ>π/3. Let us now
discuss how general the presented findings are.

The stationary average bond lengthμ can be determined byminimizing the potential energy
V V ri j ij

1

2 , 2= å ( )( ) with the two-particle potentialV2 given by equation (1).Minimizing the potential in our two-

dimensional geometry yields the highly symmetricmolecule-like structures shown infigure 4(a). Due to the
confinement to 2d, the globalminimumof the potential corresponding toμ=R is accessible only for the dimer
(N=2) and the trimer (N=3). For largermolecules, the average bond length decreases as a result of the
infinite range of the potential. The system asymptotically relaxes to the depicted structures if the noiseD
vanishes and the reduced delay timeωτ is small enough such that the system is in the dynamical regime (i) or (ii).
NonzeroD leads tofluctuations around the asymptotic structures and largeωτ causes exponentially diverging
oscillations.

We have solved the completemodel using BD simulations and depict the behavior of the average bond
length r(t) for several values ofN in the dynamical regimes (i) and (ii)–(iii) infigures 4(b) and (c), respectively. In
the regime (i), we observe that larger systems relax faster than thosewith smallerN. Furthermore, infigure 4(c),
we see that larger systems oscillate with larger amplitudes and that the threshold between the regimes (ii) and (iii)
is reached at smaller values ofωτ.More precisely, all the curves infigure 4(c) are plotted using the same
parameters except forN and, while the curves forN�3 are in the regime (ii), the curves forN>3 correspond
to the regime (iii). These observations are in accordwith our analyticalfindings for the dimer and trimer.

By analyzing themean bond length at late times, we have evaluated the critical reduced delay wt( )
determining the threshold between the regimes (ii) and (iii) forN=2,K, 10. Infigure 5, we show its rescaled
value

c
2

, 35crit


p
wtº ( ) ( )

where the coefficient 2/π is introduced for the comparison to the approximate result for the dimer.Wefind that
the stability factor is well described byC/N as suggested by the approximate analytical results for the dimer

2wt p=[( ) ]and trimer [ 3wt p=( ) ]. However, the analytical results would imply that the constantC
equals to 2, which is smaller than the valueC≈3 obtained from the completemodel. The actual dimer and
trimer are thusmore stable than their linearized versions considered in our analytical study. The found scaling

Figure 4.Bound ‘molecules’—ground state and relaxation In panel (a)we showhighly symmetricmolecule-like structures formed in
ourmodel for a vanishing noise (D=0) and a small productωτ of the spring stiffnessω and the delay τ. Due to the infinite range of
the harmonic two-particle interaction, the inter-particle distances in themolecules decrease with increasing number of particles. For
D 0¹ , the structures vibrate erratically due to the noise andmay oscillate due to the delay. In panel (b)weplotted the BD results
average bond lengthμ(t) as a function of time for several values ofN for τ=0.1, where the oscillations do not arise (regime (i)). The
oscillations observed in panel (c)with τ=0.5 are only transient forN�3 (regime (ii)), and grow indefinitely forN>3 (regime (iii)).
Other parameters used:α= 1 s−1,R=10μm, andD=1μm2 s−1. In the simulation, we averaged over 104 stochastic trajectories
with time step dt=10−3 s.
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ccrit≈C/N implies that the stability of a systemwith rescaled potential stiffness k→k/N (to render the energy
extensive [81])would be (almost) independent of the particle number.

To better understand this behavior, let usfirst consider the approximate analyticalmodel described in
section 2.2. Imagine a particle in a harmonic potential centered around x=0, which is initially located at
x(0)=x0>0. Assuming that x(t)=0 for t<0 and neglecting the noise, the particle does not feel any force in
the time interval tä[0, τ] such that x(t)=x0 for all tä[0, τ]. In the subsequent time interval tä[τ, 2τ], the
particle experiences the force F=−ωτx0 pushing it towards the opposite wall of the trap. For times t>2τ the
force starts changing dynamically according to the earlier position at time t−τ. The particle keeps its direction
ofmotion until it reaches the position x1 where the force changes its sign. For large delays, the particlemay stop
significantly later than crossing theminimum, so that x1<0 and x x1 0>∣ ∣ ∣ ∣. A similar process then repeats
when the particle returns back, with the difference that now it reaches amaximumposition x2>0,
x x x2 1 0> >∣ ∣ ∣ ∣ ∣ ∣, etc. The amplitude thus increases after each half-period of oscillation causing a diverging
behavior.

In order to understand the difference between the approximate analytical and the complete (numerical)
solutions of themodel, it is helpful to project the latter to one dimension, where a particlemoves in the double-
well potential depicted figure 7 in section 5.1.We assume that the particle starts in the right well and oscillates
with increasing amplitude as discussed above. After some time the amplitude becomes large enough that the
particle crosses the barrier to the left well. Due to the presence of the additional well, the potential now contains
muchwider low-energy region compared to the purely harmonic case. The particle needs longer time to travel
fromone (unbounded) side of the potential to its other side, and hence also the (reduced) delayωτ required for
inducing diverging oscillations is larger than in the harmonic case. As a consequence, the completemodel is seen
to bemore stable than foreseen by our analytical considerations.Moreover, our discussion reveals the existence
of a fourth dynamical regime, preceding the unstable regime (iii), where the particle hops between the individual
wells of the potential and the amplitude of the oscillations remains finite.

Compared to the quasi-constant velocitymodel investigated in [11], our analysis thus reveals two qualitative
differences. First, the structures formed in the quasi-constant velocitymodel oscillate for arbitrary nonzero delay
τ, while in the harmonicmodel these oscillations appear only ifωτ is large enough. Second, the amplitude of the
oscillations in the quasi-constant velocitymodel is always constant in time, while the osculations in the
harmonicmodel either vanishwith time, if the system is in the regime (ii), or explodewith time, if the system is
in the regime (iii). The behavior observed in the harmonicmodel can be traced back to the increase of the force
with the particle distance and thuswe expect an analogous behavior also for other systemswith time-delayed
forces increasingwith distance.

4. Entropyfluxes

The investigatedmodel,much as themodel discussed in [11], is inspired by self-organized systems, where a
feedback based on the information about the state of the system at a previous time leads to structure formation.
Interpreting the delayed interactions in ourmodel as a result of such feedback control, we can investigate the
entropy flowout of the system caused by the feedback. Due to the non-analyticity of themodel with quasi-
constant forces considered in [11], the analysis of entropyflows in the supplementarymaterial thereinwas

Figure 5. Stability factor (35) delimiting the threshold between the stable dynamical regimes (i)–(ii) and the unstable dynamical regime
(iii) for systems consisting ofN=2,K, 10 particles obtained fromBD simulation of the completemodel (3) (solid broken line). The
stability factor is well approximated by the functionC/N (dashed lines). For the upper (lower) linewe choose the constantC such that
the curve crosses the last (first) point obtained from the simulation.
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performed for vanishing delay only. Using the approximateGaussian PDFs found in sections 2.2 and 2.3 for the
dimer and the trimer, respectively, we can repeat this analysis with nonzero delay.

Without feedback, i.e. without the time-delayed harmonic interactions (2), the particles would spread
diffusively and the system entropywould increase accordingly. The feedback control utilizes the information
about the particle positions to drive the system into a non-equilibrium steady state with a time independent PDF
P(x) and thuswith a time constant configurational entropy k P Px x xd logB ò= - ( ) ( ). The smaller the entropy
of the non-equilibrium steady state, themore localized the steady-state structure and thus the better the result of
the feedback control. Anothermeasure of the performance of the feedback is the rate - -

˙ of entropy taken from
the systemper unit time that can also be interpreted as the amount of information pumped into the systemper
unit time by the feedback device. This entropy flowbalances the diffusive spreading in the steady state and is thus
moreover ameasure of the useful ‘work’ (in units of J K−1) performed by the feedback device against thermal
dispersal. Evaluating the stationary entropy production Ḟ due to the feedback controlmechanism and the
stationary entropy production Ḋ due to the breaking of the fluctuation-dissipation theorem in equations (3)
and (4) for τ>0, one can define the feedback efficiency as the ratio F F D  h = - +-

˙ ( ˙ ˙ ). The entropy
production Ḋ can be calculated along the lines of [56]. The entropy production q TF H =˙ is the
housekeeping heatflux qHflowing to the bath at temperatureT, due to the overall operation of the feedback
device, divided by the bath temperature. It clearly depends on the specific technical realization of the feedback.
In all known relevant realizations of the feedback inmicroscopic systems [11, 13, 16, 18, 19], the housekeeping
heatflux is very large compared to the ‘functional’ energyfluxes in the controlled system, resulting in a large Ḟ
compared to - -

˙ , so that the efficiency ηF of such devices is usually negligibly small.
To evaluate the entropy flowdue to the feedback (the time-delayed harmonic interaction) in the present

setup, we proceed along the similar lines as in [11, 64]. The center ofmass coordinate of the system is not affected
by the feedback and diffuses freely (see section 2.1). The structure formation due to the feedback thus occurs
only on the level of the bonds. Let us now consider the time-dependent PDFP(x, t) for the bonds that converges
to a time-independent non-equilibrium steady state due to the competition between feedback and diffusion.
The rate of change of its Shannon entropy t k P t P tx x xd , log ,B ò= -( ) ( ) ( ) can formally bewritten as

t t t , 36  = ++ -˙ ( ) ˙ ( ) ˙ ( ) ( )
where t+˙ ( ) stands for the positive entropy flowing into the systemdue to the diffusive spreading of the particles
and t-˙ ( ) corresponds to the outflowof entropy due to the feedback.

Assuming that the stochastic dynamics of the column vector x(t)describing the bonds obeys the generalized
Langevin equation (GLE) t t t tx F x x, t sh= - +˙ ( ) [ ( ) ( )] ( ), where η denotes a zeromeanGaussianwhite
noise with the covariancematrix t t t ti j ijh h d dá ¢ ñ = - ¢( ) ( ) ( ), the dynamical equation for P(x, t) can bewritten
in the form [30, 65]

t
P t

x x
P t tx x x,

1

2
, , . 37

ij
ij

i j

2

å ss
¶
¶

=
¶

¶ ¶
+( ) ( ) ( ) [ ] ( )

In this equation, the fist termon the right stands for the diffusive spreading of the PDF. The term tx,[ ]
corresponds to the time-delayed force F[x(t−τ)] in the Langevin equation and thus it describes the effect of the
feedback. Its concrete form is not relevant for the discussion below and thuswe refer to theworks [30, 65] for
more details about its structure.

Inserting equation (37) into the formal time derivative t k P t P tx x xd , log ,tB ò= - ¶˙ ( ) [ ( )] ( ) of the system
entropy t( ), we find that

t
k

x x
P P k P

P
Px x

2
d log d , 38

ij
ij

i j

B
2

B  


ò òå ss
ss

= -
¶

¶ ¶
= -  +

⎛
⎝⎜

⎞
⎠⎟

˙ ( ) ( ) ( ) ( )

t k t P t t tx x xd , log , . 39B   ò= - = -- +˙ ( ) [ ] ( ) ˙ ( ) ˙ ( ) ( )

The last equation allows us to calculate the amount of entropy taken out of the systemdue to the feedback per
unit time, t-˙ ( ), from the PDFP(x, t)without knowing the explicit formof the operator . It is interesting to
adopt the Seifert’s idea of trajectory-dependent entropy [57, 66] and use equation (39) to define the stochastic
(position dependent) entropy flux

s t k P
P

P Px,
1

2
log . 40tB 2

2
ss

=   - ¶-
⎡
⎣⎢

⎤
⎦⎥˙ ( ) ( ) ( ) ( )

The average flux (39) then follows as the average t s tx, = á ñ- -
˙ ( ) ˙ ( ) either over the PDFP(x, t) or over the

individual stochastic trajectories generated in a BD simulation. To the best of our knowledge, the statistics of the
entropy flux (40) has not been investigated yet and thus it is not knownwhether its PDF fulfills some fluctuation
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symmetries. Such an investigationwould clearly be beyond the scope of the present paper andwe leave it for a
futurework.

Let us now evaluate the three entropyfluxes (36), (38) and (39) for a general d-dimensional Gaussian PDF

P t
t

t t tx x x,
1

2
exp

1

2
, 41

d

1




p
m m= - - --⎡

⎣⎢
⎤
⎦⎥( )

( ) ∣ ( )∣
( ( )) ( )( ( )) ( )

where t∣ ( )∣denotes determinant of the covariancematrix t( ). The corresponding entropy t( ) reads
t

k

d
t

2

1

2
log 2 42d

B


p= +

( ) [( ) ∣ ( )∣] ( )
leading to the rate of change

t

k t
t

1

2

d

d
log . 43

B


=

˙ ( ) ∣ ( )∣ ( )

From equation (38)we thenfind that

t

k
t

1

2
Tr . 44

B

1
ss=+ -

˙ ( ) [ ( )] ( )

Forfinite times, all the entropy fluxes depend on the initial conditions and can be determined from
equations (39), (43) and (44).

Let us now focus on the specific setups considered in sections 2.2 and 2.3. For the dimer, we have investigated
the PDF for the length of the single bond and thus d=1. Using our analytical findings with D4ss = and

t t n=( ) ( ), we get
t

k
t1

1

2
log 2 45

B

2
p n= +

( ) [( ) ( )] ( )
and

t
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t

t

t

Dk t

t
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1
, 46

B

2
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( ) ( )

whereλ(t) is given by equation (18) and the variance reads t D s s4 d
t

0
2òn l=( ) ( ). Similarly, in our analytical

investigation of the trimer, we havefixed the angles between the individual bonds and investigated the PDF for
the three bond length only, implying that d=3. Using DM4ss = and Jacobi’s formula for the derivative of
determinants, we obtain the expressions

t
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whereλ(t) is given by equation (33) and the covariancematrix t( ) reads DM s s4 d
t

0
2ò l ( ).

The formulas (45)–(48) are valid both in the stable regimes (i) and (ii), where the system at long times relaxes
to a stationary time-independent structured state, and in the unstable regime (iii). In the unstable regime, the
variance ν(t) and the covariance t( ) diverge in time. As a result, the system entropy t( ) diverges and the
entropy flow t+˙ ( ) decays to zero, because the variance of the PDF is so large that the diffusion can hardly further
increase it. On the other hand, the rate of entropy change ṫ( ) and thus also the entropy outflow t-˙ ( ) remain
finite oscillating functions, as can be seen for the dimer by using the exponential long-time approximation (A.7)
forλ(t), and similarly for the trimer.

For the purpose of structure formation, only the regimes (i) and (ii) are of interest, because only then the PDF
reaches a time-independent non-equilibrium steady state at long times, i.e. tlimt  =¥ ( ) ,

tlim 0t  =¥
˙ ( ) and t tlim limt t  º = -- ¥ - ¥ +

˙ ˙ ( ) ˙ ( ). Let us therefore now evaluate the long-time
stationary system entropies S and entropy fluxes t-˙ ( )maintaining themolecular-like structures formed in our
model for the dimer and the trimer in these two regimes. Using the asymptotic formulas (24) and (34) for the
dimer bond-length stationary variance νss and trimer covariance ss , wefind from equations (45)–(48)

S

k

D
1 log 2

1

2
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2 1 sin
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p
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w t
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t

t
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13

New J. Phys. 21 (2019) 093014 DGeiss et al



S

k

cos

1 sin
, 50

B

w w t
w t

= -
+
t t

t

-˙ ( )
( ) ( )

for the dimer and
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for the trimer. In the last two formulas, a 1, 1ss= ( ) denotes diagonal and b 1, 2ss= ( ) off-diagonal elements
of the covariancematrix. The system entropies (49) and (51) are determined by thewidth of the PDFs for the
bonds. Therefore, theymonotonously increase with temperatureT=γD/kB andwith the delay time τ, and
exhibit aminimumas functions of the frequenciesωτ (dimer) andω (trimer), similarly as the variance νss and the
diagonalmatrix elements of the covariancematrix ss . The quality of the steady-state structures is thus in our
model always unfavorably influenced by the delay and, for a given delay, one can tune the frequency in order to
minimize this (usually unwanted) effect.

The two entropy fluxes (50) and (52) are negative, highlighting that they correspond to entropy outflows
from (or information inflows into) the system. Interestingly enough, the entropy fluxes do not depend on the
temperatureT (or noise strengthD) as already predicted in [11]. Thismeans that thefluxes are discontinuous in
the formal limitT→ 0 because theymust inevitably vanish for zero noise, where the PDF for the system
evolution is a δ-function for all times.We plot the stationary entropy fluxes (50) and (52) as functions of the
delay τ infigure 6(a) and frequencyω infigure 6(b). Naturally,maintaining a stationary structure in a bigger
system (trimer, dashed lines) requires a larger (more negative) entropy flux (ormore information) than in the
smaller one (dimer, solid lines). Themaximumof the fluxes -∣ ˙ ∣, depicted infigure 6(b), arises as a result of a
competition between stronger confinement, corresponding to larger frequenciesω, and gradual destabilization
with increasingωτ, when the system enters the unstable regime (iii). For thefigure, we used for simplicity the
approximationωτ≈ω for the dimer.

5. Transition rates for isomer transformations

The particles within themolecular structures depicted infigure 4(a)may exchange their positions. Assuming the
particles to be distinguishable, different arrangements of the same structuremay arise which can be interpreted
as different isomers of the samemolecule. Their study can provide further insight into the stability properties of
our non-equilibriummolecules. In fact, wefind that the study formoleculesmade out of only a few particles is
informative also for the phenomenology observed for large particle numbers.While for the purely deterministic
motion then isomer transitions only appear for time delays τ in the unstable regime (iii), in a system affected by
thermalfluctuations the transitions occur for arbitrary delays. The evaluation of the frequencies of such
transitions, whichmeasure the stability of the individual isomers, can thus provide insight into the overall energy
landscape responsible for the non-equilibrium structure formation. It is themain topic of transition rate
theory [23].

The transition rate tA Bk  ( ) for switching from a conformationA to a conformationB at time t can be (for
arbitrary dynamics) found from themean number of transitionsNA→B(t) fromA toB during an infinitesimal
time intervalΔ t as t N t tA B A Bk = D ( ) ( ) . Alternatively, one can get it from the inversemeanfirst passage
time for changing the two isomers, leading to the same results. In general, the deduced transition rates depend
on the initial state of the system and on time and they can be calculated analytically only in few simple situations.

Figure 6.The stationary structuremaintaining entropyfluxes (50) and (52) in the dimer (solid lines) and in the trimer (dashed lines) as
functions of the delay (panel (a)) and inverse frequency (panel (b)), respectively. If not specified otherwise we used the parameters
D=1μm2 s−1, τ=1 s andω= 1 s−1. For the dimer, we used the approximationωτ=ω, which is accurate forDτ/R2≈0.
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While they in principle can straightforwardly be evaluated in simulations, this can take a (forbiddingly) long
time if the transition rates are small.

For an analytical treatment, it ismore convenient to define the transition rate via the so-called survival
probability S(t) that the systemhas not changed its initial isomer until time t. Our particular problem concerning
the transitions between different isomers can bemapped to a particlemoving in a high-dimensional energy
landscape.We denote by S tA B ( ) the survival probability that the system, starting in the conformationAwith an
absorbing boundary at the top of the barrier to conformationB (and reflecting barriers elsewhere), will remain
in the configurationA until time t. The transition rate between the statesA andB is then given by tA Bk = ( )
S t S tA B A B ˙ ( ) ( ). Hence, if the dynamical equation for the probability distribution for the state of the system
with the correct boundary conditions is known,we can determine the transition rate numerically and, in some
situations, even analytically.

Considering standardMarkovian Langevin dynamics, the asymptotic form tlimt A Bk¥  ( ) of the
transition rate can (approximately) be calculated using Kramers’ rate theory [22, 23]whichwas originally
developed to describe chemical reaction rates. The approximationworks best for a high energy barrier
compared to the thermal energy. Kramers’ theory was extended to reaction rates forGLEs describing non-
Markovian systems. A crucial contribution in this direction came fromGrote andHynes [67]who derived a
dynamical correction toKramers’ result.While their analysis was based on a parabolic barrier, Pollak [68]
investigated the decay rate of an underdamped particle trapped in a symmetric cusp doublewell potential
obeying theGLEwith an arbitrarymemory kernel satisfying the fluctuation-dissipation theorem. The time-
dependent rate tA Bk  ( ) for driven overdamped systems can be calculated using the recent theory of Bullerjahn
et al [24] for forciblemolecular bond breaking.

To the best of our knowledge, the literature on the rate theory of time-delayed systems is scarce. The escape
froma cubicmetastable well under a time-delayed frictionwas investigated in [69]. Based on their small-delay
approximation, Guillouzic et al [70] calculated the transition rate and themeanfirst passage time for an
overdamped Brownian particle in a delayed quartic potential. From an experimental point of view, Curtin et al
[71] studied transitions in a bistable systemunder time-delayed feedback.

Ourmodel does not belong to any of the previously investigated classes of systems.However, for a vanishing
delay one can useKramers’ theory, since the systemobeys aMarkovian overdamped Langevin equation.
Moreover, for nonvanishing delays in the stable regimes (i) and (ii), the one-time PDFs for dimer and trimer can
be described by standard (time-local) FPEswith time-dependent coefficients, where Bullerjahn’s theory applies
andwhere one can evaluate the transition rate numerically. Furthermore, after long times, the coefficients in
these FPEs become time independent suggesting that Kramers’ theorymay be applied also to obtain the long-
time formof the transition rates for a nonzero delay.

Although looking promising, all the techniques above are based on the time-local FPE. For non-zero delay,
they share one drawback, whichmay limit their applicability to small delays: the time-local FPE is derived from
solutions to the delayed Langevin equationswithout the absorbing boundary condition.While this represents
no problem for diffusion dynamics without delay, it can cause problems in our delayed system. In the following
sections, we compare predictions of Kramers’ theory, Bullerjahn’s theory and direct numerical evaluation of the
transition rates from the time-local FPE against BD simulations of the transition rates for dimer and trimer,
demonstrating that the rates obtained from the time-local FPE are indeed accurate for small andmoderate
delays only.

5.1.Dimer
To study transition rates, the simplest configuration of ourmodel is the dimerwith two distinguishable particles
in one dimension. (Due to rotational symmetry, we cannot distinguish between dimer isomers in two
dimensions.)The setting is described by the approximate Langevin equation (15) for the inter-particle distance
r r r 01 2= - >∣ ∣ . A transition occurs when the two particles exchange their positions, and can be assigned to the
momentwhen the bond length r vanishes. To illustrate the problem, it is useful to extend the domain of the
distance variable r such that it is positive for one isomer andnegative for the other. For vanishing delay, this
redefined signed bond length r̃ then diffuses in the cusped double-well potentialV r r R 22gw= -(˜) (∣˜∣ ) ,
depicted infigure 7, with the diffusion coefficient 2D.

For a nonzero delay, based on the approximate solution (17) to the Langevin equation (15) assuming
r ,Î -¥ ¥( ) and x(t)= 0 for t< 0, we have found that the one-time PDF P P x t P x t x, , , 01 1 1 0= =( ) ( ∣ ) obeys
the FPE (B.6), which reads

t
P
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t x D t
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This equation describes diffusion in the harmonic potential

V r t t r R, 2, 542gw= -t(˜ ) ( )(∣˜∣ ) ( )
with the time-dependent stiffness γωτ(t) (given by (B.4)) and the time-dependent diffusion coefficient 2Dτ(t)
(given by (B.8)).

The validity of equation (53) forP1 with natural boundary conditions suggests that one can further employ
the analogy between the delayed dynamics and the (effective)Markovianmodel for calculating the transition
rateκ(t) for switching between the isomers. In theMarkovian case, the transition rate for surpassing the
(effective) energy barrier γωτ(t)R

2/2 at r=0 to the other isomer can be calculated from equation (53)with an
absorbing boundary at x=−R [63].We now review severalmethods suitable for this task, and compare the
results to BD simulations of the completemodel with energy barrier γωR2/2 and delayed dynamics. In order to
study the transition rate between the isomers of the dimer analytically, it is enough to consider the dynamics of
the system in one of thewells of the potential, i.e. for x r R 0= - >˜ .

5.1.1. Numericalmethod
Wefirst consider the situationwhen the systemdwells in the state x(t)=0 for t 0 and then starts to diffuse in
the time-dependent potential (54). Then, the time-dependentMarkovian rateκM(t) can be determined from the
equation

P x t x t P x t t P x t, , , , , 55t a a M a k¶ = +˜ ( ) ( ) ˜ ( ) ( ) ˜ ( ) ( )
for the normalized PDF P x t P x t S t, ,a a a=˜ ( ) ( ) ( ) for the position of the particle surviving in the right well of the
cusped potential [72]. Here,Pa(x, t) is the solution to the FPE (53)with absorbing boundary at x=−R and
S t xP x td ,

Ra aò=
-

¥( ) ( ) is the probability that the particle survives in the right well until time t. Equation (55)

follows from equation (53) by inserting the definitions of the PDF Pã and of the transition rate

t S t S t . 56M a ak = -( ) ˙ ( ) ( ) ( )
We solved it numerically using themethod presented in [73].

5.1.2. Bullerjahn’smethod
Alternatively, one can determine the rate approximately using the analytical theory developed by Bullerjahn et al
in [24]. Therein, the rate is constructed from the (Gaussian) solutionP1 (20) of the FPE (53)with natural
boundary conditions. Specifically, one approximates the probability current

j R t S t t x D t P x t, 2 , 57x x Ra aw- = = - + ¶t t =-( ) ˙ ( ) [ ( ) ( ) ] ( )∣ ( )
across the absorbing boundary by7

j R t t x D t P x t, 4 , , 58x x R1* w- º - + ¶t t =-( ) [ ( ) ( ) ] ( )∣ ( )
and the survival probability Sa(t) by

S t x P x t R td ,
1

2
1 Erf 2 . 59

R
1 1ò n= = +

-

¥( ) ( ) [ ( ( ) )] ( )
In the last expression, the symbol Erf denotes the error function and the variance ν(t) is given by equation (22).
The approximateMarkovian transition rate is then given by

Figure 7.The exchange of positions of the two particles of a dimer in 1d can bemapped to the escape dynamics of a single particle in a
cusped double-well potential.

7
Rescaling the diffusion coefficient by factor 2 corrects for the part of the diffusive flux that can not return to the systemdue to the absorbing

boundary, see [24] for details.
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Infigure 8,we show the frequencyωτ(t), the (effective)diffusion coefficient 2Dτ(t), survival probabilities Sa(t)
and S1(t) and the transition ratesκM(t) andκB(t) as functions of time t forparameters in the dynamical regime (i).
One canobserve that both the parameters t t tw l l=t ( ) ˙ ( ) ( ) and D t D t t t2 2l w n= +t t( ) ( ) ( ) ( ) and the rates
saturatewith time.The relaxation timeofωτ(t) is determinedby the time inwhich theGreen’s functionλ(t)
approaches the long-time exponential representation (A.7), and the corresponding stationary value,

t1 Rw ¥ =t ( ) , is controlled by the relaxation time tR for decay ofλ(t) to 0, see alsofigureA1 in appendixA.The
effective diffusion coefficient converges to the value D D D2 1 sin cos 2w t w t¥ = +t t t( ) [ ( )] ( ) , determined
by the stationary variance ssn n¥ =( ) , see equation (24). The transition rates relaxwith the relaxation time tR,
similarly as the correspondingPDFsPa andP1. The analytical expressions for S1(t) andκB(t) approximate the
numerical results for Sa(t) andκM(t)best for short times t tR , where thePDFsPa andP1 are still hardly affected by
the different boundary conditions at x=−R. For long times andup tomoderate values of timedelay, the
approximate analytical transition rateκB overestimates the corresponding exact rateκM, see alsofigures 9(a) and (b)
below. For longdelays, the (effective)barrier height over the (effective) thermal energy decreases so that the
assumptions of the transition state theory are not valid anymore, andκB<κM, seefigure 9(c).

The situationof lowbarriers canbeunderstood fromthebehavior at vanishingpotential strengthω→0,when
Dτ(t)=2D and thefinite time transition ratesκM(t) andκB(t) canbe calculated analytically.Namely, thePDFs Pã and
P1 in thedefinitions (56) and (60)of the rates read P x t x Dt x R Dt, exp 4 exp 2 4a

2 2= - - - +˜ ( ) { ( ) [ ( ) ]}
Dt4p and P x t x Dt Dt, exp 4 41

2 p= -( ) ( ) [63] leading to the formulas

t
R

t

R Dt

x x Dt x R Dt

2 exp 4

d exp 4 exp 2 4
, 61

R

M

2

2 2ò
k =

-

- - - +
-

¥( ) ( )
{ ( ) [ ( ) ]} ( )

Figure 8.The frequencyωτ(t) (panel (a)) and the diffusion coefficient 2Dτ(t) [panel (b)] from theMarkovian FPE (53) as functions of
time. The solid lines in (c) and (d) show the time dependence of the survival probability Sa(t) and transition rateκM(t) calculated
numerically from equations (55) and (56), respectively. The dotted–dashed lines in (c) and (d) depict the corresponding variables S1(t)
andκB(t) obtained by approximate analytical solution of equation (55), see equation (60) and the text above. Parameters used:ω =
1 s−1,D=1μm2 s−1,R=5μm, and τ=0.1 s. The system is in the dynamical regime (i).
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Since the denominator in the expression for the rateκM(t) is smaller than that forκB(t), we conclude that, for low
energy barriers, the inequality t tB Mk k( ) ( ) holds. On the other hand, for very high barriers, the PDFs Pã and
P1 are (almost) identical because the absorbing boundary at x=−R is effectively inaccessible. In such a case, the
probability current j(−R, t) is (almost) zero, S(t)≈1, and j j D P2 0x x R1* » - ¶ <=-∣ leads to the inequal-
ity t tB Mk k( ) ( ).

To gain a deeper insight into the behavior of the transition rates, let us consider the stationary regime,
t  ¥. In this regime, P R, 0a - ¥ =˜ ( ) , due to the absorbing boundary condition at x=−R, and j x,1 ¥ º( )

x D P x2 , 0x x R1w- ¥ + ¥ ¶ ¥ =t t =-[ ( ) ( ) ] ˜ ( )∣ , due to the conservation of probability P x,t 1¶ ¥ =˜ ( )
P x S j x, ,t x1 1 1¶ ¥ ¥ = -¶ ¥[ ( ) ( )] ( ), where∂t≡∂/∂t and∂x≡∂/∂x. Then the transition rates Mk ¥ =( )

jDa- and jB D1k ¥ = -( ) are determined solely by the diffusive fluxes j D P x2 ,x x RDa aº ¥ ¶ ¥t =-( ) ˜ ( )∣
and j D P x2 ,x x RD1 1º ¥ ¶ ¥t =-( ) ˜ ( )∣ . The smaller the frequencyω, thewider the PDFs P1̃ and Pã. For smallω,
the boundary at x=−R is in the regionwhere the PDF P1̃has itsmaximumand it is also close to themaximum
of Pã. In such a case, the PDF Pã, whichmust vanish at x=−R, changes near the boundary faster than P1̃, leading
to j jD1 Da<∣ ∣ ∣ ∣and B Mk k¥ ¥( ) ( ), in accordwith the argument put forward in the previous paragraph.

With increasingω, the boundary shifts away from themaxima of P1̃ and Pã towards their tails. Due to the
trajectories trapped in the absorbing state [72, 74], themaximumof Pã is slightly farther away from the absorbing
boundary than themaximumof P1̃, and thus, with increasingω, the tail of Pã, with small derivative (small jDa),
hits the boundary at x=−R before the corresponding tail of P1̃. Hence, for large enough barrier height, the
inequality between the rates crosses over to B Mk k¥ ¥( ) ( ). Finally, for very stiff traps (w  ¥), both jDa and
jD1 vanish and 0M Bk k¥ = ¥ =( ) ( ) .

As shown in thefigure 8(d), the transition rates converge with time to constant values in regime (i), where the
limits tlimt wt¥ ( ) and D tlimt t¥ ( ) exist. Also in regime (ii), the PDFP1 assumes, after long times, the time-
independent stationary form P xexp 2 21

2
ss ssn pn= -( ) with the variance νss given by equation (24). This

Figure 9.Panels (a)–(c) show typical τ behavior of the predictionsκM (pale blue solid line), Mk̃ (dark blue solid line),κB (yellow
dotted–dashed line), Bk̃ (dark orange dotted–dashed line) andκK (non-horizontal red dotted line) for transition rates obtained from
equations (55)–(66). The horizontal dotted lines correspond toKramers’ prediction M

0kt= for τ=0 s. The symbols (κBD) in all the
panels were obtained from104 simulated trajectories of the Langevin equation (15)with the time step dt=10−4 s. The individual
panels differ only in the scale of the τ-axis.We used the same parameters as infigure 8, whereω=1 s−1 and thus the boundaries
between the dynamical regimes (i), (ii) and (iii) approximately correspond to the values of τ 0.39 and 1.57 s.
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suggests that, also in this regime, the transition rate should saturate at long times.However, both the frequency
ωτ(t) and the diffusion coefficient 2Dτ(t) actually exhibit diverging oscillations caused by the oscillations in the
Green’s functionλ(t) (18), in regime (ii). These divergences cause problems both in the FPE and in the
approximate calculation of the rate using Bullerjahn’smethod. As a consequence, the (effective)Markov
description can not be valid in the dynamical regime (ii). Nevertheless, let us now investigate towhat extent the
long-time transition rate k k= ¥( ) obtained fromBD simulations of the Langevin equation (15) is captured by
the predictions (56) and (60) above.

5.1.3. Long-time behavior andKramers’method
Assuming that at long times the PDF P̃ is time-independent and the limits tlimt wt¥ ( ) and D tlimt t¥ ( )
exist, we can rewrite the formula (55) as the eigenvalue problem

x P x P x, , , , 63a M a k¥ ¥ = ¥( ) ˜ ( ) ˜ ( ) ( )
for the long timeMarkovian transition rate M Mk k= ¥( ).We solve this formula numerically using themethod
described in [72, 73]. The steady state value of the transition rate predictedwith Bullerjahn’smethod reads

j S 64B 1*k = - ¥ ¥( ) ( ) ( )
with the survival probability S R1 Erf 2 21 ssn¥ = +( ) [ ( )] and the probability current j* w¥ = ¥t( ) ( )
R Rexp 2 22

ss ssn pn-( ) .
For high barriers, where S 11 ¥ »( ) , the long time formof Bullerjahn’s transition rate coincides with the

classical prediction byKramers [22, 23] for the transition rate for leaving one of thewells of a cusped potential
with barrier height Eb,

R
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In the penultimate equality, we used the appropriate inverse thermal energy D1 2b g= ¥t ( ) and barrier height
E R 2b

2gw= ¥t ( ) , and also the asymptotic formof the diffusion coefficient D ssw n¥ = ¥t t( ) ( ) , which
follows from the condition tlim 0t l =¥ ( ) , valid in the dynamical regimes (i) and (ii).

5.1.4. Renormalized transition rates
Interestingly, the termωτ(t), which causes divergences of the diffusion coefficient and the frequency of the
potential in the FPE (53), does not enter the argument of the exponential in the ratesκB andκK. Thismeans that
it just determines the kinetic prefactor, as can be also observed directly from the long-time form

P t x P2t x x1 ss 1w n¶ = ¶ + ¶t ( ) ( ) of the FPE (53). In the dynamical regime (ii), the kinetic prefactor in
equation (65) cannot be correct, due to the diverging oscillations in the time-dependent frequencyωτ(t).
Nevertheless, the exponential term seems to be reasonable, and thus it is tempting to use in the prefactor of the
transition rates simplyω, instead of the problematic w ¥t ( ). This substitution gives the correct pre-exponential
factor of the rate for vanishing delay τ=0, where w w¥ =t ( ) and D D2 2¥ =t ( ) .We denote the rates with
the renormalized prefactor as

66x xk wk w= ¥t˜ ( ) ( )
with x=M,B orK indicatingMarkov, Bullerjahn, or Kramers, respectively.

The necessity to change the kinetic prefactor in the rates stems from the fact that, although the absorbing
boundary conditionwe used in equation (63) is correct forMarkov dynamics (τ=0), it can not be precisely
valid for the time-delayed dynamics (τ>0). To see this, it is enough to realize that the delayed system
arriving at the boundary at a time t does not feel the energy barrier Eb=γωR2/2, but the barrier with
energy r t 22gw t-[ ( )] .

Infigures 9(a)–(c), we compare the various analytical predictionsκx and xk̃ , x=M,B orK, for the long-
time transition rate (lines)with the asymptotic rateκ (symbols) calculated fromBD simulations of equation (15)
using the inversefirst passage time for reaching the absorbing boundary at r=0. For a broad range of
parameters fulfilling k T V R, 0B - ( ), we have found that the rateκ can be predicted reasonably well only for
values of τ in the dynamical regime (i) (ωτ<1/e≈0.37) and in the first part of the dynamical regime (ii)
(ωτ<π/2≈1.57). The rateκ is best approximated by the expression Mk̃ obtained numerically from
equation (63)withω substituted for w ¥t ( ) in the operator . From the analytical expressions the re-scaled
Bullerjahn expression Bk̃ (see equations (64) and (66))works best. However, in the figure we have used
parameters leading to a high barrier Eb, and thus Kramer’s and Bullerjahn’s predictions,κK andκB, almost
coincide. As a consequence, the line for Kk̃ in thefigure overlapswith Bk̃ , similarly as the lineκK (suppressed in
the figure for better readability) overlapswithκB.
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5.1.5. Delay-dependence ofκ
Infigure 9(d), we also show the behavior of the rateκ in the parameter regime (iii) inaccessible to the analytical
and numerical formulas due to the diverging oscillation. The simulated transition rate in figures 9(a)–(d) isfirst
approximately exponential and thus convex in τ, then its curvature changes to concave and it runs through a
maximumand,finally, the rate starts to decrease. The value of τwhere the curvature changes sign coincides with
the boundaryπ/2ωτ≈1.57 between the dynamical regimes (ii) and (iii). Interestingly, no qualitative change of
κ(τ) is observed at the boundaryωτ=1/e≈0.37 between the regimes (i) and (ii). It is tempting to attribute, the
(approximate) exponential increase of the ratewith τ in regimes (i) and (ii) to the increase of the steady-state
variance νss, which is given as the ratio of the effective energy barrierV R,- ¥( ) and the effective thermal
energy D2g ¥t ( ). Although this explanationmayworkwell for small delays, it breaks down for values of τ in
the second half of the regime (ii), where the actual rateκ is no longer well approximated by our analytical and
numerical predictions. Thismeans that the identification of the parameters γωτ(t) and 2Dτ(t)with the effective
potential stiffness and the effective diffusion coefficient, respectively, suggested by the effectiveMarkov
equation (53), is reasonable for relatively small values of τ only. In the dynamical regime (iii), the particle
undergoes oscillations with an amplitude that increases bothwith τ and t. The corresponding transition rate,
obtained from the BD simulations, thus decreases with the delay τ as a result of oscillations leading away from
the transition boundary at r=−R. Note that, in this regime, the stationary transition rate actually does not
exist, since the amount of time spent distant from the boundary increases with t (so that the transition rate
decreases with t), where t is the duration of the simulation.

5.2. Trimer
Consider the trimer depicted infigure 10with the three distinguishable particles labeled by the numbers 1–3.We
can count the particles either clockwise or anticlockwise and thus two different isomers can form in two
dimensions. As in the case of the dimer discussed above, transitions between the two isomers occurwith a
transition rate depending on the diffusion coefficient, the coupling strength, and the equilibrium spring length.

There are several ways how the clockwise isomermay turn into the anticlockwise one and vice versa. For
example, the particles 1 and 2 can switch their positions, or the particle 2 canmigrate from above the line
connecting particles 1 and 3 to below that line, to name a few. The transition rate for hopping between the two
isomers is then given as a sumof the transition rates for all the possible realizations of the transition. In order to
make an analytical prediction for the transition rate, we choose the coordinate frame in such away that the x-axis
always points fromparticle 1 to particle 3 (seefigure 10). Then all possible transitions between the two isomers
boil down to a single eventwhen particle 2 crosses the x-axis. In particular, this also includes the transitions due
to exchanging particles 1 and 3. In this case, the direction of the x-axes changes and thus the particle 2 effectively
moves to its other side. In the following, we estimate the long-time transition rate k k= ¥( ) for the isomer
transition in the steady state bymeans of Kramers’ theory and compare it to BD simulations.

In theBDsimulations, wehave evaluated the rateκusing the anglejbetween the abscissas 12∣ ∣ and 13∣ ∣ and a
neutral regionofwidth x R3 16D = as exemplarily shown infigure 10. Aneutral state 0ñ∣ is introduced to
avoidover counting due tofluctuations ofj around 0 andπ. It is occupied if the smallest height of the triangle
formedby the three particles, is smallerΔ x/2. i.e. either if maxj f< º>∣ ∣ x r x rarcsin 2 , arcsin 212 13D D[ ( ) ( )]
or x r x rarccos 2 arccos 212 13j f> º D + D<∣ ∣ ( ) ( ). Forjä [f>,f<] the system is said to be in the clockwise
state 1ñ∣ , while forjä[−f>,−f<] it is in the counter-clockwise state 1- ñ∣ . To calculate the transition rate,we
have counted the number of transitions between the states 1 ñ∣ during a specific simulation timewindow,where
the transition occurred if the systemunderwent the sequenceof states 1 0 1ñ  ñ  - ñ∣ ∣ ∣ or 1 0 1- ñ  ñ  ñ∣ ∣ ∣ .

Figure 10.Transition from the clockwise to the counterclockwise isomer of a trimermolecule. To calculate the transition rate from
the clockwise to the counterclockwise isomer, we choose the coordinate frame such that x-axis points fromparticle 1 to particle 3. By
this choice of frame, all transitions aremapped to the crossing of the x-axis by particle 2. The gray region ofwidthΔx depicts a
transition zone or ‘neutral region’ that helps to avoid that smallfluctuations around the axis are counted as isomer transitions.
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The resulting transition rateκ as a function of the time delay τ is depicted infigure 11(a). Therein, one can
observe the four dynamical regimes described in section 3. For small delays the rate is approximately
exponential, then the curvature of k t( ) changes frompositive to negative, after which the derivative of the rate
starts to increase due to the appearance of the fourth dynamical regimewhere the particle hops between the
individualminima of the potential, and for large delays in the unstable regime (iii) the rate drops, while the
particle exhibits diverging fluctuations. The transition rate is qualitatively similar to that obtained for the dimer
infigure 9. The only difference is that for the dimer we have not observed the fourth dynamical regime, because
we have calculated the rate using the first-passage timemethod, which is insensitive to the potential shape
beyond the boundary.

For an approximate analytical treatment, wemap the situation to a one-dimensional transition problem, to
whichwe apply Kramers’ theory. Specifically, we focus on the distance rb of the particle 2 from the x-axis and
construct an appropriate effective energy barrier Eb,eff and diffusion coefficientDeff. In the steady state, the three
particles aremost likely found at the vertices of an equilateral triangle. Using the notation of section 2.3, we
express the vector rb from the particle 2 to the center of the abscissa 13∣ ∣ as rb=r12+r31/2.Hence the
Gaussianwhite noise tbh ( ) corresponding to the coordinate rb is given by

D t t D t t D t4
1

2
4 2 3 , 671 2 3 1 bh h h h h- + - º( ( ) ( )) ( ( ) ( )) ( ) ( ) ( )

wherewe have used the relations (4). Based on these considerations, we approximate the effective diffusion
coefficient byDeff=3D.

For the corresponding effective energy barrier, wemake the ansatz E C R 12b,eff
2t gw= ( ) . Namely, wefirst

consider theminimumvalueEb=kR2/6= γωR2/12 of the energy difference between a configurationwith all
the three particles aligned (V=kR2/6) and the configurationwhere the particles form an equilateral triangle
with side lengthR (V=0), whereV is given by equation (2). The (possibly delay-dependent) unknown
dimensionless prefactorC(τ) accounts for the time delay and all additional ways the particle 2may take in the
multidimensional energy profile in order to pass from 1ñ∣ to 1- ñ∣ . The resulting Kramers’ rate for the transition
from 1ñ∣ to 1- ñ∣ thus reads

a
C R

D
exp

36
, 68TST

2

k t
t w

= -
⎧⎨⎩

⎫⎬⎭( ) ( ) ( )

where a(τ) is a further unknownprefactor thatmay depend on all parameters of themodel (see, for example,
equation (65) for Kramers’ rate in a cusped potential).

In order to test the formula (68), we havefitted it to the transition rateκ obtained fromBD simulations as a
function of the diffusion coefficientD. The results for different values of the time delay are shown infigure 11(b)
and the corresponding values of the coefficientsC(τ) and a(τ), obtained from the fits, are given in table 1. The
presented results prove that the transition rate exhibits exponential increase with the diffusion coefficient for a
relatively broad range of values of the time delay, and thus theD-dependence ofκ can be relatively well described
by theKramers-type ansatz (65).

Our attempts to include the effects of the delay in the effective diffusion coefficient and energy barrier,
analogously to the approach described in section 5.1, wherewemade the replacements ,ssw w t and
D D ,ss t , did not lead to a significant change of the value forC(τ).We thus conclude that the deviations ofC(τ)
fromunity aremainly caused by the assumption that the particle will almost in all cases cross the axis at the

Figure 11. (a) Steady-state transition rate for the trimer as a function of time delay obtained by BD simulations. (b) Steady state
transition rate for the trimer as a function of the diffusion coefficient for several values of time delay. The curves were obtained by
fitting the formula (68) to the simulation data (symbols). The curves of τ=0 s and τ=0.1 s are lying on top of each other. Parameters
used:ω=1 s−1,R=5 μm,D=1 μm2 s−1. In BD simulations, we have averaged over 103 trajectories with time step dt=10−3 s.
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minimumof the potential energy. Further improvement would thus require amultidimensional transition rate
theory, which is clearly beyond the scope of the present paper.

6. Extensions to othermemory kernels

So far,wehave consideredonly the interactions involving a given positive delay time. But how robust are our
analyticalfindings?Do they critically hingeon (possibly artificial)model details andbreakdownupon someminor
variation of themodel definition? It turns out thatmost of the presented results can bedirectly applied also to other
modelswith delay ormemory. To see this, note that the central equation (B.1) is equivalent to theGLE

x t t t x t td 69
t

0
òw f sh= - ¢ - ¢ ¢ +˙ ( ) ( ) ( ) ( )

with positive frequencyω>0 and thememory kernel given byf(t)=δ(t−τ), τ>0.Deriving a time-local
Langevin equation from theGLE (69)with arbitraryf(t) along the lines of appendix B.1, we obtain
equation (B.3)withλ(t) being theGreen’s function for equation (69), i.e. solving (69)with the initial condition
λ(0)=1 andλ(t)=0, t<0. Therefore, all our results that do not depend on the specific formof theGreen’s
function can be readily generalized to arbitraryf(t) after substituting theGreen’s function (A.5) forf(t)=δ
(t−τ) by theGreen’s function corresponding to the chosenf(t). In the rest of this section, we review some
paradigmatic examples ofmemory kernelsf(t), to provide readers with a set of examples of the potential
generalizationswe have inmind.

The simplest generalization of systemswith thememory kernelf(t)=δ(t−τ) are systemswithmultiple
different time delays with thememory kernel

t t . 70
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åf w d t= -
=
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Properties of these systems are studied in [35].
A slightly unusual but interesting variation thatmakes sense in the context of activematter employs a

negative delay. The individual active agentsmay react to a future state of their neighborhoodwhich they predict
in the basis of its present state. For idealized systems capable of a perfect prediction, theGLE (or, equivalently,
the linear SDDE) contains thememory kernelf(t)=δ(t+τ), τ>0 and it can be solved using the strategy
described in appendix A. The resultingGreen’s function
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is the so called Bruwier series [75] that is convergent for ew t<∣ ∣ ∣ ∣. Alternatively, the series (71) can bewritten in
the form [76]
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where s is the absolute value of the smallest root of the equation ρ=−ωeτρ.

More realistic predictive systemsmight insteadonlyhave an imperfect knowledge of the future position and
anticipate a position x t x tpre t t+ ¹ +( ) ( ). Therefore,we reformulate the deterministic part of theGLE (69) as

x t x t . 73prew t= - +˙ ( ) ( ) ( )
One of the reasonable strategies for predicting xpre is to use the linear extrapolation

x t x t x t , 74pre t t+ = +( ) ( ) ˙ ( ) ( )

Table 1.The phenomenological parametersC(τ) and a(τ) forfive values of
the time delay τ corresponding to the three different dynamical regimes of
the trimer isomerization. The presented valueswere obtained by fitting the
formula (68) to the BDdata shown infigure 11(b).

Regime τ (s) C(τ) (1) a(τ) (s−1)

(i)Exponentialdecay 0 3.52±0.08 1.16±0.09
(i)Exponentialdecay 0.1 3.45±0.01 1.10±0.01
(i)Exponentialdecay 0.3 3.65±0.07 1.69±0.10
(ii)Dampedoscillations 0.5 3.41±0.07 2.07±0.12
(iii)Exponentialdivergence 1.0 1.48±0.05 1.23±0.05
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which is identical to a small delay expansion of x(t+τ). The equation ofmotion (73) then assumes the time
local form

x t x t1 75wt w+ = -( ) ˙ ( ) ( ) ( )
which is solved by x(t)=x0λ(t)with the exponentially decayingGreen’s function

t t texp
1

. 760l
w
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= -
+

-
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

The rescaled frequency 1rw w wt= +( ) decreaseswith increasingdelay and thus the resultingdynamics in general
exhibits slower relaxation and largerfluctuations (variance) thana systemwithvanishing timedelay.Note that for
conventional timedelays (nowcorresponding toτ<0 in equation (73)), thepresentedfirst order approximation
predicts dynamicswith rescaled frequencyωr increasingwith increasing timedelay (forωτ<−1).However, such
dynamicswould lead to smaller varianceνss fornon-zerodelays than for a vanishingdelay,which contradicts our exact
result (24), highlighting the limitedpractical significanceof thenaive small-delay expansion, as alreadypointedout
in [30].

Themost frequently used generic formof thememory kernel is the exponential

t b btexp 77f = -( ) ( ) ( )
which is obtained, for example, after integrating out themomentum in the Langevin equation for position of an
underdamped harmonic oscillator. Thismemory kernel leads to the correspondingGreen’s function
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where b 42 2wW = - , which is reminiscent of theGreen’s function (A.7) for the systemwith conventional
time delay [f(t)=δ(t−τ)]. The difference is that, while theGreen’s function (78) always decays exponentially
with time, theGreen’s function (A.7) allows also for negative relaxation times and thus an exponential increase
with time. Properties of theGreen’s function (78), as well as those corresponding to a power-lawmemory, are
discussed inmore detail in [77].

7. Conclusion and outlook

Inspired by the surging interest in self-organized activematter and,more specifically, the experiments ofKhadka
et al [11], we consideredNBrownianparticles interacting via time-delayed harmonic interactions and confined to a
plane, as depicted infigure 1 in section2. The system is described by the set (3) of 2Nnonlinear delayed Langevin
equations andhence its dynamics is non-Markovian. At long times, the particles formhighly symmetric dynamical
molecular-like structures, depicted infigure 4(a) in section3,whichbecome increasingly compact for largeN.

We have analyzed small systems ofN=2 (dimer) andN=3 (trimer) particles analytically finding
molecules with nearest-neighbor distance given by the equilibrium spring lengthR. To this end, we linearized
the corresponding Langevin equations around the zero-temperature steady-state configurations, or,
equivalently, around theminimumof the potential energy (2). The linearized Langevin equations could be
solved analytically, leading toGaussian stationary probability densities with delay-dependent effective
parameters. In the appendices, we provide analytical expressions formean values, covariancematrix and time-
correlationmatrix for amultidimensional systemof linear delayed Langevin equations. For the dimer and
trimer, we have compared our analytical predictionswith BD simulations of the completemodel (3).We have
found good quantitative agreement in the parameter regimeswhere the system evolves relatively close to its
minimumenergy configuration, and good qualitative agreement otherwise (see section 2).

Our analytical results for thedimer and trimer imply that these structures are stable only for small enoughvalues of
theproduct kτ,where kdenotes the stifness of thepotential.Moreprecisely, these systems converge either
exponentially or by exponentially-dampedoscillations to corresponding steady states, or they exhibit exponentially
divergingoscillations.Our analysis of systemswith N 2 byBDsimulations, described in section3, reveals that these
dynamical regimes are stable beyond the linearization approximationand for an arbitrarynumberof particles.
Specifically,wehave found that the stability actually extends to larger values of kτ thanpredicted fromthe linearized
equations, the critical valueof theproduct kτdecaying approximately as 1/N. Therefore, larger systemsaremore
unstable than smaller ones, and thedependenceof the stability on theparticle number almost vanishes after rescaling
thepotential stiffness ask→k/N.Weconjecture that these instabilities are inducedby the chosen formof the
interactionwhichhas infinite range anddivergeswith increasing inter-particle distance. In contrast, themodelwith
constant forces, considered in [11], didnot lead tounstable behavior.

Interpreting the inter-particle interactions as an actionof a feedback controlmechanism,wehave, in section 4,
used our analytical results for thedimer and trimer to evaluate the amount of entropy extracted by the feedback
from (or information injected to) the system inorder tomaintain thenon-equilibrium structures. Interestingly
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enough, the entropyfluxes donot dependon thenoise amplitudeD andhence they are discontinuous atD=0,
where the steady-state structures are stablewithout feedback and thus the entropyfluxes vanish.

Assuming the particles to bedistinguishable, the steady-state structures (molecules) can formdifferent
isomers. Their transitiondynamics canprovide rich additional insight into the energy landscapeunderlying the
non-equilirbiumstructure formation. For the dimer and trimer, wehave investigatedhowandwhen the
transitions between the individual isomers can bedescribed by transition state theory. For thedimer,wehave
applied our analytical results, based on the time-convolutionless transform leading to the time-local FPE (53), to
construct several analytical approximations for the transition rate usingKramers’ theory [22, 23] andBullerjahn’s
theory [24].Wehave also calculated the transition rate from theFPEnumerically. Finally, wehave compared the
obtained predictions to results of BDsimulations of the full problem.While the FPE gives the exact value of the
transition rate for vanishing delay, our results show that the obtained rates agreewith the trueones for small and
moderate values of thedelay only.Weconjecture that this is caused by the fact that the classical absorbing
boundary used inour numerical and analytical evaluation of the transition rate cannot beused for larger values of
τ. Concerning the analytical results, the best agreementwith the true rateswas obtained by theBullerjahn’s formula
(64)with effective barrier height anddiffusion coefficient taken from the time-local FPE (53) and the prefactor
rescaled according to equation (66). In the case of the trimer,wehave confirmedbyBD simulations that the
transition rate increases exponentiallywith thenoise strengthD even for longer delays and thusKramers’ or
Bullerjahn’s type predictions can beused also in this case.Weplan to further investigate suitable absorbing
boundary conditions for delayed systems to predict (at least numerically) transition rates also for large delays.

Finally in section 6,wehave considered the robustness of our analytical resultswith respect to details of the
realization of the delay.Wedemonstrated thatmost of the presented equations canbeused also for systemswith
memory kernels different from that for discrete timedelays, i.e.f(t)=δ(t−τ). It is enough to substitute the
Green’s functionλ(t) (A.5) corresponding thedelayedLangevin equation by theGreen’s function corresponding to
thememory kernel of interest.We reviewed someparadigmaticmemory kernels andprovided an outlook on the
differences and similarities of the correspondingGreen’s functions. Amore detailed study is left for futurework.

As a further extension of ourwork, it would be interesting to consider physicallymore realistic interactions
that vanish at large distances. Furthermore, we plan to investigate the reaction of the studied system to an
external perturbation. Of particular interest could be the propagation and decay behavior of a local perturbation
through the system, especially in case of large numbers of particles. Last but not least, we aim to investigate the
behavior of the studied systemunder the action of an additional deterministic time-dependent driving and study
the corresponding stochastic dynamics and thermodynamics.
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AppendixA. Solution of theNoiseless problem

In this appendixwe solve themulti-dimensional linear delay differential equation (LDDE)

t tx x , A.1w t= - -˙ ( ) ( ) ( )
whereω is a positive semi-definitematrix with real entries and x(t) is a column vector. Laplace transformation of
this equation leads to the formula

s s s t tx x x xe d e A.2s st
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where  denotes the identitymatrix. In the last step, we have expanded the inversematrix using theNeumann
series. The inverse Laplace transformof the ratio se s k 1t- + is given by t t kkt q t- -( ) ( ) ! [78] and thus the
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formula (A.3) can be inverted. Finally, the solution of equation (A.1) is given by

t t s t s sx x xd , A.40

0

òl w l t= - - -
t-

( ) ( ) ( ) ( ) ( )

where

t
k

t k t k A.5
k

k
k

0
ål

w
t q t=

-
- -

=

¥

( ) ( )
! ( ) ( ) ( )

is amatrix-valued functionwhich solves equation (A.1)with the initial condition x(t)=0 for all t<0 and
x 0 =( ) . In the present paper, we always assume that the system is initialized at time t at position x0 with a
special history, namely x(t)=0 for all t<0, allowing us to simplify equation (A.4) to x(t)=λ(t)x0.

The only fixed point of theDDE (A.1) is x(t)=0. In order to investigate its stability, it is useful to present an
alternative solution of the LDDE (A.1) using the exponential ansatz t tx exp aµ -( ) ( ). Inserting this ansatz into
equation (A.1) leads to the equation expa w at= ( ) for thematrixα. Except for somenotable exceptions [79],
the solution of this equation is given by

W
1

, A.6a
t

tw= - -( ) ( )

whereW denotes thematrix valued LambertW function [80]. The LambertW function is amultivalued complex
function. The long-time behavior of solutions to equation (A.1) and thus also the stability of itsfixed point are
determined by the branch ofW yielding the largest real parts of the eigenvalues of thematrixα. The
corresponding values of the LambertW function strongly depend on the reduced delay τω.

For example, in one dimension, whereω is a positive real number, the branch of the LambertW function
with the largest real part exhibits three qualitatively different regimes as a function of τω leading to three
different dynamical regimes of solutions

Figure A1. Solid lines in the panels (a) and (b) show theGreen’s functionλ(t) (A.5) for the one-dimensional case of the LDDE (A.1)
and the time-correlation functionC(t) (C.2) for the one-dimensional linear SDDE (B.1) as functions of time, respectively. The dotted–
dashed lines describing the long-time behavior of these variables were calculated using the exponential solution (A.7) of
equation (A.1) in the form A t t texp cosR 0f- W +( ) ( ). The dashed lines delineate the overall exponential decay t texp R-( ) ofλ(t)
andC(t). The dotted line in panel (b)depicts the stationary valueC(0) of the variance given by equation (C.6). The lifetime
tR

1 a=- ( )R and the frequency aW = ∣ ( )∣I of the oscillations inλ(t) andC(t) are shown in panels (c) and (d), respectively. The dotted
lines in these panels serve just as an eye-guide depicting the linear behavior τ/tR=Ωτ=ωτ. For the purposes of the appendix, we
assume that the individualmodel parameters are dimensionless. Parameters used:ω=0.9 and τ=σ2/2=1.
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x t t t t texp exp cos , A.7Raµ - = - W( ) [ ( )] ( ) ( ) ( )R

t1 R a= ( )R , aW = ∣ ( )∣I , to equation (A.1). The boundaries between these regimes can be determined
analytically [25, 27, 30]: (i) e0 1tw< , whereα is real and positive and x(t) decays exponentially to 0with
lifetime tR; (ii) 1/e<τω<π/2, whereα is complexwith a positive real part, producing exponentially damped
oscillations of x(t)with frequencyΩ and lifetime tR; and (iii)π/2<τω, whereα is complexwith a negative real
part, corresponding to exponentially diverging oscillations of x(t)with frequencyΩ. For τω=π/2, 1/tR=0
andλ(t) oscillates with frequencyΩwithout any decay.

In the panel (a) offigure A1, we show that for long times theGreen’s functionλ(t) for equation (A.1) is well
approximated by the exponential solution (A.7). The above described dynamical regimes are reflected in the
behavior of the decay rate 1/tR and the frequencyΩ of oscillations, plotted in the panels (c) and (d), respectively.
The panel (b) of the figure shows the steady auto correlation of x(t) calculated in appendix C,which is alsowell
described by the formula (A.7).

Appendix B. Solutionwith noise

B.1.One dimension
Let us now solve equation (A.1)with an additional noise term. For simplicity, we present the detailed derivation
first in one dimension.We thuswant to solve the equation

x t x t t , B.1w t sh= - - +˙ ( ) ( ) ( ) ( )
where η(t) is a white noise fulfilling t 0há ñ =( ) and t t t th h dá ¢ ñ = - ¢( ) ( ) ( ). Due to the time delay, this is a
time-nonlocal (and consequently non-Markovian) Langevin equation, which, however, can be transformed into
a time-local Langevin equationwith a colored noise via the so-called time-convolutionless transform [35]. The
time-local equation can then be used to derive the FPE for the PDFs for x(t). In order to do that, wewrite the
formal solution of equation (B.1) as

x t x t s t s s td , B.2
t

0
0
òl s l h y= + - +( ) ( ) ( ) ( ) ( ) ( )

whereλ(t) is given by equation (A.5) and t s t s x sd
0

òy w l t= - - -
t-

( ) ( ) ( ) is determined by the initial

condition x(t) for t<0. Aswe show in the next section, the formula (B.2) can already be used for the calculation
of the time-correlation function for x(t). Here, we differentiate the solution (B.2)which yields the time-local
Langevin equation

x t t x t b t t . B.3w sx= - + +t˙ ( ) ( ) ( ) ( ) ( ) ( )
Due to the time-nonlocal nature of equation (B.1), the potential in the time-local equation (B.3) possess the
time-dependent stiffness

t
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t
, B.4w

l
l
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and the time-varying position of theminimum b t tw- t( ) ( ), with b t t t tw y yº +t( ) ( ) ( ) ˙ ( ) vanishing for the
special initial condition x(t)=0 for all t<0. Furthermore, equation (B.3) includes theGaussian colored noise
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WhileMarkov processes are completely determined by the the transition probability density P x t x t, ,1 0 0( ∣ ) for
going from the initial state x0 at time t0 to thefinal state x at time t, non-Markov processes in general require a full
hierarchy of joint probability densities. Nevertheless, similarly to theMarkovian case, theGaussian non-Markov
process (B.3) is completely determined by the joint probability distribution P x t x t x, ; , , 02 0¢ ¢( ∣ ) [35].

The FPEs for the one- and two-time probability distributions P x t x x x t, , 01 0 d= á - ñ( ∣ ) [ ( )] and
P x t x t x x x t x x t, ; , , 02 0 d d¢ ¢ = á - ¢ - ¢ ñ( ∣ ) [ ( )] [ ( )] , where the averages are taken over all realizations of the
process x t( ) departing from state x0 at time 0, are found to be
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Similarly as the trap stiffnessωτ(t), also the effective diffusion coefficient, corresponding to the time-local
description, is time dependent if τ>0. It reads
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Because of the oscillatory nature ofλ(t) in the dynamical regimes (ii) and (iii), the coefficientsωτ, b, c andDτ

in the FPEs (B.6) and (B.7) change their signs and they can even diverge. These divergences, however, always
mutually balance each other such that the solutions of the FPEs, as given by the equations (19) and (20), are
always reasonable [35].

B.2.Higher dimensions
Let us now consider the problem

t t tx x , B.9hw t s= - - +˙ ( ) ( ) ( ) ( )
with generalmatricesω andσ and the vector th ( ) ofwhite noises fulfilling t 0há ñ =( ) and t ti jh há ¢ ñ =( ) ( )

t tijd d - ¢( ). Since this systemof Langevin equations is linear, the one- and two-time probability distributions
P tx x, , 01 0( ∣ ) and P t tx x x, ; , , 02 0¢ ¢( ∣ ) for tx( ) defined in the preceding sectionmust beGaussian [63] as in the
one-dimensional case and also the corresponding FPEs can be derived along similar lines as in one dimension.
Instead of deriving these equations, we nowprovide a simpler alternative derivation of the properties of the
Gaussian distribution

P t
t

t t tx x x x, , 0
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based solely on the formal solution of the Langevin system (B.9)

t t s t s sx x d B.11
t

0
0
ò hl l s= + -( ) ( ) ( ) ( ) ( )

with the initial condition x(t)=0 for all t<0 and x(0)=x0 andwith theGreen’s functionλ(t) of the Langevin
system given by equation (A.5).

Themean value t txm = á ñ( ) ( ) and the elements tij ( ) of the covariancematrix t t tx x = á ñ -( ) ( ) ( )
t tx xá ñá ñ( ) ( ) defining the PDF (B.10) can be obtained by inserting xi(t) from equation (B.11) into the definitions

and averaging over the noise η(t). The results are

t t x B.120m l=( ) ( ) ( )
and

t s t s t sd . B.13
t

0
  ò l ss l= - -( ) ( ) ( ) ( )

These formulas can be generalized straightforwardly to arbitrary initial conditions, where x(t) for t 0 is drawn
from some probability distribution P t tx , 0[ ( ) ]. Then the formal solution of the system (B.1) reads

t t s t s sx y d , B.14
t
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ò hl s= + -( ) ( ) ( ) ( ) ( )

t t s t s sy x x0 d . B.15
0

òl w l t= - - -
t-

( ) ( ) ( ) ( ) ( ) ( )
Themeanvalue tm( ) is givenby t ty tx 0m = á ñ( ) ( ) ( ), and t t t s t s t sy y dt

t
x 0 0

    ò l ss l= á ñ + - -( ) ( )[ ( )] ( ) ( )( ) .

The averages • tx 0á ñ ( ) above are takenwith respect to thePDF P t tx , 0[ ( ) ]. The long-timebehavior of the
covariancematrix (B.13) is studied in thenext sectionof this appendix.

AppendixC. Time-correlationmatrix and stationary covariancematrix

The coefficients in theGaussian two-time PDF P t tx x x, ; , , 02 0¢ ¢( ∣ ) can be obtained in a similarmanner
as in appendix B.2. Here, we calculate only the stationary space-time correlationmatrix t =( )

s t s s t s s t sx x x x x xlim lims s
  á + ñ - á + ñá ñ = á + ñ¥ ¥[ ( ) ( ) ( ) ( ) ] ( ) ( ) which exists only if sylims á ñ =¥ ( )

sxlim 0s á ñ =¥ ( ) . Itsmatrix elements can be calculated in an analogous fashion as the elements of t( ). The
result

t s s t s s slim d C.1
s

s

0
  ò l ss l= ¢ + - ¢ - ¢

¥
( ) ( ) ( ) ( )

can be evaluated numerically. It is possible to rewrite it in a simpler form. Taking the derivative of t( )with
respect to t reveals that for t>0 the correlationmatrix obeys the sameDDE as theGreen’s functionλ(t), i.e.
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t t t, 0. C.2 w t= - - >˙ ( ) ( ) ( )
The restriction t>0 for validity of this equation comes fromdiscontinuity (and thus non-differentiability) of
λ(t) at t=0. The solution to equation (C.2) is given by equation (A.4) and hence the stationary space-time
correlationmatrix can bewritten as

t t s t s sd , C.30

0
  òl w l t= - - -

t-
( ) ( ) ( ) ( ) ( )

where t0 limt0  = ¥( ) ( ) is given by the long time limit of the covariancematrix. The stationary correlation
matrix is thus solely determined by the unknown initial condition t( ), tä[−τ, 0]. Fortunately, this initial
condition can be calculated using the approach of Frank et al [31]who calculated the time-correlation function

t( ) for tä[0, τ] in one-dimension (see also [32]). They utilized the symmetry t t = -( ) ( ) following from
equation (C.1) to rewrite theDDE (C.2) as t t w t= - -˙ ( ) ( ) for tä (0, τ). Taking the derivative of this
equation and using equation (C.2) yields the second order ordinary differential equation

t t t¨ , 0, C.42 w t= - Î( ) ( ) ( ) ( )
for the initial condition t t = -( ) ( ), tä[−τ, 0]. The solution of this equation reads t tcos0  w= +( ) ( )

tsin0
1 w w-˙ ( ), wherewe still need to determine the unknown coefficients 00 = ( ) and tlimt0 0 =  +

˙ ˙ ( ). To
this end, we need to evaluate independently t( ) and/or ṫ( ) for two times tä(0, τ). Specifically, we show at the
end of this appendix that 0.5 1 t w ss= -( ) and 0.50 ss= -˙ . Using these results, thefinal expression for the
correlationmatrix for tä[−τ, τ] reads

t t tcos 0.5 sin C.50
1  w ss w w= - -( ) ( ) ( ∣ ∣) ( )

with the initial value

s0 lim
1

2
sin cos C.6

s
0

1 1 1    w ss ss w wt wt= = = +
¥

- - -( ) ( ) [ ( )] ( ) ( )
given by the stationary value of the covariancematrix. Thewhole time-dependence of t( ) for t 0 is thus
described by the formulas (C.3), (C.5), and (C.6). The correlationmatrix for negative times then follows from
the symmetry t t = -( ) ( ). Finally, let us note than in the one-dimensional case, whereω andσ stand for real
numbers and,more generally, if thematricesω−1 and ss commute, we can rewrite equation (C.6) as

2
sin cos , C.70

1 
ss
w

wt wt= + -[ ( )] ( ) ( )
where  denotes the identitymatrix. An example of the time-correlation function for a one dimensional system
is depicted infigure A1(b) in appendix A.

The expression forC(τ) can beobtainedbymultiplying equation (B.9)by sx( ), averaging the result over the
noise, using the assumed stationarity of the process implying the formula s s sx x0 d lim d 0s = á ñ =¥

˙ ( ) [ ( ) ( ) ] ,
and applying the symmetry t t = -( ) ( ). The result is s sx 0.51 1  ht w s w ss= á ñ =- -( ) ( ) ( ) , where the last
equality comes after inserting the formal solution (B.11) forx(t) into the average, using the covariance of the noise,
andnoticing that in the resulting integral we integrate over half of the emerging δ-function only. The expression
for 0̇ then comes simply fromequation (C.2), which is invalid for t=0, but can beused for t arbitrarily close to 0
from the right, andusing the result for  t( ).
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Spontaneous vortex formation by
microswimmers with retarded attractions

Xiangzun Wang1, Pin-Chuan Chen2, Klaus Kroy 2, Viktor Holubec 3 &
Frank Cichos 1

Collective states of inanimate particles self-assemble through physical inter-
actions and thermal motion. Despite some phenomenological resemblance,
including signatures of criticality, the autonomous dynamics that bindsmotile
agents into flocks, herds, or swarms allows for much richer behavior. Low-
dimensional models have hinted at the crucial role played in this respect by
perceived information, decision-making, and feedback, implying that the
corresponding interactions are inevitably retarded. Here we present experi-
ments on spherical Brownian microswimmers with delayed self-propulsion
toward a spatially fixed target. We observe a spontaneous symmetry breaking
to a transiently chiral dynamical state and concomitant critical behavior that
do not rely onmany-particle cooperativity. By comparison with the stochastic
delay differential equation of motion of a single swimmer, we pinpoint the
delay-induced effective synchronization of the swimmers with their own past
as the key mechanism. Increasing numbers of swimmers self-organize into
layers with pro- and retrograde orbital motion, synchronized and stabilized by
steric, phoretic, and hydrodynamic interactions. Our results demonstrate how
evenmost simple retarded interactions can foster emergent complex adaptive
behavior in small active-particle ensembles.

Ordered dynamical phases of motile organisms are ubiquitous in
nature across all scales1, from bacterial colonies to insect swarms, and
birdflocks2. In particular, self-organization into vortex patterns is often
observed and has been attributed to some local external attractor, e.g.,
light or nutrient concentration, together with behavioral rules like
collision avoidance and mutual alignment3. The pertinent social
interactions are commonly thought to be based on perception4–6 and
the ability to actively control the direction of motion3. They are also
generally presumed to provide some benefits to the individual and to
the collective, as in the case of collision avoidance or predator
evasion7,8. However, since such interactions are usually derived only
indirectly and approximately from observations9, it is arguably useful
to coarse grain them, e.g., into simple alignment rules, in order to
rationalize the collective effects with the help of simple mechanistic
models, in particular with respect to their emerging universal

traits3,10–12. This strategy has been successful in physics and is also
supported by the observation that biological collectives often appear
highly susceptible to environmental influences and exhibit a dynamical
finite-size scaling reminiscent of critical states in inanimatemany-body
assemblies13–16.

Importantly, the cascades of complex biochemical/biophysical
processes17,18 needed to transformsignal perception into anavigational
reaction inevitably result in retarded interactions upon coarse-
graining19 (cf. supplementary Table S1). This generic complication is
oftendismissed in the analysis, anddedicatedmodels andexperiments
addressing the role of time delays in the activematter are still rare20–23,
although these have occasionally been shown to fundamentally alter
the collective dynamics21 and tobring it closer to that found innature24.
To a first approximation, delay effects can resemble inertial correc-
tions to an otherwise overdamped biological dynamics25. In particular,
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both have the propensity to give rise to oscillations and inertia,
moreover, to rotationalmotion around an attractive center, as familiar
from planetary orbits.

Experiments that can assess or even deliberately control retarded
interactions in living systems turn out to be difficult. But by imposing
time delays onto synthetic active particles via computer-controlled
laser activation we can create an ideal laboratory system to experi-
mentally emulate such situations. Suitable feedback control techni-
ques for active particles have recently become available through
photon nudging26. The technique allows to adjust a particle’s propul-
sion speed to acquire real-time information (positions and directions
of motion) about the dynamical state of an ensemble. It has previously
been employed to rectify the rotational Brownian motion for particle
steering and trapping27, to explore orientation-density patterns in
activity landscapes28, and to study information flow between active
particles23, and their emerging critical states29,30. Beyond what related
computer simulations accomplish31–33, these experiments additionally
incorporate the full real-world complexity arising from actual physical
interactions due to hydrodynamic, thermal, or concentration fields. In
the following, we describe experiments with feedback-controlled
active Brownian microswimmers aiming at a fixed target by a retarded
thermophoretic self-propulsion. The systematic navigational errors
resulting from the retardation are seen to cause a spontaneous sym-
metry breaking to a bi-stable dynamical state, in which the swimmers
self-organize into a merry-go-round motion that switches transiently
between degenerate chiralities.

Results
Single-particle retarded interaction
The elementary component of a swarm is a single activeparticle whose
direction of motion depends dynamically on its environment. Even
small fluctuations of the particle position and orientation render any
prospective activemotionbasedon theperceptionof the environment
inaccurate, due to the inevitable finite perception–action delay. In the
most symmetric setup, an active particle moves toward a target

position, which is occupied by an immobile particle of the same size in
our experiments. Assuming that the active particle responds to the
environment that was perceived a delay time δt earlier, its propulsion
direction ûðtÞ at time t is determined by its relative position to the
target particle at time t − δt in the past, according to

ûðtÞ= �rðt � δtÞ
∣rðt � δtÞ∣ , ð1Þ

where r is the location of the active particle with respect to the target
particle’s center. We implemented this interaction rule in an experi-
mental feedback system that controls the active particles’ self-
propulsion. Our active particles are polymer spheres of radius
a = 1.09μm, decorated with gold nanoparticles and suspended in a
thin film ofwater. Laser light with a wavelength of 532 nm is focused at
distance d from the active particle center (Fig. 1A). The resulting
excentric heating excites an osmotic flow that lets the particle swim
with a speed v0 in the direction defined by Eq. (1)34. A darkfield
microscopy setup is used to image the particles (Fig. 1B). A computer
analyzes and records the positions of the particles and then controls
the laser position accordingly via an acousto-optic deflector. We use a
separate calibrator particle running on a quadratic trajectory as a
reference for the speed v0 attained by a free swimmer. Further details
are described in Sec. 2 of the Supplementary Information.

If δt = 0 s, the active particle moves towards the target particle
until it collides with it. Further motion of the active particle is then
constrained by the presence of the fixed target sphere, resulting in a
diffusivemotion around it, at a fluctuating distance consistent with the
barometer formula35,36. As the delay δt increases, the diffusive motion
induces a stochastic “error” component due to the increasingly mis-
aligned self-propulsion. Once a critical delay is reached, the particle
begins to orbit around the target (see Supplementary Movies 1–3). We
quantify this dynamics by the angle θ between the direction of motion
in Eq. (1) and the instantaneous negative radial direction −r(t) (see
Fig. 2A). The angle θ itself or sinðθÞ can serve as an indicator for

Fig. 1 | Experimental realization. A Particles used in the experiments consist of a
melamine resin colloid (2.18μm in diameter) with 8 nm gold nanoparticles scat-
tered across the surface (covering up to 10% of the total surface area). A 532 nm
laser focusedat the edgeof theparticle at a distanced from its center induces a self-
thermophoretic motion and allows for precise control of the propulsion direction.
Importantly, optical forces are weak so the particles exhibit a truly self-phoretic
autonomous motility, making them proper microswimmers. B Experimental setup
used to image the particles by darkfieldmicroscopy (LED, darkfield condenser, and
camera) and guide their motion by sequential beam steering of the laser on the

sample planewith a two-axis acousto-optic deflector (AOD). All particles in the field
of view are addressedduring eachexposureperiodof the camera.CThe interaction
rule for the delayed attraction of a single active particle (white sphere) towards a
target (red sphere) is split into an observation made at a time t − δt that sets the
direction of motion for the self-propulsion step exerted after a programmed delay
time δt. The green arrows indicate the planned motion −r(t − δt) and its actual
realization at time t. D Examples of darkfield microscopy images where a single
active particle (top) and 16 active particles (bottom) interact with one target
particle (red).
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deviations from the “intended” central orientation. Similarly, for many
particles, numbered by the index i, it is useful to define the rotational
order parameters oR,i = ðr̂i × ûiÞ � ez = sinðθiÞ29,37, where the hats denote
vectors normalized to 1 and ez is a unit vector in the direction of z axis.
Figure 2A shows the experimental trajectories of θ for a single active
particle with v0 = 2.16μms−1 and three different delays. For short
delays, θ fluctuates with a small amplitude around zero (Fig. 2A top).
The fluctuations increase with the delay and lead to a flat-top prob-
ability density of the propulsion angle for δt ≈0.87 s (Fig. 2A middle).
At larger delays (δt = 1.14 s), the propulsion angle fluctuates around a
stable nonzero value that changes its sign intermittently (Fig. 2A bot-
tom), corresponding to a bimodal probability density p(θ) (Fig. 2C).
The periods of consistent chirality increase in durationwhen the delay
is increased further. At δt = 1.4 s, the propulsion angle transiently
fluctuates around ±80°. Under these conditions, the cohesion of the
particle to the target becomes marginal as the typical particle velocity
is almost tangential to the target particle circumference. As a result,
the distance ∣r(t)∣ of the particle from the origin starts to fluctuate
more strongly, as shown in the position histograms in Fig. 2B.

The net propulsion angle is the result of angular displacements
ϕ(t) of the particle position acquired due to the perception–action
delay during the period [t − δt, t]:

θðtÞ=
Z t

t�δt
ωðt0Þdt0 =ϕðtÞ � ϕðt � δtÞ=ffðûðtÞ,� rðtÞÞ: ð2Þ

Here, ϕ(t) is the polar angle of the active particle in polar
coordinates centered in the target particle, and we introduced
ωðtÞ= _ϕðtÞ as its corresponding angular velocity (Fig. 2C). The

observed dynamics can be understood by considering the active
particle and the target particle in physical contact. Their distance is
then constrained to be the sum of their radii (R = 2a =〈∣r(t)∣〉) and
the active particle slides around the target particle with an angular
velocity ωðtÞ=ω0 sinðθðtÞÞ, where ω0 = v0/R is the natural angular
velocity for tangential propulsion with θ = ±π/2. As sketched in
Fig. 3A, assuming a constant angular velocity ω with θ =ωδt, the
solutions to the equation for θ are given by the intersections of a
sine function and a linear function,

ðω0δtÞ�1θ = sinðθÞ: ð3Þ

For ω0δt < 1, there is a single intersection at θ = 0, indicating a
stable non-rotational state. For 1 <ω0δt < π/2, the non-rotational
state becomes unstable and two counter-rotational metastable
solutions arise. For ω0δt > π/2, the rotating solutions correspond to
∣θ∣ > π/2, and the radial component of propulsion becomes positive
(repulsive), driving the active particle away from the target particle.
As a result, the orbit “takes off” and its radius R increases until a new
stable orbit with R = 2v0δt/π > 2a and ∣θ∣ = π/2 is reached. For small
particles (a→ 0), the distance of the swimmer to the target position
can thus, in principle, vanish (R→ 0), and the rotating orbits can
even occur at arbitrarily short programmed delays (δt→ 0). Retar-
ded attraction hence always leads to rotational orbitalmotion with a
delay-dependent radius23. In the experiment, due to the presence of
the fixed central particle, the smallest attainable orbit radius R = 2a
is given by the particle diameter. Adding Brownian fluctuations to
the deterministic Eq. (3) results in the nonlinear delayed stochastic
differential equation _ϕðtÞ=ω0 sin ϕðtÞ�ð ϕðt � δtÞÞ+ ffiffiffiffiffiffiffiffiffiffiffiffi

2D0=R
2

p
ηðtÞ,
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0
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A B C

Fig. 2 | Propulsion angle at the different programmed delay. A Trajectories of
the propulsion angle θ(t) of an active particle at three different delays (top: δt =
0.3 s, middle: δt =0.87 s, and bottom: δt = 1.14 s) for its attraction towards a target
particle. The velocity of the active particle is v0 = 2.16μms−1.B Propulsion angleθ(t)

vs. the distance ∣r(t)∣ of the particle from the target center. C Histograms of the
propulsion angle over the whole trajectory. The delay for the individual panels in
columns (B, C) is indicated on the left of the corresponding row.
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where D0 ≈ 0.0642 μm2 s−1 denotes the translational diffusion coef-
ficient of the active particle and η(t) white noise. To solve this
equation, we approximated _ϕðtÞδt by θ(t) and expanded the
sinðϕðtÞ � ϕðt � δtÞÞ in a Taylor series around δt = 0 up to the third
order in δt. We dropped the term proportional to ϕ⃛(t) to secure the
stability of the resulting equation38 (for details, see Sec. 3 of Sup-
plementary Information). The resulting noise term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8D0=ðω0δtRÞ2

p

turned out to be inaccurate compared to experimental and simu-
lation data. We, therefore, introduce an effective diffusion coeffi-
cient Dθ as a free parameter in the noise term in Eq. (4) to describe
the rotation of the active particle around the target as the angular
Brownian motion

_θ=
1

3δt
θ2
± � θ2

h i
θ+

ffiffiffiffiffiffiffiffiffi
2Dθ

p
η ð4Þ

with

θ± = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� 1

ω0δt

� �s
: ð5Þ

Eq. (4) yields the stationary solutions 0 and θ± with the
bifurcation point ω0δt = 1, for the transition from a non-rotational
to a rotational state. The data points in Fig. 3B display the
experimentally obtained maxima of the histograms p(θ) of the
propulsion angle (see Fig. 2C) as a function of ω0δt. The transition

points in the experiments are located at lower values of the control
parameter ω0δt, due to the mentioned instrumental delay Δt in the
feedback loop of the experimental setup. This instrumental delay
between the most recent exposure to the camera and the laser
positioning affects the motion direction beyond the programmed
delay δt34,39, causing an earlier onset of the transition to a stable
rotation. The dashed line in Fig. 3B shows the theoretical predic-
tion, which includes both the instrumental delay Δt and the pro-
grammed delay δt, as detailed in the Supplementary Information
(Eq. (11)).

The Langevin equation (4) can be interpreted as a dynamical
equation for the position θ of an overdamped Brownian particle with
diffusion coefficient Dθ in a quartic potential (see derivation in Sec. 3
of Supplementary Information),

UðθÞ= 1
δt

1
ω0δt

� 1
� �

θ2 +
1
12

θ4
� �

, ð6Þ

which allows to classify the observed instability of the isotropic state as
a normal supercritical pitchfork bifurcation40. The potential can also
directly be extracted from the experimental data (Fig. 3B) by fitting
the histogram p(θ) with a (normalized) Boltzmann distribution
expð�UðθÞ=DθÞ=Z at the effective temperature Dθ. The effective tem-
perature thus links the measured potential of mean force�Dθ logpðθÞ
to Eq. (6).

Fig. 3 | Transition to a rotational dynamical state for a single active particle.
A Graphical construction of condition (3) for a transition from an non-rotational
state (red-shaded region) to a rotational state (green-shaded region). The red line
(sin θ) and the black dashed line with slope 1/(ω0δt) intersect at several θ. The
solution θ = θ+ in the green region and its chirally inverse image θ− in the third
quadrant (not shown) correspond to co- and counter-clockwise rotation.
B Experimentally measured propulsion angles (maxima of the histograms in
Fig. 2C) as a function of ω0δt, exhibiting a bifurcation at ω0δt ≈0.76. The dashed
line corresponds to the analytical prediction of the theoretical model (5),
neglecting the inevitable instrumental delayΔt. The solid line shows the solution of
the refined theoretical model, which includes the instrumental delay Δt = 64ms of
our setup in addition to the programmed delay δt. The colored dots indicate the
control parameter values studied in Fig. 2 and the linked small color plots show the

corresponding potentials of mean force, determined from the propulsion angle
histograms in Fig. 2C, together with a fit of the refined analytical model, including
the instrumental delay Δt (see Sec. 2.2 and 3 of Supplementary Information). The
only free parameter for fitting is the effective temperature of the system.
C Relaxation time τ of a single active particle as determined experimentally from
the autocorrelation of the propulsion angle fluctuations (Eq. (8), data points). The
solid lines correspond to the refined version of the theoretical prediction (Eq. (7)),
including the instrumental delay Δt (see Sec. 2.2 of Supplementary Information for
details). The coloreddots have the samemeaning as in panel (B).DTransition rates
between the two rotational states obtained from the experiments (circles) plotted
with the predictions from Kramers’ theory, Eq. (9), with a global fit parameter
Dθ =0.05 s−1 (solid line) andDθ fitted to the probability distribution p(θ) separately
for each value ω0δt (squares). Error bars represent the standard error.
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The latter resembles the Landau free energy at a second-order
phase transition41. For readers familiar with this framework, this
mathematical analogy allows to shortcut the following analysis,
the details of which are given in Sec. 3 of the Supplementary
Information. Note, however, that we are not discussing a thermo-
dynamic phase transition but merely a dynamical bifurcation,
here. The bifurcation and its potential energy landscape are not
due to strong many-particle couplings, but to the interaction of
the single active particle with its own past image. In Landau’s
theory, the control parameter 1 − ω0δt maps onto the dimension-
less distance to the critical temperature. Both the activity ω0 and
the delay δt favor the transition to the symmetry-broken state.
Hence, at high propulsion speeds, already short delays can give
rise to rotating orbits. The inverse of the second derivative of U(θ),
corresponding to the static susceptibility in Landau theory, gives

the time τ (Eq. (7)) to relax in the (meta-)stable states,

τ =
δt
2

1
ω0δt

� 1
� ��1

ω0δt < 1

� δt
4

1
ω0δt

� 1
� ��1

ω0δt > 1:

8><
>: ð7Þ

We determine τ experimentally via C(τ) from the autocorrelation
function,

CðtÞ= hδθðt0 + tÞδθðtÞit0
hδθðt0Þ2it0

ð8Þ

of fluctuations of the propulsion angle δθ(t) = θ(t) − 〈θ(t)〉, as C(τ) = 1/e
(Fig. 3C). The experimental data (circles) is compared to Eq. (7)
(dashed line), and to an improved model prediction (solid line) that

Fig. 4 | Collective rotation of 15 particles attracted to a single target particle.
A Sketch of the shell structure and radii. B Bifurcation of the most probable
propulsion angle as a function of the control parameter ω0δt for a (calibrator)
propulsion speed of v0 = 2.06 μm s−1. The red dots are obtained from the inner
shell particles at a typical distance of Rin = 2.18 μm, while the green dots
denote the outer shell particles at Rout = 4.47 μm. The dashed line corresponds
to the theoretical single-particle prediction, including the instrumental delay
Δt = 70ms. C Average velocity field of active particles at δt = 0.81 s when the
spontaneous rotation of the inner shell is constantly disrupted by the non-
rotating outer shell, at δt = 1.35 s when the two shells are counter-rotating,

and at δt = 1.65 s when both shells are co-rotating. The arrows and colors
denote the average direction of motion. D Snapshot of the active particles
and their propulsion directions corresponding to (C) at δt = 1.35 s. The
repulsion induced by the flow and temperature fields of the inner shell causes
a bias for the outer shell rotation. E Sketch of the flow and temperature fields
induced by the laser (green dot) around an active particle, and the resulting
repulsion. F Schematic sketch of the presumed magnitude of the bias caused
by the temperature and flow fields on the rotation of the outer shell, as a
function of the propulsion angle θin of the inner shell particles (see Sec. 5
of Supplementary Information).
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also takes into account the inevitable instrumental delay Δt, as dis-
cussed in Sec. 3 of the Supplementary Information. The critical slowing
down of the relaxation due to an increasingly flat potential close to the
transition point at ω0δt = 1, corresponding to the potential plot in the
middle of Fig. 3B, is thereby nicely confirmed, without any free
parameter.

While the rotational orbits can be inferred from a purely deter-
ministic model excluding Brownian motion, the observed sponta-
neous reversal of the chirality is driven by fluctuations in the
propulsion angle and, thus, by the (non-equilibrium) noise in the sys-
tem. It corresponds to transitions between the minima ±θ± of the vir-
tual potential, Eq. (6). We may thus apply Kramers’ theory to estimate
the corresponding transition rate as

k =

ffiffiffi
2

p

π
∣ω0δt � 1∣
ω0δt

2 exp � 3
δtDθ

1
ω0δt

� 1
� �2

" #
: ð9Þ

The effective temperatureDθdriving thefluctuations in the virtual
potential is treated as a fit parameter. Figure 3D displays the experi-
mentally measured transition rates, obtained from the observedmean
residence times of θ in the two potential wells. They are in good
agreement with Eq. (9), despite the hybrid equilibrium/non-equili-
brium origin of the noisy dynamics.

Multiple particles
As demonstrated in the previous section, the rotation observed in our
experiments results from a spontaneous symmetry breaking in the
dynamics of a single active particle. It originates from the particle’s
retarded self-propulsion to a target, which differs from standard
explanations of rotational dynamics in overdamped systems, which
usually blame mutual (“social”) interactions between multiple
agents3,9,12,42. As we demonstrate in Fig. S9B, when adding up to five
more active particles to the system, each of them exhibits the same
rotation andbifurcation as a single swimmer. Steric, hydrodynamic, and
thermophoretic interactions among the particles then synchronize and
stabilize their motion, aligning their sense of rotation. So the system
exhibits collective behavior, but the dynamical symmetry breaking to a
chiral dynamical state is not primarily due to the mutual interactions.

Somewhat larger numbers of particles organize into multiple
rotating shells. Figure 4 summarizes the key results obtained for an
ensemble of 15 active particles attracted to the target particle with the
same programmed and intrinsic delays δt and Δt, respectively. For the
considered range of time delays, the active particles form two tightly
packed shells around the target particle (Fig. 4A). The typical distance
of the inner shell particles to the target is about half that of the outer
shell, Rout ≈ 2Rin = 4a. So based on the single-particle picture alone, the
particles in the inner and outer shells swimming at the same speed
would be expected to start rotating at different delays. However, in
reality, the inter-particle interactions in the compact cluster strongly
correlate with the particle motion and quantitatively change the pic-
ture. Compared to the theoretical prediction, ω0δt =0.73, we observe
that for v0 = 2.06μms−1 the transition to the rotational phase of the
inner shell is postponed to ωin

0 δt � v0δt=R
in ≈ 0.83, corresponding to

δt = 0.9 s (see the rightmost red data point lying on the horizontal axis
in Fig. 4B). Slightly below the transition, the inner shell exhibits alter-
nating periods of rotational and stationary states. Meanwhile, the
stationary outer shell compresses the inner shell due to its inwards-
pointing propulsion direction (Fig. 4C, left). Figure. 4C displays the
velocity fields of the particles averaged over their trajectories with
three different delays. The bifurcation for the outer shell is located at
ωout

0 δt � v0δt=R
out ≈0.41, which corresponds to the same value δt =

0.9 s of the delay at which the inner shell undergoes its bifurcation to
the rotational state (see Fig. 4B and SupplementaryMovies S4–S6). For
delays slightly above the transition, 0.9 s < δt < 1.41 s, the two shells
rotate in opposite directions, as shown in the middle plot of Fig. 4C.

The simultaneous transition and the counter-rotation of the two shells
suggest that the inner shell particles generate backflows opposite to
their propulsion direction, thereby repelling the outer shell particles
and facilitating their transition to the rotational state, as schematically
depicted in Fig. 4D–F. These backflows are presumably caused by the
directional hydrodynamic and thermophoretic interactions. The sur-
face temperature gradient across each particle creates a thermo-
osmotic surfaceflow that propels theparticle43. If theparticlemotion is
opposed by an external force, such as the steric force due to the
immobilized target particle, the slowed-down particle acts as a pump,
creating a hydrodynamic outflow at its hot side (Fig. 4D and Sec. 2.5
and 5.2 of Supplementary Information). Furthermore, thermophoretic
interactions arise from temperature gradients across the surface of a
particle caused by its neighbors33. These are commonly repulsive, as
found, e.g., for Janus particles in external temperature gradients33. We
have carried out finite element simulations of the flow field around a
mobile and an immobile self-propelling swimmer (see Sec. 2.5 of Sup-
plementary Information). The overall near-field hydrodynamic inter-
actions are found to be quite complex, due to many interacting
particles and the nearby substrate surface44–46. They also depend on
the propulsion angle θ. An increasing innershell propulsion angle
results in a changing direction and magnitude of the rotational bias
onto the outer shell, which presumably varies as sketched in Fig. 4F
(see Sec. 5 of Supplementary Information). As a result, for δt ≥ 1.41 s,
the two shells predominantly rotate in the same sense, as shown in
Fig. 4C, right. The transition from counter- to co-rotation shells cor-
responds to the signflipof the bias atθin ≈ 67∘. At even longer delays, θin

tends to reach 90∘, and thus the inner shell tries to take off and expand
against the compression exerted by the outer shell. These competing
tendencies lead to particle exchange between the two shells. While we
currently cannot separate thermophoretic and hydrodynamic effects
in the experiment, hydrodynamic interactions may be expected to be
more important here than for a single free particle in a temperature
gradient: firstly, due to the collective character of the dynamics, and
secondly, due to the pump effect caused by the partial blocking of the
self-phoretic motion of the individual swimmers (see Sec. 2.5 and 5.2
of Supplementary Information). These features could provide a link
between our experiments and the swarming observed in bacterial
colonies47,48.

Discussion
We have demonstrated above that the motion of an active particle
induced by the delayed attraction to a target point can spontaneously
undergo a transition from a diffuse isotropic “barometric” state to a
dynamical chiral state, upon increasing the activity and/or the delay
time. The transition is well described by a pitchfork bifurcation
accompanied by a characteristic critical slowing down of the
response40. Similar to certain mechanical analogs49, the single-particle
dynamics thus already exhibit non-trivial features more commonly
associated with (mean-field) phase transitions in strongly interacting
passive many-body systems. This can be explained by noting that the
deterministic part, _ϕðtÞ=ω0 sin ϕðtÞ � ϕðt � δtÞð Þ, of our stochastic
delay differential equation can also be understood as the dynamical
equation for a single Kuramoto phase oscillator50,51, with vanishing
eigenfrequency and coupling strength ω0, which is trying to synchro-
nize with its own past state. In the chiral state, the particle orbits
around the target point (the central obstacle is optional). The orbiting
motion is stable against noise, but its sense of rotation is only tran-
siently maintained. This should be contrasted with the chiral states
resulting from non-reciprocal coupling in the time-local Kuramoto
model (without delay), as discussed by ref. 52, which hinges on the
stabilization by many-body cooperativity. Based on our results, we
suggest that for the single retarded oscillator, the infinite number of
relaxation modes encoded in the time-delayed equation of motion
play a similar role53,54.
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As we have shown, the nonlinear dynamics of our experimental
system can be described by an approximate analytical model, which
explains the emergence of a self-generated quartic virtual potential.
While such potentials are frequently found in descriptions of phase
transitions and collective effects in active-particle ensembles, fol-
lowing various behavioral rules29,30, we reiterate that themechanism
is a different one, here. Due to the activity and the (programmed)
delay, it already occurs for a single active particle aiming at a spa-
tially fixed target. In a whole swarm of particles that are all attracted
to a common target, which might be its own perceived center of
mass, the single-particle bifurcation is preserved. Inter-particle
collisions merely synchronize, renormalize, and stabilize the rota-
tional states of the individual particles. Upon close contact,
hydrodynamic and thermophoretic interactions become important
and help the swimmers to self-organize into co- and counter-
rotating orbits. In biologicalmotile ensembles, frombacteria to fish,
similar hydrodynamic mechanisms may be at work, although pre-
cise details and scales may differ widely45,55–57. The corresponding
many-body effects can be subtle and may elude coarse-grained
simulations and theories. This underscores the importance of well-
controlled experimental model systems that may act as “hybrid
simulations”, combining computer-controlled active particles with
real-world environments.

To conclude, while time delays are an unavoidable outcome of
coarse-graining microscopic descriptions of the feedback pro-
cesses in natural systems (cf. Table S1), they are often neglected in
low-dimensional models of active particle collective effects5,10. In
this respect, our model system provides a new perspective, as it
takes the unavoidable systematic delays in the dynamics seriously
and explores their generic effects. We find that, in overdamped
systems, retardation plays a similar role as added inertia. Both
effects lead to persistence and associated “aiming errors” in particle
dynamics. In this sense, our analysis can provide a template for an
entire class of motile ensembles exhibiting spontaneous rotational
dynamics caused by aiming errors—as such, are associated with
microswimmer navigation strategies employing “vision-cone”29,30 or
“acceptance-angle”27,36 criteria. In fact, the effects of the time delay
may be even richer20,24,54. While we considered only a positive delay,
i.e., synchronization with the past, above, sophisticated biological
organisms also possess predictive capabilities to extrapolate the
current state into the future58,59. These can, to a first approximation,
be incorporated in the form of a negative time delay. The inclusion
of positive and negative delays may therefore provide a new, “more
physical” perspective on phenomenologically extracted, rather
sophisticated rules like collision avoidance and alignment interac-
tions, commonly postulated as sources of emerging complex
adaptive responses in living many-body systems.

Methods
Sample preparation
Samples were prepared using two glass coverslips (20mm× 20mm,
24mm× 24mm) to confine a thin liquid layer (3 μm thickness) in
between. The edges of one coverslip are sealed with a thin layer of
PDMS (polydimethylsiloxane) to prevent leakage and evaporation.
The liquid film used in the sample is composed of 2.19-μm-diameter
gold-coated melamine formaldehyde (MF) particles (microParticles
GmbH) dispersed in 0.1% Pluronic F-127 solution. The latter pre-
vents the cohesion of the particles and adsorption to the cover slide
surface. The surface of the MF particles is speckled uniformly with
gold nanoparticles of about 8 nm diameter with a total surface
coverage of about 10% (Fig. S3A). SiO2 particles (2.96 μm in dia-
meter, microParticles GmbH) are added into the solution to keep
the thickness of the liquid layer at about 3 μm. Finally, 0.3 μl of the
mixed particle suspension is pipetted on one of the coverslips, for
which the other serves as a lid.

Experimental setup
The experimental setup (see Sec. 2 of Supplementary Information)
consists of an inverted microscope (Olympus, IX71) with a mounted
piezo translation stage (Physik Instrumente, P-733.3). The sample is
illuminated with an oil-immersion darkfield condenser (Olympus, U-
DCW, NA 1.2–1.4) and a white-light LED (Thorlabs, SOLIS-3C). The
scattered light is imaged by an objective lens (Olympus, UPlanApo ×
100/1.35, Oil, Iris, NA 0.5–1.35) and a tube lens (250mm) to an EMCCD
(electron-multiplying charge-coupled device) camera (Andor, iXon
DV885LC). The variable numerical aperture of the objective was set to
a value below the minimum aperture of the darkfield condenser.

The microparticles are heated by a focused, continuous-wave
laser at a wavelength of 532nm (CNI, MGL-III-532). The beam diameter
is increasedbya beamexpander and sent to an acousto-optic deflector
(AA Opto-Electronic, DTSXY-400-532) and a lens system to steer the
laser focus in the sampleplane. Thedeflectedbeam is directed towards
the sample by a dichroic beam splitter (D, Omega Optical, 560DRLP)
and focused by an oil-immersion objective (Olympus,UPlanApo × 100/
1.35, Oil, Iris, NA0.5–1.35) to the sample plane (w0 ≈0.8μmbeamwaist
in the sample plane). A notch filter (Thorlabs, NF533-17) is used to
block any remaining back reflections of the laser from the detection
path. The acousto-optic deflector (AOD), as well as the piezo stage, are
driven by an AD/DA (analog-digital/digital-analog) converter (Jäger
Messtechnik, ADwin-Gold II). A LabVIEW program running on a desk-
top PC (Intel Core i7 2600 4 × 3.40GHz CPU) is used to record and
process the images as well as to control the AOD feedback via the AD/
DA converter.

Data availability
All data in support of this work is available in the manuscript or
the Supplementary Information. Further data and materials are avail-
able from the corresponding author upon request.
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1 Delay times in swarming animals

Tab. S1: Mean reaction times measured between a stimulus and the corresponding discrete response strongly vary among
species and the type of stimulus. Delay times comparable to the characteristic time scale of the stimulus may be expected to
trigger qualitatively new effects in the dynamical response, similar to those analyzed in the present work. Specifically, bacteria
(such as E. coli) are of similar size to our particles and also operate in an aqueous thermal environment.

Animal Stimulus/Response Reaction Time [ms] References
Human auditory 140− 160 1

visual 180− 200 1

touch ∼ 155 1

Fruit fly roll perturbation ∼ 5 2

pitch perturbation ∼ 12 3

yaw perturbation 10− 25 4

Starling startling sound stimuli 64− 80 5

startling light stimuli 38− 76 5

Teleost fish startle response 5− 10 6,7

Calanoida stirring water < 2.5 8

E. coli chemical stimuli ∼ 103 − 104 9

2 Experimental Details
2.1 Experimental setup
Fig. S1 sketches the experimental setup including the feedback system and the signal flow.

4

function. Quite intuitively, the entropy influx is stronger (more negative) for larger velocities.
Its absolute increase with decreasing temperature is not so intuitive. Considering a more
general potential of the form kxn we find that Ṡ� / (k/T )2/nT . Thus the increase of |Ṡ�|
with decreasing T is slower for stronger potentials/more localized distributions and for n � 2
the absolute entropy influx even increases with T .

Supplementary Note 5: Experimental Setup
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Supplementary Figure 7 | Experimental setup for the feedback controlled active particles.
The following abbreviations are used: AOD – acousto-optic-deflector, EOM – electro-optical
modulator, emCCD – Electron Multiplying CCD, FPGA – Field Programmable Gate Array,
D – Dichroic mirror. All the other components are lenses, mirrors and a standard microscopy
lamp.

Samples have been investigated in a custom built inverted microscopy setup. The setup
is based on an Olympus IX 71 microscopy stand (see Supplementary Figure 7). Optical
heating of the active particles is carried out by a CW 532 nm wavelength laser. The laser
intensity is controlled by a Conoptics 350-50 electro-optical modulator (EOM). An acousto-
optic deflector (AOD) together with a 4-f system (two f = 20 cm lenses) is used to steer
the 532 nm wavelength laser focus in the sample plane. The AOD is controlled by a Field
Programmable Gate Array (FPGA, National Instruments) via a LabView program. The
calibration of the AOD for precise laser positioning is carried out using a 2D projection
method developed in the lab A Leica 100x, infinity-corrected, NA 1.4 - 0.7 (set to 0.7), HCX
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Fig. S1: Sketch of the experimental setup.

The laser of 532 nm wavelength from the module (CNI Laser, MGL-III-532) is expanded in the beam diameter
by two lenses (19 mm, 100 mm focal lengths) and projected to the acousto-optic deflector (AOD, AA Opto-
Electronic, DTSXY-400-532). The two perpendicularly aligned TeO2 crystals in the AOD diffract the incident
laser in horizontal and vertical directions. The deflection angle and the output laser intensity are controlled by
the frequency and amplitude of the voltage on the TeO2 which is controlled by a real-time board Adwin-Gold II
(Jäger Messtechnik) including digital analog converters. The Adwin board is further controlled by a LabView
program developed in the group.
Through two lenses (500 mm, 300 mm focal lengths), the laser is guided to the dark field microscope (Olympus,
IX71). Reflected by a dichroic beam splitter (Omega Optical, 560DRLP), the beam is then focused by an
objective (100x, Olympus, UPlanApo x 100/1.35, Oil, Iris, NA 0.5 – 1.35) on the sample. The full width of the
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focus at half maximum of intensity is about 1 µm. The two lenses and the objective after the AOD convert
the deflection angles to the position of laser focus on the sample. About 20 mrad range of the deflection angle
corresponds to the 58× 58 µm2 area in the field of view in the microscope.
If multiple positions on the sample need to be shot by the laser, for instance to simultaneously propel multiple
swimmers, the AOD keeps scanning the shoot positions circularly. Every position is exposed for 320 µs, and
the position switching takes about 10 µs. The scanning order is randomized for each camera frame. Before
every measurement, the AOD is calibrated with a sample of thin layer of Nile blue fluorescent dye that show
the position of the laser focus on the sample. By scanning the laser in the field of view, the conversion between
laser position and AOD voltage input is determined by linear interpolation.
White light from a LED lamp (Thorlabs, SOLIS-3C) is shined on the sample through an oil-immersion dark
field condenser (Olympus, U-DCW, NA 1.2 – 1.4) with a glancing angle and illuminates the rims of swimmers.
Hence, the swimmers can be observed as bright rings, the positions of which are evaluated in LabVIEW. The
image of sample is projected through the objective and a lens (250 mm focal length) to the EMCCD camera
(Andor, iXon DV885LC). The resolution of the image reaches 0.058 µm/px. A notch filter (Thorlabs NF533-17)
in front of the camera blocks the residual laser reflected by the sample.

2.2 Feedback system
In the experiments, the time for signal transfer and processing in the feedback system causes an inevitable
instrumental delay ∆t on swimmer control. This delay is a property of the experimental setup and, unlike the
delay δt in the interaction rule (see Sec. 3.1), cannot be easily controlled. Influence of both ∆t and δt on the
system dynamics is discussed in detail in Sec. 3.
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function. Quite intuitively, the entropy influx is stronger (more negative) for larger velocities.
Its absolute increase with decreasing temperature is not so intuitive. Considering a more
general potential of the form kxn we find that Ṡ� / (k/T )2/nT . Thus the increase of |Ṡ�|
with decreasing T is slower for stronger potentials/more localized distributions and for n � 2
the absolute entropy influx even increases with T .
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Supplementary Figure 7 | Experimental setup for the feedback controlled active particles.
The following abbreviations are used: AOD – acousto-optic-deflector, EOM – electro-optical
modulator, emCCD – Electron Multiplying CCD, FPGA – Field Programmable Gate Array,
D – Dichroic mirror. All the other components are lenses, mirrors and a standard microscopy
lamp.

Samples have been investigated in a custom built inverted microscopy setup. The setup
is based on an Olympus IX 71 microscopy stand (see Supplementary Figure 7). Optical
heating of the active particles is carried out by a CW 532 nm wavelength laser. The laser
intensity is controlled by a Conoptics 350-50 electro-optical modulator (EOM). An acousto-
optic deflector (AOD) together with a 4-f system (two f = 20 cm lenses) is used to steer
the 532 nm wavelength laser focus in the sample plane. The AOD is controlled by a Field
Programmable Gate Array (FPGA, National Instruments) via a LabView program. The
calibration of the AOD for precise laser positioning is carried out using a 2D projection
method developed in the lab A Leica 100x, infinity-corrected, NA 1.4 - 0.7 (set to 0.7), HCX
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Fig. S2: Time diagram of signal processing in the feedback system for one active swimmer experiment.

Fig. S2 shows the time diagram of the signal processing in the feedback system. In the “Frame Transfer Mode”,
the camera is exposed while exporting the image of the previous frame. The image is read out and transferred
via the Adwin-Gold II (Jäger Messtechnik) to a desktop PC (Intel Core i7 2600 4 x 3.40 GHz CPU). The
LabVIEW program (v. 2019) on the PC analyzes the image and evaluates the positions of the swimmers by
their bright rims. The program stores a short history of the locations of the swimmers, and tracks the swimmers
by comparing their locations in previous frames. The corresponding data are recorded to a hard drive by another
CPU thread. The propelling directions at time t are determined from the swimmer locations at time t− δt in
the past. The laser position for propelling is determined based on the latest measured swimmer location.
With the information from the Nile blue calibration, the laser positions are converted to voltage signals for the
AOD. The signals are sent to the Adwin-Gold II, converted to analogue voltages, and transmitted to the AOD
oscillator module.
The measurements with one active swimmer (Fig. 2 in the main text) used a 512× 512 pixels field of view and
a 30 ms frame interval. The corresponding ∆t was about 64 ms. The experiments with 15 swimmers (Fig. 4
in the main text) used a larger 592 × 592 pixels field of view and, hence, a longer time for camera read-out
resulting in a longer ∆t of about 70 ms.

2.3 Active particle control
As self-propelled swimmers the experiment uses melamine formaldehyde (MF) particles of 2.19 µm diameter
(microParticles GmbH) decorated with gold particles of about 0.8 nm diameter on about 10% of their surface.
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To propel the MF particle, the laser is focused at its edge at a distance of d = 0.812 µm from the center, as
sketched in Fig. S3A.
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Fig. S3: (A) Sketch of the MF particle and the focused laser beam. The laser to particle distance is d = 0.812 µm in the
experiment. Figure is reprinted from10. (B) The active swimmers (black circles), the target (red circle), and the trajectory
(blue line) of the calibrator (blue circle) in a measurement.

The MF particle is transparent to the laser, which heats the gold particles and generates an asymmetric
temperature gradient on the MF surface. Due to the thermophoretic effect, the swimmer is propelled away
from the laser focus. For a detailed description of the propelling mechanism, see10,11.
During the sample preparation, the swimmers can be adsorbed on the glass coverslip and become immobilized.
This effect is significantly weakened by adding 0.1% Pluronic F-127 in the sample. In the experiments, we used
the remaining adsorbed swimmers as the target particles.
To keep the swimmer velocities constant during the experiment, we use a “calibrator” particle driven to patrol in
the field of view far enough from the other swimmers to be independent. The calibrator is driven to sequentially
change its swimming direction to follow an approximately square trajectory, as plotted in Fig. S3B. Its speed
averaged over the square loop is measured in real time and the laser power is tuned by LabVIEW and the AOD
to keep it constant.

2.4 Data analysis
From the recorded positions of particles in the experiments, the trajectories of the propulsion angles θ(t) between
the position vectors at time t and t− δt are determined. Note that the definition of the propulsion angle as the
angle between the propulsion direction û(t) and the negative position vector at time t, given on the right-hand
side of Eq. (2) in the main text, is valid only for a vanishing instrumental delay ∆t, and we do not use it when
analyzing the data. The obtained trajectories θ(t) are used to construct the θ histograms with 10 mrad bin
size shown in Fig. 2C in the main text. The velocity v0 of the active particles is determined by the average
velocity of the calibrator introduced in Section 2.3. The orbit radius R is calculated as the average distance
of the active particle to the target in one measurement. For the measurements with two shells of particles
(Fig. 4 in the main text), the traces with 2 µm < R < 3.09 µm are identified as particles in the inner shell, and
3.5 µm < R < 6.18 µm as those in the outer shell.

2.5 Thermophoresis and hydrodynamic flow
The swimmer is propelled due to thermophoretic effects caused by the laser-induced temperature gradient. The
propulsion mechanism generates a flow of the liquid around the particle, which influences the motion of nearby
particles in the measurements with multiple swimmers (e.g., see Fig. S4A). Figs. S4B and C demonstrate the
hydrodynamic flow field around a fixed and a freely propelling swimmer from a COMSOL simulation. The fixed
swimmer generates a flow opposite to its heading motion at the “tail”, while the moving swimmer causes the
flow in the direction of its motion. These hydrodynamic and thermophoretic interactions between the particles
are causing the many-body effects (co- and counter-rotating shells) depicted in Fig. 4 in the main text. Note
that the swimmers in Fig. 4 are neither fully fixed nor freely movable. Depending on their propulsion angles,
the corresponding flow fields are thus between those of the free and fixed swimmer.
From the trajectories of particles in a cluster, the influence of hydrodynamic flow can be deduced from the
velocity distribution of the particles relative to each other (Fig. S4). The flow at the "tail" of a swimmer
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Fig. S4: (A) The distribution of 16 swimmers relative to one of them (blue circle) in a measurement. The red circle denotes
the fixed target particle, and the green dot the laser. v0 = 2 µm/s. Panels (B) and (C) show the temperature and (induced)
hydrodynamic flow fields around a fixed swimmer and a freely moving swimmer, respectively. The data were obtained using a
finite element method calculation with COMSOL.

repulses other swimmers behind it. This repulsion causes the opposite rotations of different swimmer shells, as
introduced in the main text (for more details, see Sec. 5). Note that Fig. S4 is calculated by the trajectories of
the self-propelling active particles that obey their own rule of interaction, hence cannot be considered equivalent
as the real liquid flow.

3 Single particle theory
3.1 Deterministic dynamics with instrumental delay and bifurcation diagram
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Fig. S4: (A) The distribution of 16 swimmers relative to one of them (blue circle) in a measurement. The red circle denotes
the fixed target particle, and the green dot the laser. v0 = 2 µm/s. Panels (B) and (C) show the temperature and (induced)
hydrodynamic flow fields around a fixed swimmer and a freely moving swimmer, respectively. The data were obtained using a
finite element method calculation with COMSOL.

repulses other swimmers behind it. This repulsion causes the opposite rotations of di�erent swimmer shells, as
introduced in the main text (for more details, see Sec. 5). Note that Fig. S4 is calculated by the trajectories of
the self-propelling active particles that obey their own rule of interaction, hence cannot be considered equivalent
as the real liquid flow.

3 Single particle theory
3.1 Deterministic dynamics with instrumental delay and bifurcation diagram
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Fig. S5: (A) Sketch of the e�ect of the instrumental delay �t on the motion of the swimmer. r(t) is the measured particle
location detected by the camera, according to which the laser is focused at time t + �t when the position of the swimmer
is r(t + �t). (B) The bifurcation of the stable angle ✓ with di�erent �t’s obtained numerically from Eq. (2). ✓ becomes
constant after !0�t = ⇡/2, when \(û,�r̂) = 90� and the swimmer leaves the target’s surface. (C) The bifurcation diagrams
obtained with �t = 64 ms from Brownian dynamics simulations (circles), numerically (solid line), and using the approximate
analytical solution (12) to Eq. (2) (dashed line). The data points with di�erent colors correspond to the potentials in Fig. S7A.
In B and C, we set v0 = 2.03 µm/s, a = 1.095 µm and d = 0.8 µm. In the simulations, we used the di�usion coe�cient
D0 = 0.0642 µm2/s.

Consider the dynamics of a single swimmer attracted by a fixed target with the delay ”t and the instrumental
delay �t, as depicted in Fig. S5A. The laser position is determined from the swimmer location r(t) detected
by the camera at time t. However, due to the instrumental delay �t, the actual location of the swimmer is
r(t + �t) when the laser is updated. Neglecting the noise, the swimmer displacement r(t + �t) ≠ r(t) during
�t causes a change of its propulsion direction û = ≠r̂(t ≠ ”t) from Eq. (1) in the main text to

û(t + �t) = r(t + �t) ≠ r(t) ≠ dr̂(t ≠ ”t)
|r(t + �t) ≠ r(t) ≠ dr̂(t ≠ ”t)| , (1)

where d is the programmed distance from the laser to the particle as plotted in Fig. S3A. The form û(t) =
≠r̂(t≠”t) is recovered in the limit �t æ 0. The instrumental delay �t makes the swimmer motion considerably
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Fig. S5: (A) Sketch of the effect of the instrumental delay ∆t on the motion of the swimmer. r(t) is the measured particle
location detected by the camera, according to which the laser is focused at time t + ∆t when the position of the swimmer
is r(t + ∆t). (B) The bifurcation of the stable angle θ with different ∆t’s obtained numerically from Eq. (2). θ becomes
constant after ω0δt = π/2, when ∠(û,−r̂) = 90◦ and the swimmer leaves the target’s surface. (C) The bifurcation diagrams
obtained with ∆t = 64 ms from Brownian dynamics simulations (circles), numerically (solid line), and using the approximate
analytical solution (12) to Eq. (2) (dashed line). The data points with different colors correspond to the potentials in Fig. S7A.
In B and C, we set v0 = 2.03 µm/s, a = 1.095 µm and d = 0.8 µm. In the simulations, we used the diffusion coefficient
D0 = 0.0642 µm2/s.

Consider the dynamics of a single swimmer attracted by a fixed target with the delay δt and the instrumental
delay ∆t, as depicted in Fig. S5A. The laser position is determined from the swimmer location r(t) detected
by the camera at time t. However, due to the instrumental delay ∆t, the actual location of the swimmer is
r(t + ∆t) when the laser is updated. Neglecting the noise, the swimmer displacement r(t + ∆t) − r(t) during
∆t causes a change of its propulsion direction û = −r̂(t− δt) from Eq. (1) in the main text to

û(t+ ∆t) = r(t+ ∆t)− r(t)− dr̂(t− δt)
|r(t+ ∆t)− r(t)− dr̂(t− δt)| , (1)

where d is the programmed distance from the laser to the particle as plotted in Fig. S3A. The form û(t) =
−r̂(t−δt) is recovered in the limit ∆t→ 0. The instrumental delay ∆t makes the swimmer motion considerably
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complex. It is known to amplify the effects of noise by an amount roughly proportional to 1/d12. We will now
show that it influences the swimmer’s dynamics even if the Brownian motion is neglected.
Let us stick to the experimentally relevant situation depicted in Fig. S5 when the motile particle slides along the
fixed particle and thus cannot move in the direction −r̂(t+∆t). Then the true direction of motion of the motile
particle is given by the projection (1− r̂(t+ ∆t) r̂(t+ ∆t)) of the propulsion direction û(t + ∆t) in Eq. (1) to
the direction (− sinφ(t + ∆t), cosφ(t + ∆t)) perpendicular to r̂(t + ∆t) = (cosφ(t + ∆t), sinφ(t + ∆t)). The
propulsion thus creates a rotation around the fixed particle with diameter of rotation 2a and angular velocity
ω(t+ ∆t) = v0û(t+ ∆t) · (− sinφ(t+ ∆t), cosφ(t+ ∆t))/(2a) given by

ω(t)
ω0

= 2a sin θ(t, ∆t) + d sin θ(t, δt+ ∆t)√
d2 + 8a2 − 8a2 cos θ(t, ∆t) + 4ad(cos θ(t−∆t, δt)− cos θ(t, δt+ ∆t))

. (2)

Here, θ(t, t′) =
∫ t
t−t′ dt′′ω(t′′) = φ(t) − φ(t − t′) generalizes the propulsion angle from the main text. The

maximum possible angular velocity of the swimmer is denoted by ω0 = v0/(2a). When ∆t = 0, Eq. (2)
simplifies to Eq. (3) in the main text.
If we assume a stable rotation with a constant angular velocity ω(t) = ω 6= 0, and neglect Brownian motion
and the dependency of the swimmer velocity v0 on the laser to the particle distance d10, Eq. (2) can be used
for generation of the bifurcation diagram. As shown in Fig. 3A in the main text, the bifurcation appears when
derivatives of both sides of Eq. (2) with respect to ω at ω = 0 are equal. This leads to the condition

ω0δt = 1− ω0∆t2a+ d

d
. (3)

Compared to the situation with ∆t = 0, discussed in the main text, the instrumental delay shifts the critical
point Θ0 ≡ ω0δt to a lower value proportionally to ω0∆t. For ∆t ≥ d/(ω0(2a+ d)) when the right hand side of
Eq. (3) becomes negative, a stable rotation can form even with δt = 0.
The right hand side of Eq. (3) depends on ω0, which enters the control parameter ω0δt. Actually, Eq. (3) can
also be written as

ω0δt =
(

1 + ∆t
δt

2a+ d

d

)−1
≡ ΘB , (4)

where the right-hand side depends on δt. These results suggest that ω0δt is for ∆t > 0 no longer a good control
parameter and one should redefine it, e.g., by introducing the effective delay time δteff = δt/ΘB so that the
condition in Eq. (4) simplifies to ω0δteff = 1. Nevertheless, we keep the control parameter ω0δt for sake of
consistency with the main text.
The bifurcation diagram in Fig. S5B shows the numerical solutions to Eq. (2) as function of ω0δt for four
different values of instrumental delay ∆t. In the next section, we show that the bifurcation can also be char-
acterized analytically using a Taylor expansion. The resulting approximate formula (Eq. (12)) is compared to
the numerical solution in Fig. S5C. This panel also shows the bifurcation diagram obtained from Brownian
dynamics simulations of the system (for details of the simulations, see Sec. 4). The simulations reveal that the
Brownian motion neglected in the above analysis causes deviations from our predictions due to fluctuations
of the propulsion direction (Eq. (1)) and swimmer to target distance R. Bifurcation diagrams obtained from
simulations with a much smaller diffusion coefficient than that used in the figure coincide perfectly with the
numerical solution (data not shown).

3.2 Stochastic dynamics: time-local approximation
Taking into account the noise, the dynamics of the motile particle can be described by the Langevin equation11

ṙ(t) = v0û(t) + Fint/γ0 +
√

2D0η(t), (5)

where D0 = kBT/γ0 (∼ 0.0642 µm2/s) with friction coefficient γ0, Boltzmann constant kB, and temperature T ,
denotes translational diffusion coefficient, and η(t) = (ηx(t), ηy(t))ᵀ is a column vector of independent Gaussian
white noises. The force Fint describes the hard-core interaction between the motile and fixed particle. Because
the particle position r(t) enters the expression Eq. (1) for the propulsion direction û(t) at time t with a delayed
time argument, the Langevin equation is a non-linear stochastic delay differential equation13. In general, such
equations are notoriously difficult to solve analytically, and one has to resort to approximations.
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Similarly, as in the previous section, we will now assume that the distance of the motile particle from the origin
is determined by twice the radius of the fixed particle, |r(t)| ∼ 2a, and we will focus only on the component of
Eq. (5) that is perpendicular to the position vector r(t). This assumption allows us to neglect the force Fint
in the equation. The motion along the position vector has been investigated in a slightly different context in
Ref.11.
Projecting Eq. (5) to the direction perpendicular to r(t) is most easily achieved by scalar multiplying the
equation by the vector (− sinφ(t), cosφ(t)). Using the expressions r(t) = 2a(cosφ(t), sinφ(t)) and ṙ(t) =
2a(− sinφ(t), cosφ(t))ω(t), where ω(t) = φ̇(t), we obtain

ω(t) = ω0F (t) +
√

2Dη(t) (6)
with D ≡ D0/(2a)2, and η(t) the white noise. The factor F (t) = û(t)·(− sinφ(t), cosφ(t)) reduces the maximum
angular velocity ω0. It is given by Eq. (2), which simplifies to sin

(∫ t
t−δt ω(t′)dt′

)
for a vanishing instrumental

delay. Eq. (6) is still a non-linear stochastic delay differential equation, and it is virtually impossible to solve it
exactly using the available techniques. However, qualitative analytical insights into the dynamics of the system
can be obtained by expanding the factor F in a third-order Taylor series with respect to the delays δt and ∆t.
The resulting equation has the form

ω(t) = c0ω(t) + c1ω
3(t) + c′ω̇(t) + c′′ω̈(t) +

√
2Dη(t) (7)

with c′ < 0 and c′′ > 0. This equation is local in time, and, by rearranging the terms, it can be interpreted
as a Langevin equation for an underdamped Brownian particle with a mass −c′′ and friction −c′ trapped in a
quartic potential.
However, such a system would be unstable due to the negative mass term −c′′, which stems from expanding the
delay frequency up to second order in δt. That such higher-order expansions can lead to unstable solutions is
well known in the theory of delay systems14, and thus we set c′′ = 0 in Eq. (7). Furthermore, the angular velocity
process in Eq. (7) is already proportional to white noise η(t), and thus the derivative ω̇(t) does not exist in a
strict mathematical sense. To avoid this problem, we will from now on understand ω(t)δt as an approximation
for the propulsion angle θ(t) =

∫ t
t−δt dt′ω(t′), which works reasonably well when ω is approximately constant.

Finally, we obtain the approximate time-local stochastic differential equation

θ̇(t) = − ∂

∂θ
U(θ)

∣∣∣∣
θ=θ(t)

+
√

2DT η(t) (8)

for the propulsion angle. It has the form of a Langevin equation describing a dimensionless position θ of an
overdamped Brownian particle with diffusion coefficient

DT = (2 + α)2Θ4
B

(2Θ2
B + α)2Θ2

0

D0
a2 (9)

with α ≡ d/a, diffusing in a dimensionless quartic potential

U(θ) = 1
4f0θ

2(θ2 − 2θ2
±). (10)

This analogy will prove immensely useful in the following discussion. The parameters in the potential read

f0 = c

(2 + α)(2Θ2
B + α)ΘB

1
3δt , θ± = (2 + α)ΘB√

c

√
6

Θ0
(Θ0 −ΘB), (11)

where we introduced the shorthand c = 12− 4(3−ΘB)Θ2
B +α(6 +α− 2Θ3

B) and, as in the main text, denoted
the control parameter ω0δt by Θ0. For a vanishing instrumental delay, ΘB = 1, c = (2 + α)2, and the potential
and effective diffusion coefficient simplify to the expressions given in the main text with

f0 = 1
3δt , θ± =

√
6

Θ0
(Θ0 − 1). (12)

As stated in the main text, the quartic potential (Eq. (10)) in Eq. (8) directly maps to the Landau theory of
phase transitions. Further, the dynamical equation (8) with the potential (Eq. (10)) and zero noise (DT = 0)
represents the normal form of the supercritical pitchfork bifurcation. Both these mappings yield expressions for
the bifurcation diagram and the relaxation times. However, here we will employ a different approach based on
the mentioned mapping of Eq. (8) to the overdamped diffusion, and show that, while it allows us to derive the
results from the Landau theory, it also allows for characterizing the effect of the noise on the particle dynamics.
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3.3 Stochastic dynamics: potential and relaxation times
The (approximate) bifurcation diagram can be deduced from the force

− ∂

∂θ
U(θ) = f0θ(θ2 − θ2

±). (13)

For Θ0 < ΘB it vanishes only for θ = 0. On the other hand, for Θ0 > ΘB the force vanishes for θ = 0 and
θ = ±θ±. The bifurcation diagram shows the stationary solutions to the differential equation which thus must
be stable to small perturbations. We introduce two ways how to determine the stability.
The simpler one is based on the potential: stable stationary solutions correspond to its local minima and
unstable solutions to its local maxima. The potential U(θ) as function of the characteristic parameter Θ0 =
ω0δt is depicted in Fig. S6. From the figure, it follows that θ = 0 is a stable solution only for Θ < ΘB , where
it corresponds to a single minimum of the potential. For Θ > ΘB , the potential develops two local minima and
the system allows for two symmetric stable solutions θ = ±θ±. In accord with the discussion from the preceding
section, the bifurcation appears at Θ = ΘB when a single stable solution changes to two stable solutions.

Fig. S6: The potential U(θ) as function of the control parameter Θ0 ≡ ω0δt according to Eq. (10) with ∆t = 0, corresponding
to ΘB = 1 according to Eq. (4). With increasing Θ0, U(θ) transforms from a single well to a double well potential. The red
curve denotes the local minima of U(θ) and thus the stable angles θ± in the bifurcation diagram in Figs. S5B and C.

Another way to identify the stable solutions, which, moreover, yields approximate relaxation times of small
perturbations from the stable points, is the linear response theory. Let us first investigate the stability of the
solution θ = 0. Assuming small perturbations around this point, i.e., taking θ = δθ in Eq. (8) and expanding
the result up to the first order in δθ, we find the equation

d

dt
δθ(t) = f0θ

2
±δθ(t), (14)

which describes an exponential relaxation δθ ∝ exp(−t/τ) with the relaxation time

τ = − 1
f0θ2
±

= 2Θ2
B + α

2 + α

δt

2
(

1
Θ0
− 1

ΘB

) . (15)

This relaxation time is positive for Θ0 < ΘB and negative for Θ0 > ΘB . At the bifurcation, Θ0 → ΘB , the
relaxation time diverges, which is the manifestation of critical slowing down. Stationary solutions are stable if
the corresponding relaxation time is positive and thus the solution θ = 0 is stable for Θ0 < ΘB .
Repeating this procedure for small perturbations around θ = ±θ+, we find that the corresponding relaxation
time is given by

τ = −2Θ2
B + α

2 + α

δt

4
(

1
Θ0
− 1

ΘB

) . (16)
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This relaxation time is negative for Θ0 < ΘB , positive for Θ0 > ΘB , and diverges for Θ0 → ΘB . The solutions
θ = ±θ+ are thus stable for Θ0 > ΘB . The linear stability analysis hence leads to the same bifurcation diagram
as predicted from the potential in Fig. S6. The positive relaxation times constitute the system discussed in the
main text. For vanishing instrumental delay ∆t = 0, the formulas (15) and (16) simplify to Eq. (7) in the main
text.
The theoretical predictions (15) and (16) are compared to relaxation times obtained from experiments and
Brownian dynamics simulations in Fig. S11C in Sec. 6, where we discuss two complementary methods for
extracting the relaxation times from the data.

3.4 Stochastic dynamics: transition rates and effective temperatures
In the regime when the potential becomes bi-stable, the noise induces transitions between the two minima.
Employing the overdamped interpretation of Eq. (8), it seems natural to use the Kramers’ rate theory15 to
describe these transitions. For an overdamped Brownian particle diffusing in a double well potential U with
minima at ±θ±, the Kramers theory predicts that transitions between the two wells appear with the transition
rate

k = 1
2π
√
−U ′′(0)U ′′(θ±) exp

(−Eb
Dθ

)
. (17)

Here, Eb = U(0)−U(θ±) is the height of the energetic barrier between the minima, and Dθ denotes the thermal
energy, which is, in our units with unit friction coefficient, given by the diffusion coefficient. Using the potential
and the diffusion coefficient from Eq. (8) thus leads to the prediction

k =
f0θ

2
±√

2π
exp

(
−f0θ

4
±

4Dθ

)
, (18)

with Dθ = DT . The red solid line and the circles in Fig. S7C show that this prediction unfortunately does
not agree with transition rates evaluated from Brownian dynamics simulations of Eq. (5). This disagreement
is caused by the uncontrolled approximations used in our derivation. Actually, there is no guarantee that a
delay stochastic differential equation can be approximated by a time-local stochastic differential equation. The
only case where such a mapping can be derived rigorously are linear stochastic differential equations, which can
be shown to be equivalent to time-local stochastic differential equations with highly nontrivial time-dependent
coefficients and a colored noise13. But even there the transition rates differ from those predicted using the
simple overdamped description13.
In the present situation, the agreement of the theoretically predicted bifurcation diagram and relaxation times
with the experimental and simulation data shown in Figs. S5 and S11, and Fig. 3 in the main text gives us
confidence that the potential Eq. (10) approximates well the systematic part of the delay force in Eq. (5). To
improve the prediction for the transition rate, we thus decided to fit the diffusion coefficient Dθ in Eq. (18) to
the data. However, to further test the validity of the suggested mapping of Eq. (5) to the time-local overdamped
Eq. (8), we have not determined Dθ by fitting the transition rates. Instead, we fit the Boltzmann distribution

p(θ) = exp(−U(θ)/(Dθ))∫∞
−∞ exp(−U(θ)/(Dθ))

(19)

to the distributions for θ determined from experiments and simulations. Examples of such fits to − log p(θ)
obtained from simulations and experiments are depicted in Fig. S7A and Fig. 2C in the main text, respectively.
The corresponding diffusion coefficients Dθ are shown in Fig. S7B together with the prediction (9). Both Dθ

obtained from experiments and simulations converge to (different) constant values depicted in the figure by
horizontal lines. The large fluctuations in Dθ obtained from experimental data for small values of ω0δt, shown
in the inset, are caused by insufficient statistics around the central peak of − log p(θ), rendering the fitting
results unreliable.
The transition rates calculated using Eq. (18) with the fitted Dθ from Fig. S7B are depicted by symbols in
Fig. S7C for the simulations and Fig. 3D in the main text for the experiments. Besides using the fitted ω0δt
dependent diffusion coefficient, we also plotted the transition rates using the constant plateau values Dθ = 0.034
s−1 and Dθ = 0.05, respectively for the simulation and the experiment. The remarkable agreement of the
resulting transition rates with rates directly measured from simulation and experiments reveals that, at least
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from the perspective of transition rates, the delay stochastic differential Eq. (5) can be well approximated by the
time-local overdamped Langevin Eq. (8) with the potential Eq. (10) and white noise with diffusion coefficient
Dθ instead of DT from Eq.(9).

14
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Fig. S7: (A) Fits of the Boltzmann distribution (Eq. (19)) with the potential (Eq. (10)) (lines) to − log p(θ) from simulations
(+ symbols) for ω0δt = 0.60, 0.75, 0.90, and 1.35, denoted by the same colors as the corresponding data points in Fig. S5C.
(B) The diffusion coefficient Dθ determined by the fitting of experimental and simulated distributions for θ together with the
theoretical prediction (Eq. (9)). (C) Transition rates k for jumps of θ between the two wells of the potential, measured from
the simulations (circles) and the predictions from Kramers’ theory (Eq. (18)) with different diffusion coefficients Dθ. The
other parameters are the same as in Fig. S5C.

4 Brownian dynamics simulations
To test the approximate theoretical results beyond the parameter regimes accessible in experiments, we simulated
the non-approximate Langevin equation (5) with the timestep dt = 10 ms. To take into account finite sizes of
the motile and the fixed particle, we assumed that Fint describes a hard core repulsion, which restricts r(t) to
(2a,∞).
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Fig. S8: Sample data from Brownian dynamics simulation for v0 = 2.16 µm/s and δt = 1.62 s. (A) The trajectory of the
angle θ(t) fluctuates around the stable values θ±. (B) The corresponding histogram for θ. The other parameters are the same
as in Fig. S5C.

Most of our simulations take into account all key ingredients of the experiment except for hydrodynamic in-
teractions. Therefore, the simulated data show excellent agreement with single particle measurements, cf the
example simulated trajectory of the delay angle and the corresponding histogram shown in Fig. S8A (Fig. S8B)
to the experimental data in Fig. 2A (Fig. 2C) of the main text. However, our simulations of many-body systems
exhibit significant disagreement from data from multiple particle experiments, especially if the particles form

10



several co- or counter-rotating layers. This disagreement allows us to conclude that the effects observed in
many-body experiments, like the shift of the bifurcation to smaller values of control parameter and counter-
rotating particle layers, are solely induced by hydrodynamic interactions among the active particles. As shown
in Fig. S9 and discussed in the Sec. 5.1, the only significant many-body effect that is present in the simulations
without hydrodynamic interactions is stabilization of the system (decrease of transition rate between clockwise
and counter-clockwise rotation) with increasing number of particles.
We have adapted phenomenological backflow-induced forces in some simulations to study the role of hydrody-
namic (and phoretic) interactions without reproducing the whole experiment in silico. We constructed them
using three leading terms (monopole, dipole, and polar contributions) in the expansions of the hydrodynamic
velocity field from Refs.16 and17. We switched the monopole field decaying as (1/distance) only when the target
particle blocked the propelled particle. In the formula for the force exerted by the backflow, we additionally
neglected the “diffusive” term proportional to the second derivative of the velocity field. We have chosen the co-
efficients in the three contributions so that the phenomenology observed in simulations and experiments agrees.
In this sense, our simulation can also phenomenologically incorporate some phoretic effects described by the
same decay laws as the considered hydrodynamic contributions. In Fig. S10 and Sec. 5.2 below, we demonstrate
that these simulations reproduce the co- and counter-rotating shells observed in experiments.

5 Collective rotation
As described in the main text, considering an ensemble of particles each of which is driven towards the same
target by the same retarded interaction leads to interesting collective effects. Due to steric, hydrodynamic and
thermophoretic interactions, the particles rotate around the target in shells. In each of the shells, the inter-
particle interactions synchronize and stabilize the rotation of the particles, as shown in Fig. S4A. The transition
rate for switching between clockwise and counter-clockwise rotation thus decreases with the number of particles
in a shell. Otherwise, the bifurcation in a given shell occurs approximately for the same parameters as for a
single particle. The inter-particle interactions also couple dynamics of the neighbouring shells, which can either
stably co-rotate or counter-rotate.

5.1 Steric interactions
To understand the effect of steric interactions alone in the multi-particle rotation, we performed BD simulations
without hydrodynamic forces and instrumental delay for N ranging from 1 to 69. For N = 6 and δt < πa/v0,
the swimming particles form a closed hexagonal shell around the target particle of radius R ' 2a. For larger
delays, the shell is no longer closely packed as its diameter increases to R ∼ 2v0δt/π. For N > 6, the innermost
shell is pressed towards the central particle and its diameter returns to R ' 2a. The other shells form an
optimal hexagonal lattice with 6k particles in the kth shell. Assuming that the particles eventually fill a circle,
the radius of the outermost shell can be estimated as a

√
N/0.907, where 0.907 is the density of the optimal

circular packing in two dimensions.
Up to N = 6 particles, the steric interactions just synchronize and stabilize the rotation. The bifurcation
diagrams for 1 ≤ N ≤ 6 in Fig. S9A thus collapse to a single curve described by the single-particle theory
(Eq. (5) in the main text). In Fig. S9B, we show that the corresponding bifurcation diagrams obtained from
the experiments also approximately collapse for N ≤ 6. We attribute the discrepancies in the collapse to
hydrodynamic and phoretic interactions, neglected in the simulation, and measurement uncertainties. More
detailed studies are subject of future work.
The stabilizing effect of the steric inter-particle interactions is best visualized by the exponential decrease of
the transition rate for jumps between the two rotating states depicted in Fig. S9C. This linear scaling of the
exponent in the transition rate with N can be intuitively understood as follows. Before the whole set of particles
in a given shell changes its sense of rotation, it forms a “train of compartments” which can be thought of as a
single quasiparticle with an effective diffusion coefficient that scales as 1/N due to the central limit theorem.
As the exponent in the transition rate is proportional to the inverse of the diffusion coefficient, this effect yields
the observed linear scaling of the logarithm of the transition rate.
Finally, in Fig. S9D, we show bifurcation diagrams for N ≥ 14 obtained from simulations without hydrodynamic
interactions by averaging the propulsion angles of all particles in the ensemble. After rescaling the control
parameter v0δt by the radius R ∼ a

√
N/0.907 of the outermost shell and a constant factor of 1.33, all these

diagrams fall onto a single master curve described by the single-particle theory. For short delays, all particles
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move with the same angular velocity as the outer shells propel toward the center of the flock, thus effectively
imposing their angular velocity on the inner shells. With the increasing delay, the propulsion direction of the
particles becomes more and more tangential, and the strength of the blocking drops. The outer shells lack
behind the inner ones as the maximum angular velocity of the particles v0δt/R decreases with the distance from
the center. In both these regimes, the particles thus move on average with a smaller angular velocity than a
single particle. It turns out that this “slowing down” is nicely described by the constant 1.33 ≈ 4/3 we used
to upscale the speed in the bifurcation diagram. Unfortunately, we cannot compare these simulation results
to experimental data as control of such large ensembles of particles is beyond our experimental setup’s current
capabilities.
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Fig. S9: Collective behavior in simulations with only steric interactions and experiments. (A) The bifurcation diagrams for
1 ≤ N ≤ 6 obtained from simulations. The data collapse on the solid line corresponding to the single particle theory (Eq. (5) in
the main text). (B) The bifurcation diagram for 1 ≤ N ≤ 6 extracted from experimental data. The solid line is the theoretical
prediction (11) for the bifurcation curve that includes both the programmed delay δt and the instrumental delay ∆t. In (A)
and (B), R ≈ 2a denotes the average distance of the particles from the center. (C) The logarithm of the transition rate for
switching between clockwise and counter-clockwise rotation for 1 ≤ N ≤ 6, obtained from simulations. (D) The bifurcation
diagram for 14 ≤ N ≤ 69 obtained from simulations. After rescaling, the data collapse on the solid line corresponding to the
single particle prediction.

5.2 Hydrodynamic interactions
now focus in detail on the the behavior in the two-shell scenario depicted in Fig. 4 in the main text. The
maximum angular velocity in the inner shell, ωin = v0/(2a), is two times larger than that in the outer shell,
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ωout = v0/(4a). Therefore, one might conclude that the inner shell can rotate and the outer shell moves
randomly. However, rotation in the inner shell always induces at least a weak rotation in the outer shell. As
the control parameter ωoutδt increases, the outer and inner shells start to counter-rotate. Finally, an even
stronger increase in ωoutδt leads to co-rotation of the two shells. This complicated behavior, caused by the
hydrodynamic and thermophoretic interactions between particles in the two layers, can be understood using a
simple phenomenological model. Let the particles in the inner shell stably rotate with a propulsion angle θin.
Then the dynamics of the propulsion angle θout of particles in the outer shell can be qualitatively described by
the formula

θout(t) = ωoutδt
[
sin θout(t− δt)−B sin θin cos θin + C sin θin]+

√
2D0/R2ξ(t). (20)

The first term on the right-hand side comes from the delayed attraction to the center and leads to the single-
particle potential in Eqs. (10) and (12) and the bifurcation diagram in Fig. (S5). The second term has the
opposite sign than θin and thus causes the counter-rotation of the two shells. The third term has the same sign
as θin and causes the co-rotation. The last term stands for the thermal noise. The dependency of the second
and third terms on θin can be understood as follows.
Addressing a particle by the laser causes flows of water which induce swimming of the particle. These flows are
strongest in the direction opposite to the particle motion. When a particle is propelled with delay angle θin,
the backflow is thus strongest in the direction (− sin θin, cos θin) in the coordinate system defined by the vector
parallel to the particle’s circular trajectory, and the position vector r(t), see Fig. S5A. If the backflow from the
inner shell penetrates into the outer shell, it can cause the co- and counter-rotations (see Fig. 4 in the main
text). The co-rotation can be induced if the delay angle θin is so large that the backflow hits the particle in
the inner shell and is reflected into the outer shell with opposite direction. We assume that this effect can be
modeled by the term proportional to sin θin, i.e., to the component of the backflow tangential to the inner layer.
The counter rotation is then induced by the amount of backflow which penetrates into the second layer. This
portion of the backflow is proportional to cos θin. However, the leaked backflow can only cause rotation if it has
a nonzero component within the second layer. This component is again proportional to sin θin. Altogether, we
assume that the counter-rotation is caused by the term proportional to sin θin cos θin. Finally, we assume that
the proportionality factor C > 0 for the reflected backflow is smaller than B > 0, describing the direct effect of
the backflow.
The phenomenological bias ωoutδt(−B sin θin cos θin +C sin θin) from the inner shell tilts the potential (10) and
thus stabilizes one of the rotating states. For Θ0 < 1, there is no rotation in the inner shell, and thus θin = 0 and
the bias vanishes. For Θ0 > 1, θin is in the present approximation given by Eq. (12). For 0 < θin < arccos(C/B),
the term −B sin θin cos θin dominates and the bias favors θout with opposite sign than θin, and the other way
round for arccos(C/B) < θin. Inserting θin =

√
6(1− 1/Θ0) from Eq. (12) in the condition θin = arccos(C/B),

we find that the transition from counter- to co-rotation occurs for

Θ0 = 6
6− arccos2(C/B) . (21)

Depending on the value of the ratio of the phenomenological parameters B and C, the expression on the right-
hand side interpolates between the values −24/(π2 − 24) ∼ 1.7 for C/B = 0 and 1 for C/B = 1. Translating
this result to the language of time-delay δt, velocity v0, and radius 2a of the inner-shell, we find

v0δt = 12a/[6− arccos2(C/B)]. (22)

In Fig. S10B, we show the phase diagram for co and counter-rotating phases obtained from the simulation with
steric repulsion, phenomenological hydrodynamic forces, and the instrumental delay of ∆t = 0.064 s (see Sec. 4
for details). The corresponding diagram obtained from experiments is shown in Fig. S10A. Eq. (22) describes
the phase boundary in both these diagrams. However, the corresponding values of B/C for the simulation
(B/C ∼ 0.2) and experiments (B/C ∼ 1.0) are much different. We attribute this discrepancy to the rough
implementation of hydrodynamic and phoretic interactions in the simulation and the analytical model. The
analytical model further does not incorporate steric interactions, which play an important role in the observed
synchronization. Noteworthy, all these different implementations of the backflow yield the same phenomenology,
which points to its robustness against details of the interactions’ shape.
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Fig. S10: Phase diagram of counter/co-rotating shells for N = 15 obtained from experiments (A) and simulations (B). The
simulations include the instrumental delay ∆t = 0.064 s and effective hydrodynamic interactions. The phase boundaries are
described by Eq. (22) with C/B ' 1 for experiments and 0.2 for simulations, corresponding to v0δt/(2a) = 1 and v0δt/(2a) =
1.45, respectively. In addition to the two rotational phases observed in the experiments, we observed unstable/switching modes
on their boundary in simulations.
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Fig. S11: (A) Auto-correlation (AC) function of θ(t) corresponding to the three colored experimental data points in Fig. 2 of
the main text. (B) An example of the relaxation of average θ(t) after a 0.1 rad perturbation of the stable non-rotating state.
The solid line was measured in experiments and the dashed line was obtained numerically from Eq. (5). (C) The relaxation
time τ from theory (Eqs. (15) and (16), solid line), AC functions determined from Brownian dynamics simulations (circles),
and relaxation of the perturbation exemplified in (B) in experiments (crosses), and numerics (dashed line). We used v0 = 1.7
µm/s (B), δt ≈ 0.6 s ((B) and (C)), a = 1.095 µm and d = 0.8 µm.
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6 Extraction of relaxation times from experimental and simulation data
There are two complementary ways to determine the relaxation times in the two stable states from experimental
and simulation data. The first one is closely related to the idea of the linear stability analysis: one induces a
small perturbation of the system from its stable state and measures how long it takes for this excitation to decay
to 1/e its initial value. If one cannot easily induce such a perturbation in the system, it is still possible to obtain
the relaxation time as the decay time of the stationary time-correlation function calculated from trajectories
trapped in the stable state.
The complementarity of the two approaches is based on the linearized Langevin equation

d

dt
δθ(t) = −1

τ
δθ(t) + η(t) (23)

approximately describing time evolution of small perturbations δθ(t) = θ(t)− θS of a stable state θS . Both the
average solution to this equation, 〈δθ(t)〉 and its stationary normalized auto-correlation function,

C(t) = 〈δθ(t+ t′)δθ(t′)〉t′
〈δθ(t′)2〉t′

≡ lim
tm→∞

∫ tm
0 dt δθ(t+ t′)δθ(t′)
∫ tm

0 dt (δθ(t′))2
, (24)

decay exponentially with the relaxation time τ . In the definition of the time correlation function, tm denotes
the final time of the measurement and it is assumed that the process θ(t) is initialized in a distant time in the
past, ti → −∞, so that it is already stationary at t = 0.
For an overdamped system with a harmonic potential, the two methods yield exactly the same relaxation time.
For a nonlinear delay stochastic differential equation such as Eq. (5), the correspondence is not necessarily
exact. However, also linearized stochastic delay differential equations yield average solutions with the same
decay rate as the stationary correlation functions13. The two approaches can thus be expected to yield the
same results whenever the system evolves most of the time close to the minimum of the potential, which is
well approximated by a parabola. Such conditions are achieved whenever the thermal energy kBT is small
compared to a characteristic energy scale of the potential. That the two approaches yield similar results also in
our situation is demonstrated in Fig. S11C and in Fig. 3C in the main text, where we compared the theoretical
results Eqs. (15) and (16) and relaxation times τ obtained from experiments and simulations using the two
methods described above. More details are given in the following two paragraphs.
The time correlation functions Eq. (24) determined from experimental trajectories of θ(t) trapped in the indi-
vidual stable states (θ(t) in the ±1 rad range of the theoretical values 0 or θ±) are shown in Fig. S11A. The
corresponding decay times were determined as times needed for the correlation function to decay to 1/e of its
initial value. The resulting decay times averaged over data obtained from all trajectories trapped in a given
state are shown in Fig. 3C in the main text. Similar time correlation functions also follow from the Brownian
dynamics simulations. The corresponding decay times are depicted by solid circles in Fig. S11C. These decays
times were evaluated in the same way as in experiments with the difference that we employed the formula

∫ ∞

0
dt sin

(
t

τ

)
C(t)
t

= π

4 (25)

designed to extract the most relevant timescale of a decaying function18 to extract the decay time from the
individual correlation functions. Both the experimental and the simulation results are in good agreement with
the theoretical predictions Eqs. (15) and (16) according to the linear stability analysis (solid lines). We also
verified that the simulation data agree with theoretical predictions better for smaller temperatures (data not
shown).
An example of the time evolution of a perturbation δθ = 0.1 applied to the stationary non-rotating state θS =
0 at t = 0, corresponding to ω(t) = δθ(t) proportional to the δ-function for t ≤ 0, is shown in Fig. S11B. The
dashed line results from numerical integration of Eq. (5) averaged over the noise. The solid line was measured in
the experiment, where we averaged over 150 perturbation-relaxation cycles. During the time interval (0, δt), the
average propulsion angle θ(t) =

∫ t
t−δt dt′ ω(t′) is given by the perturbation and increases as ω(t) = ω0 sin θ(t) is

positive. At time t = δt, θ(t) suddenly drops by δθ as the perturbation no longer influences the angular velocity.
This change then causes a next drop at t = 2δt etc. Such a non-smooth time evolution is for delay differential
equations typical13.
For rotating stable states, the decay of a finite perturbation depends on its sign due to a slight asymmetry
of the corresponding effective potential. Therefore, we evaluated the relaxation trajectories using the same
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way as for θS = 0 but we in addition averaged over the perturbations δθ = ±0.1. The decay times τ of the
resulting averaged relaxation trajectories, determined as θ(τ) = θ(0)/e, are plotted as dashed lines (numerics)
and crosses (experiments) in Fig. S11C. The non-smoothness of the resulting functions is related to the non-
smooth evolution of the relaxation trajectories. The large fluctuations of the experimental results close to the
bifurcation point, where the relaxation time diverges, arise from finite measurement time (6s) per relaxation
event.
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Active particles with delayed attractions form quaking crystallites
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Abstract –Perception-reaction delays have experimentally been found to cause a spontaneous
circling of microswimmers around a targeted center. Here we investigate the many-body ver-
sion of this experiment with Brownian-dynamics simulations of active particles in a plane. For
short delays, the soft spherical discs form a hexagonal colloidal crystallite around a fixed target
particle. Upon increasing the delay time, we observe a bifurcation to a chiral dynamical state
that we can map onto that found for a single active particle. The different angular velocities at
different distances from the target induce shear stresses that grow with increasing delay. As a
result, tangential and, later, also radial shear bands intermittently break the rotating crystallite.
Eventually, for long delays, the discs detach from the target particle to circle around it near the
preferred single-particle orbit, while spinning and trembling from tidal quakes.

Introduction. – Recent experiments with synthetic
microswimmers steered toward a fixed target have revealed
a spontaneous vortex formation caused by a perception-
reaction delay [1]. The observed phenomenology can be at-
tributed to the delay-induced aiming errors, akin to those
associated with microswimmer navigation strategies em-
ploying “vision-cone” [2, 3] or “acceptance-angle” [4, 5]
criteria. The experiment thereby established a simple
paradigmatic model system for swarm forming ensembles
with delayed interactions. Notably, the response of all
living creatures and artificial devices to external stimuli
is delayed by the time required to transfer and process
information and realize the required response. All these
systems can be classified as feedback-driven systems [6],
which are well-studied in control theory, an engineering
branch of dynamical-systems theory. In physics, objects
capable of active reactions to perceived stimuli, such as
animals or robots, are commonly studied within the field
of active matter [7]. Even though the models of active
matter usually neglect perception-reaction delays, it was
shown in several pioneering studies that delays can signifi-
cantly impact stability, dynamical phases, and even finite-
size scaling in active matter systems [8–16].

In this Letter, we extend the experimental model system
of Ref. [1] to system sizes that are currently inaccessible
to the experimental techniques employed in [17]. Using

Brownian dynamics simulations, we find that the average
angular velocity of the system still exhibits the bifurcation
described in [1], but that the many-body dynamics under-
goes a surprisingly rich series of delay-induced dynamical
phase transitions. For short delays, the system forms a
densely packed crystallite around the target, which can
be interpreted as a variant of motility-induced phase sep-
aration [18], with a strongly depleted gas phase. As the
delay increases, the crystallite is intermittently broken up
by delay-induced shear bands.

Even for experimentally realistic noise intensities, the
phenomenology observed in our simulations resembles the
behavior of sheared low-temperature colloidal suspensions
or athermal granular materials [19,20]. An important fea-
ture of densely packed crystalline and amorphous particle
assemblies is that they can only be sheared if the packing
structure is somewhat dilated to allow the particles to es-
cape from their nearest-neighbor cages and move around
each other. A typical defect structures observed under
such conditions are therefore shear bands [21, 22]. In the
field of granular rheology, one also speaks of the dilatancy
effect. It is responsible for normal stresses and the non-
affine response to shear. In everyday life, you may experi-
ence it in the form of drained halos around your feet when
you step on wet sand. In contrast to common granular
and colloidal rheological setups, the shear stresses in our
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active-Brownian-particle ensembles are however not in-
duced by a moving background solvent or a system bound-
ary or immersed probe particle, but solely by the individ-
ual particles’ activity, itself. This entails some counter-
intuitive consequences. Most importantly, the time delay
only entails relevant navigational aiming errors if the par-
ticles are actually moving, but not if they are jammed up
in a dense cluster. This somewhat unconventional prop-
erty distinguishes our setup from the myriad of superfi-
cially related rheological problems documented in the lit-
erature. It also impedes attempts to provide a complete
mechanistic interpretation of the unique succession of dy-
namical phases and phase transitions, described in the fol-
lowing.

Model. – We consider a two-dimensional system of
N overdamped active Brownian discs, interacting via soft
steric interactions. One particle is held fixed at the ori-
gin. The N mobile particles aim to swim toward it with
a constant speed v0. As shown in Fig. 1a, they cannot
react instantaneously to the detected target position, but
only after a certain delay time δt. Since the particles keep
moving during this time, the resulting retarded attraction
to the central target acquires important aiming errors.

We fix length and time scales by setting the particle
diameter and the swim speed to unity. The dimensionless
position vector ri of the ith Brownian particle obeys the
Langevin equation

ṙi(t) = Fi(t)+k
∑

j ̸=i

rij(t)Θ [1− |rij(t)|]+
√
2Dηi(t) , (1)

where Fi(t) = −ri(t − δt)/|ri(t − δt)| are the intended
(or nominal) velocities of the individual particles, and t
is the dimensionless time. The soft steric repulsion has
a strength of given by the dimensionless stiffness k and
a range cutoff at |rij(t)| = 1, imposed by the Heaviside
Θ function. The diffusivity D controls the intensity of
mutually independent Gaussian white noise vectors ηi,
i = 1, . . . , N , with zero mean, ⟨ηi(t)⟩ = 0, and covari-
ance ⟨[ηi(t)]x[ηj(t

′)]y⟩ = δijδxyδ(t− t′).
We studied the model for particle numbers N =

15 . . . 1000 that are neither analytically tractable nor cur-
rently realizable in experiments. The dynamical equations
are solved by Brownian dynamics simulations with time
step dt = 0.001, k = 101.4, and D = 0.0136. These
parameters are motivated by typical experimental con-
ditions in aqueous solvents at room temperature, if one
identifies the particle diameter with 2.19 × 10−6 m and
the propulsion speed with 2.16×10−6 m/s [1]. We initial-
ized the particles randomly around the origin, let them
diffuse for a time t = δt, and simulated long enough
such that the system relaxed to a steady state (see the
supplementary videos SM). Afterward, we continued the
simulation and collected the data. Varying k and D
in the dynamical equations (1) within an experimentally
reasonable range does not change the qualitative results.
Hence, the relevant control parameters are the time de-

1

1

r(t ° ±t)
r(t)

Target
Particle

Active
Particle

µ(t) µ(t)

F(t) = ° r(t°±t)
|r(t°±t)|

Fig. 1: Active Brownian particles (blue), swimming at
constant speed, aim at a central target (red) with a
perception-reaction delay δt. a) That the actual swim di-
rection at time t is determined by position r(t− δt) at the
earlier time t− δt, gives rise to aiming errors and ensuing
dynamical phases. b) The bifurcation diagram shows the
average angular displacement ωδt per delay time δt. Upon
increasing delay, the isotropic static phase (I) gives way to
radially symmetric chiral phases (II-IV). For the yin-yang
and blob phases (V and VI), ωδt ≈ π/2. The colors code
for various particle numbers N = 30 . . . 1000. The dia-
gram obtained for athermal motion (diffusivity D = 0)
remains unchanged for an experimentally realistic noise
intensity (D = 0.0136). c) Close-packed crystallites of
N ≳ 30 particles have radius ρ =

√
(N + 1)/3.62 in units

of the (soft-)particle diameter.

lay δt and particle number N , or the corresponding radius
ρ(N) =

√
(N + 1)/3.62 of a close packed hexagonal crys-

tallite (see Fig. 1c).

Bifurcation. – As shown in Ref. [1], for N = 1, the
average angular velocity ω of the single active Brownian
particle around the fixed target is determined by a tran-
scendental self-consistency equation. If the active-particle
and target diameters are set to unity, it takes the form
of the “sine map” ω = sin(ωδt). It exhibits a bifurcation
from ω = 0 to ω ̸= 0 at δt = 1 (or, in the dimensional units
of Ref. [1], v0δt = 2a). For 1 < δt < π/2, the single active
Brownian particle “slides” around the target, and thus its
dimensionless orbit radius is close to 1. When δt > π/2,
swimmer and target particle lose touch and the circular or-
bit “takes off”. Its radius R = 2δt/π is now determined by
the condition that the angular displacement of the particle
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1

Fig. 2: Dynamic phase diagram. Like the preferred single-
particle orbit R, the (binned) crystallite radius ρ grows
with increasing delay time δt. We distinguish phases with
a (I) static, (II) spinning, and (III) quaking crystallite, and
a (IV) ring, (V) yin-yang/blobs, and (VI) satellite, respec-
tively. Notice the appearance of predominantly concentric
(III), radial (IV) and criss-crossing (V-VI) shear bands
that intermittently break the crystallite, giving rise to a
staircase-like increase of the shear strain Γ(t) (3rd row of
Fig. 3), for all but the first two phases.

per one delay time, ωδt, is π/2. In other words, for large
delay times, the particle always propels tangentially (at a
right angle) to the target, corresponding to a self-selected
circular orbit.

Though not accessible experimentally, Ref [1] already
demonstrated by Brownian dynamics simulations that the
single-particle bifurcation diagram stays meaningful for
many particles up to N = 100. The increased parti-
cle number actually stabilizes the spontaneously chosen
sense of rotation against Brownian fluctuations, render-
ing the transient chiral symmetry breaking quasi perma-
nent. More importantly, the increase in particle number
merely renormalizes the bifurcation diagram. As shown
in Fig. 2b, the average angular particle displacement ωδt
around the fixed target particle for N ranging from 30
to 1000 indeed falls on a single master curve, if plot-
ted against δt/(0.75ρ), corresponding to the renormalized
sine map 0.75ρω = sin(ωδt). The bifurcation curve co-
incides with that of a single large quasi-particle of radius
(0.75ρ − 0.5), rotating around the target particle of ra-
dius 0.5. In other words, the minimum radius for active
rotation (originally given by the particle diameter) equals
0.75ρ, in the many-body case. One can speculate that the
effective radius 0.75ρ could coincide with the crystallite’s

radius of gyration
∫ ρ

0
dx 2πx2/(πρ2) ≈ 0.67ρ. This is in-

deed not far off, although the data is more suggestive of
a matching of the radius R = 2δt/π of the optimal single-
particle orbit with ρ/2. This could suggest that spinning
starts when the preferred nominal velocity components of
the particles inside and outside the optimal orbit cancel
out. The difficulty with such interpretation is that the
actually measured nominal velocity field created by the
highly frustrated active particles in the bulk of a solid
crystallite is, for the relevant delays, still purely central.

As shown in Fig. 2 for particle numbers N = 15 . . . 200,
when the delay time δt is increased, the particle ensemble
experiences a series of abrupt dynamical changes, thereby
evolving from a static hexagonal crystallite to a contin-
uously breaking elliptic satellite droplet, circling around
the target on an orbit close to that preferred by a single
active particle. Intriguingly, the average angular velocity
in all these phases obeys the effective single-particle the-
ory well. In fact, the single-particle theory can be used as
a starting point for understanding most of the features of
the various dynamical phases of the many-body model.

Order parameters. – To distinguish between the six
dynamical phases in Fig. 2, we introduce the following
three order parameters.

• the radial distribution p(r) (the probability density
to find an active particle at distance r from the targeted
center), normalized as 2π

∫∞
0

dr rp(r) = 1.
• the (absolute) angular velocity ω(r) of concentric

shells of width 0.14, given by r2ω ≡ |⟨ri × ṙi⟩||ri|≈r .

• the cumulative shear strain Γ(t) =
∫ t

0
dt′|Γ̇(t′)| around

a representative bulk particle at time t. Formally, the
shear rate is defined as Γ̇ = (∂vx/∂y + ∂vy/∂x)/2, where
vx,y denote Cartesian components of the velocity field. As
a proxy for our particulate system, we use

Γ̇(t) =
1

2

∑

j

(
ẋi(t)− ẏj(t)

yi(t)− yj(t)
+

ẏi(t)− ẏj(t)

xi(t)− xj(t)

)
(2)

The sum runs over nearest-neighbor shell particles j that
are less than

√
2 away from a selected bulk particle i. To

obtain the time derivatives of the components xi(t) and
yi(t) of the position vector ri(t), we average Eq. (1) over
200 simulation time steps. Spurious coordinate singulari-
ties are regularized by discarding terms with denominators
smaller than 0.05.

Dynamical phases. – As shown in Fig. 3, each of
the dynamical phases differs from the other five in the
qualitative behavior of at least one of the characteristics
p(r), ω(r), and Γ(t). The figure also shows the average
radial and tangential projections of the nominal velocities
(or “forces”) Fi−Ṙ0 of particles in the co-moving frame at

a given distance from the center of mass R0 =
∑N

i=1 ri/N
of the system. The average radial projection Fr(r) ≡
⟨(Fi − Ṙ0) · (ri −R0)/r⟩|ri−R0|≈r can be interpreted as a
“shell pressure”. In the depicted average tangential com-
ponent Fϕ(r) ≡ |⟨(Fi−Ṙ0)× (ri−R0)/r⟩||ri−R0|≈r−|ω|r
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Fig. 3: Crystallite configurations and their shell angular velocities ω(r) and the accumulated shear strains Γ(t) for
selected bulk particles (green and orange), as caused by the radial and tangential “forces” or nominal swim velocities
Fr, Fϕ in the co-moving, co-spinning frame. The corresponding force fields are shown in SM Fig. S1. The dynamical
phases I to VI of Fig. 2 were simulated for vanishing thermal noise D = 0 and N = 199 particles (corresponding to
ρ ≈ 7.43 if close-packed). Vertical dashed lines in the radial distribution functions p(r) indicate the preferred single
particle orbit radius R = 2δt/π.

we also subtracted the part responsible for the crystal-
lite’s overall solid body rotation to improve the visibility of
what can then be interpreted as a tangential shear stress.
While the compression of the cluster by Fr mostly helps to
maintain its crystalline structure, the tangential stress Fϕ

imposes unequal torques on the concentric particle shells,
thereby inducing the tangential shear bands and breakup
events seen in the phases III-VI. It is noteworthy that,
due to the normalization of the nominal velocities |Fi| = 1,
these two competing tendencies are not independent in our
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system. Upon increasing the delay time δt, the nominal
velocities increasingly tilt away from the central direction,
meaning that the pressure decreases while the shear in-
creases, at the same time, aggravating the destabilization.
Also, for the non compact crystallites forming for longer
delays, the radial forces themselves may cause radial shear
bands and additionally contribute to the breaking of the
crystalline configuration.

In the following, we characterize the individual dynami-
cal phases in greater detail. The best intuitive insight into
their dynamic nature is gathered from the corresponding
videos in the supplementary material (SM).

(I) Static crystallite: δt ≲ 0.75ρ. For short delays δt,
the active Brownian particles are propelled exactly toward
the target by their nominal velocities, as shown in last two
lines of Figs. 3 and S1. Due to the steric repulsion, they
form a non-rotating densely packed hexagonal crystallite
(with small Brownian fluctuations). Its radial distribution
function p(r) resembles that of close-packed hard discs,
while the dynamical order parameters ω and Γ̇ vanish.

(II) Spinning crystallite: 0.75ρ < δt ≲ 0.94ρ. Upon
increasing the delay time δt beyond the threshold 0.75ρ,
the crystallite exhibits solid body rotation around the tar-
get particle. The order parameters thus remain the same
as in phase I, with the exception that ω(r) = ω is given
by a nonzero constant that is accurately predicted by the
single-particle theory. However, as the particles’ propul-
sion speed is fixed to 1, the particles closer to the target
would individually prefer to move with larger angular ve-
locities than those further away, while a constant ω(r) is
enforced by the steric interactions and the radial pressure
exerted by the particles in the periphery, which still pre-
dominantly aim at the center. These features are nicely
reflected in the radial and tangential projections of the
nominal velocity in Fig. 3 and the nominal velocity field
in Fig. S1 of the SM. Notice that the nominal tangen-
tial velocities of particles near the target/periphery are
larger/smaller than ωr, which induces the tangential shear
stresses that attempt to break up the crystallite.

(III) Quaking crystallite: 0.94ρ ≲ δt ≲ 1.05ρ. The
tangential shear stresses caused by inhomogeneous an-
gular velocity ω(r) grow with increasing time delay. At
δt ≈ 0.94ρ they overcome the compressive forces and cre-
ate shear bands. As shown in Fig. 3, the inner particles
rotate (almost) at the optimal single-particle angular ve-
locity π/(2δt). The periphery lags behind, intermittently
detaching and sliding around the rotating core (see the
snapshots of the system in Figs. 3 and 4, and SM video
2). These stick-slip events cause a staircase-like increase of
the shear strain Γ(t) (not observed around bulk particles
that are not part of a shear band), and can be interpreted
as quakes of the outer shell.

The last two rows of Fig. 3 and Fig. S1 of the SM more-
over indicate that the nominal velocities of particles along
radial rays from the center are no longer parallel. Closer
to the center they have larger tangential components than

Fig. 4: Snapshot of the SM video S3 (δt = 7.1, N = 199,
phase III). Particle color codes for the number of nearest
neighbors (from 2 to 6: steel blue, sky blue, aquamarine,
orange and yellow). Red dots mark shear bands. The
arrows show the actual velocities of the particles in the
co-moving, co-rotating frame. The black triangle depicts
the system’s center of mass, which here overlaps with the
central target particle. The meanings of the symbols in
all videos of the SM are the same.

at the periphery, creating a pressure imbalance in the sys-
tem. One can interpret this as a result of the tendency of
the particles to propel toward the optimal single-particle
orbit, which expands with increasing δt, as indicated in the
p(r) panels. Upon increasing the delay somewhat beyond
the value δt ≈ 0.94ρ, for which the tangential shear bands
appear (e.g., from δt = 7 to δt = 7.1 for N = 200), the cor-
responding pressure imbalance eventually also causes the
formation of system-spanning radial shear bands. Once a
single radial band is formed, it destabilizes the next neigh-
bor shell around the immobile target particle, which nu-
cleates two more bands by the dilatancy effect, as shown
in Fig. 4. The angles between the three bands are 2π/3,
corresponding to three equally sized fragments. Along the
shear bands, particles slide in opposite directions (see the
videos in the SM).

(IV) Ring: 1.05ρ ≲ δt ≲ 1.20ρ. The single particle
theory predicts that the outermost layer of the crystal-
lite would start to rotate by itself (i.e., even if the rest of
the crystallite was fixed), at δt = ρ. Some of the pressure
onto the crystalline core is thereupon released, which facil-
itates its “breathing” due to the dilatancy effect. The core
particles can then follow more freely their tendency to ap-
proach the optimim single particle orbit, thereby creating
an outward pressure (Fig. S1). As a result, the crytal-
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lite detaches from the central target particle and forms a
ring, in which particles inside and outside the optimal or-
bit converge toward it. The crystalline structure is then no
longer compressed only from the outside but also from the
inside. The corresponding stresses increase the frequency
of quakes and tangential and radial shear-band formation
throughout the ring, as witnessed by Γ(t) (Fig. 3). The
associated repeated breaking and healing effectively melts
the crystalline structure as is reflected in the monotonic
decay of the angular velocity ω(r) with increasing distance
r from the target and the loss of structure in the radial dis-
tribution function. Both effects are somewhat moderated
within the fragments forming after the permanent breakup
of the ring into the yin-yang shape, described next.

(V) Yin-yang/blobs: 1.2ρ ≲ δt ≲ 2.1ρ. The effective
contractile force due to the inward-outward pressures de-
scribed above for the ring structure destabilize the ring
in a manner similar to the capillary forces in a Plateau-
Rayleigh instability [23]. It therefore tends to break up
into 2πl/2l = π ≈ 3 equally sized fragments, where 2l is
the ring width. Due to the (essentially) athermal condi-
tions, the exact features of the breakup depend on initial
conditions, as seen in videos 8-10 of the SM. The con-
tractile forces towards the optimal orbit also causes larger
clusters to orbit more slowly than smaller ones. They
contain particles further away from the optimal radius,
pointing less along the orbital direction. This slows down
larger fragments compared to smaller ones, so that smaller
fragments will chase the larger ones, thereby giving rise to
some coarsening.

One might therefore conclude that the many-body sys-
tem would ultimately form a giant quasi-particle, centered
on the optimal orbit. However, as long as the radius of the
closely packed crystallite ρ is larger than the optimal or-
bit radius R = 2δt/π, such quasi-particle would constantly
be damaged by the fixed target particle and therefore ac-
tually cannot form. As a result, coarsening is interrupted
and the system instead forms a highly dynamical yin-yang
structure where the yin part continuously “steals” parti-
cles from the yang part, and vice-versa. For larger delays,
the yin (or the yang) component outgrows its partner un-
til it hits the target particle. The steady state ultimately
consists of a single cluster in contact with the target par-
ticle, surrounded by several sub-clusters traveling close to
the optimal single-particle orbit. Also note that, due to
their fixed speed, the particles in the fragments move with
larger angular velocities the closer they are to the center
(Fig. 3). Together with their tendency to propel towards
the optimal orbit, this causes a retrograde spinning of the
fragments around their own centers of mass. With respect
to the order parameters depicted in Fig. 3, the yin-yang
phase exhibits the same phenomenology as the ring phase.

To quantify the phase boundaries, we again resort to the
bifurcation diagram in Fig. 1. It shows that the average
angular displacement during one delay time, ωδt, mono-
tonically increases with δt up to δt = 0.75ρπ/2 ≈ 1.18ρ,

when it saturates at the value ωδt = π/2. This is when
a single active particle would detach from the fixed target
particle, as its optimal orbit of radius R takes off. This
suggests that the tendency to break the ring and form a
single eccentric crystallite, centered on the optimal orbit,
would start at δt > 1.18ρ, which is indeed close to the ob-
served value 1.2ρ, and would eventually succeed once the
optimal orbit radius R exceeds ρ. At this point a spherical
crystallite would no longer interfere with fixed target par-
ticle at the center. Why this estimate fails to provide the
correct condition for the transition to the last dynamical
phase is explained in the next paragraph.

(VI) Satellite: δt ≳ 2.1ρ. As pointed out in the pre-
ceding paragraph, one would expect to find a single com-
pact satellite orbiting the target particle (roughly) on the
optimal single-particle orbit, when R ≈ ρ, hence δ = πρ/2,
which is actually not the case. The discrepancy is caused
by the fact that the satellite is actually not circular but
somewhat elongated along an axis that is slightly tilted
relative to the radial direction. The reason is that the
pressure exerted by the individual particles is no longer
radially symmetric (see Fig. S1).
The stick-slip motion of particles along the shear bands

in this phase is somewhat reminiscent of an extreme ver-
sion of the terrestrial tides caused by the motion of the
Moon around Earth. The major difference is that the tidal
forces correspond to an attraction rather than a repulsion
relative to the satellite center. As a result, the quake dy-
namics is approximately out of phase by π/2, with respect
to the Moon-Earth system (see video S5). Moreover, the
attraction does not act toward the satellite center but to-
ward the optimal single-particle orbit. And finally, the
elongation of the crystallite is not perfectly aligned with
the direction to the center, giving rise to another phase
shift that depends on the precise model parameters.
Concerning the order parameters depicted in Fig. 3,

the satellite phase again exhibits almost the same phe-
nomenology as the ring state. The only difference is the
radial distribution of particles, which is now much broader
than in the other five phases. This is indicative of the de-
structive effect of the tidal quakes, which dynamically melt
the crystallite into an effectively liquid droplet.

Discussion and conclusions. – We have numeri-
cally studied a two-dimensional ensemble of soft active
Brownian particles steered toward a target particle with
a time delay. The particles form a closely packed hexago-
nal crystallite around the target for small delay times and
experimentally relevant noise intensities. However, with
increasing delay, a much richer behavior is observed. The
average angular velocity around the target exhibits a bi-
furcation, which can be mapped to the one found recently
for a single active particle [1]. An interesting “plastic”
deformation of the hexagonal crystalline structure ensues.
The tangential and radial shear stresses grow with time
delay, eventually creating shear bands and breaking the
crystallite. Its overall shape changes with increasing delay

p-6



Active particles with delayed attractions form quaking crystallites

from a disc over a ring around the target to a yin-yang
and eventually an elongated retrograde spinning satellite
orbiting the target.

Our study demonstrates that simple time-delayed inter-
actions can induce very complex dynamical behaviors in
many body systems, even in the case of delayed attractions
to a common fixed target. As time delays are omnipresent
in interacting active matter systems in nature, this ob-
servation should be taken into account when interpreting
experimental data. To this end, it would be interesting
to realize the studied many-body system experimentally.
In this case, hydrodynamic interactions between the active
particles would play an important role and potentially give
rise to somewhat different results as obtained above, for
the idealized active Brownian particle system. Our essen-
tially athermal dynamics might thereupon become more
ergodic and fluid-like [21,22,24].

Our results could be extended in several other direc-
tions. First, one may consider attraction to a fixed posi-
tion in space rather than to a fixed target particle. Our
preliminary results with this setup reveal two major dif-
ferences. Firstly, the minimum radius of rotation is deter-
mined by the noise, not by the particle diameters. Sec-
ondly, omitting the target particle increases the accessi-
ble state space. For example, the dynamics in the yin-
yang/blobs phase (V) becomes much richer without the
central particle, allowing for the appearance of a state
with an almost deterministic periodically switching chi-
rality. Of more practical interest might be the extension
of our setup to an all-to-all attraction between the parti-
cles. Our preliminary results show that the phenomenol-
ogy essentially remains unchanged, for short delay times.
Differences appear for longer delays, where the emerging
patterns are more symmetric compared to what we found
above, and would deserve further study.
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Abstract

The supplementary information contains a figure showing the nominal velocity field for the individual dynamical
phases and the description of the supplementary videos 1-10.

1 Nominal velocity fields

In the first row of Fig. S1, we show the individual particles’ nominal velocities Fi in the lab frame. The second
row of the figure depicts projections of Fi in the comoving, corotating frame to the radial direction from the
system’s center of mass:

Fi
r = (Fi − Ṙ0) ·

ri −R0

|ri −R0|
, (1)

where R0 =
∑N

i=1 ri/N . The third row of Fig. S1 presents the tangential projections corresponding to the
radial ones in the second row minus the average rotation of the system. They were calculated as

Fi
ϕ = Fi

∥ − ω|ri −R0|
Fi
∥

|Fi
∥|
, (2)

where Fi
∥ = (Fi − Ṙ0)− Fi

r.
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2 Supplementary videos

The particle colors in the videos code for the number of their nearest neighbors (from 0 to 6: deep blue, purple,
steel blue, sky blue, aquamarine, orange, and yellow). The shear bands are marked with red dots. The arrows
indicate the actual velocities of the particles in the co-moving, co-rotating frame. The black triangle depicts
the center of mass of the system.
To make the shear bands better visible, videos 1-6 and 8-9 were made with zero noise (D = 0). Videos 7 and
10 show that nonzero noise (D = 0.0136) makes the dynamics of the system more erratic without changing its
qualitative features. Videos 1-7 were recorded after the system reached a steady state. Videos 8-10 show the
whole time evolution of the system from the initial condition. In all the videos, we show N = 199 particles,
corresponding to ρ ≈ 7.43. Except for the last three videos, all videos are sped up 3 times.

1. δt = 5.9, phase II: the spinning crystallite (D = 0).

2. δt = 7, phase III: the quaking crystallite with tangential shear bands (D = 0).

3. δt = 7.1, phase III: the quaking crystallite with tangential and radial shear bands (D = 0).

4. δt = 7.9, phase IV: the ring (D = 0).

5. δt = 8.9, phase V: the yin-yang/blobs (D = 0).

6. δt = 16.8, phase VI: the satellite (D = 0).

7. δt = 8.9, phase V: the yin-yang/blobs (D = 0.0136).

8. δt = 8.9, phase V: the yin-yang/blobs. Typical relaxation trajectory to the yin-yang phase from a random
initial condition with D = 0. The video is sped up 30 times.

9. δt = 8.9, phase V: the yin-yang/blobs. Another possible relaxation path to the yin-yang phase from a
random initial condition with D = 0. The video is sped up 30 times.

10. δt = 8.9, phase V: the yin-yang/blobs. Typical relaxation path to the yin-yang phase from a random
initial condition with nonzero noise intensity D = 0.0136. The video is sped up 30 times.
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A R T I F I C I A L  I N T E L L I G E N C E

Reinforcement learning with artificial microswimmers
S. Muiños-Landin1,2, A. Fischer1, V. Holubec3,4, F. Cichos1*

Artificial microswimmers that can replicate the complex behavior of active matter are often designed to mimic the 
self-propulsion of microscopic living organisms. However, compared with their living counterparts, artificial 
microswimmers have a limited ability to adapt to environmental signals or to retain a physical memory to yield 
optimized emergent behavior. Different from macroscopic living systems and robots, both microscopic living 
organisms and artificial microswimmers are subject to Brownian motion, which randomizes their position and 
propulsion direction. Here, we combine real-world artificial active particles with machine learning algorithms to 
explore their adaptive behavior in a noisy environment with reinforcement learning. We use a real-time control of 
self-thermophoretic active particles to demonstrate the solution of a simple standard navigation problem under 
the inevitable influence of Brownian motion at these length scales. We show that, with external control, collective 
learning is possible. Concerning the learning under noise, we find that noise decreases the learning speed, modi-
fies the optimal behavior, and also increases the strength of the decisions made. As a consequence of time delay 
in the feedback loop controlling the particles, an optimum velocity, reminiscent of optimal run-and-tumble times 
of bacteria, is found for the system, which is conjectured to be a universal property of systems exhibiting delayed 
response in a noisy environment.

INTRODUCTION
Living organisms adapt their behavior according to their environ-
ment to achieve a particular goal. Information about the state of the 
environment is sensed, processed, and encoded in biochemical pro-
cesses in the organism to provide appropriate actions or properties. 
These learning or adaptive processes occur within the lifetime of a 
generation, over multiple generations, or over evolutionarily rele-
vant time scales. They lead to specific behaviors of individuals and 
collectives. Swarms of fish or flocks of birds have developed collec-
tive strategies adapted to the existence of predators (1), and collec-
tive hunting may represent a more efficient foraging tactic (2). Birds 
learn how to use convective air flows (3). Sperm have evolved com-
plex swimming patterns to explore chemical gradients in chemo-
taxis (4), and bacteria express specific shapes to follow gravity (5).

Inspired by these optimization processes, learning strategies that 
reduce the complexity of the physical and chemical processes in living 
matter to a mathematical procedure have been developed (6). Many 
of these learning strategies have been implemented into robotic sys-
tems (7–9). One particular framework is reinforcement learning 
(RL), in which an agent gains experience by interacting with its envi-
ronment (10). The value of this experience relates to rewards (or 
penalties) connected to the states that the agent can occupy. The 
learning process then maximizes the cumulative reward for a chain 
of actions to obtain the so-called policy. This policy advises the 
agent which action to take. Recent computational studies, for exam-
ple, reveal that RL can provide optimal strategies for the navigation 
of active particles through flows (11–13), the swarming of robots 
(14–16), the soaring of birds (3), or the development of collective 
motion (17). The ability of how fish can harness the vortices in the 

flow field of others for energy-efficient swimming has been explored 
(18). Strategies of how to optimally steer active particles in a poten-
tial energy landscape (19) have been explored in simulations, and 
deep Q-learning approaches have been suggested to navigate colloi-
dal robots in an unknown environment (20).

Artificial microswimmers are a class of active materials that in-
tegrate the fundamental functionality of persistent directed motion, 
common to their biological counterparts, into a user-designed mi-
croscopic object (21). Their motility has already revealed insights 
into a number of fundamental processes, including collective phe-
nomena (22–24), and they are explored for drug delivery (25) and 
environmental purposes (26). However, the integration of energy 
supply, sensing, signal processing, memory, and propulsion into a 
micrometer-sized artificial swimmer remains a technological chal-
lenge (27). Hence, external control strategies have been applied to 
introduce sensing and signal processing, yet only schemes with rig-
id rules simulating specific behaviors have been developed (28–31). 
Combining elements of machine learning and real-world artificial 
microswimmers would considerably extend the current computa-
tional studies into real-world applications for the future develop-
ment of smart artificial microswimmers (32).

Here, we incorporate algorithms of RL with external control 
strategies into the motion of artificial microswimmers in an aque-
ous solution. While the learning algorithm is running on a comput-
er, we control a real agent acting in a real world subjected to thermal 
fluctuations, hydrodynamic and steric interactions, and many other 
influences. In this way, it is possible to include real-world objects in 
a simulation, which will help to close the so-called reality gap, i.e., 
the difference of pure in silico learning and real-world machine 
learning even at microscopic length scales (27). Our experimental 
investigation thus goes beyond previous purely computational studies 
(3, 11–13, 20). It allows us to observe the whole learning process opti-
mizing parameters, which are not accessible in studies of biological 
species, to identify the most important ingredients of the real dynamics 
and to set up more realistic, but still simple, models based on this 
information. It also provides a glimpse of the challenges of RL for 
objects at those length scales for future developments.

1Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, 
Universität Leipzig, 04103 Leipzig, Germany. 2AIMEN Technology Centre, Smart 
Systems and Smart Manufacturing–Artificial Intelligence and Data Analytics Labo-
ratory, PI. Cataboi, 36418 Pontevedra, Spain. 3Institute for Theoretical Physics, Uni-
versität Leipzig, 04103 Leipzig, Germany. 4Department of Macromolecular Physics, 
Faculty of Mathematics and Physics, Charles University, 18000 Prague, Czech Re-
public.
*Corresponding author. Email: cichos@physik.uni-leipzig.de
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RESULTS
Self-thermophoretic microswimmer
To couple machine learning with microswimmers, we used a light- 
controlled self-thermophoretic microswimmer with surface-attached 
gold nanoparticles (Fig. 1A and see the Supplementary Materials). 
For self-propulsion, the swimmer has to break the time symmetry 
of low Reynolds number hydrodynamics (33). This is achieved by 
an asymmetric illumination of the particle with laser light of 532‐nm 
wavelength. It is absorbed by the gold nanoparticles and generates a 
temperature gradient along their surface, inducing thermo-osmotic 
surface flows and lastly resulting in a self-propulsion of the micro-
swimmer suspended in water. The direction of propulsion is set by 
the vector pointing from the laser position to the center of the par-
ticle. The asymmetric illumination is maintained during the particle 
motion by following the swimmer’s position in real time and steer-
ing the heating laser (see the Methods section below). As compared 
with other types of swimmers (28, 34, 35), this symmetric swimmer 
removes the time scale of rotational diffusion from the swimmer’s 
motion and provides an enhanced steering accuracy (36, 37) (see 
the Supplementary Materials).

Gridworld
To show RL with a real-world microscopic agent, we refer to the 
standard problem of RL, the gridworld. The gridworld problem al-
lows us to have an experimental demonstration while being able to 
access the problem numerically. We coarse grain a sample region of 
30 m by 30 m into a gridworld of 25 states (s, 5 × 5), each state 

having a dimension of 6 m by 6 m (Fig. 1B). One of the states is 
defined as the target state (goal), which the swimmer is learning to 
reach. The gridworld is surrounded by 24 boundary states accord-
ing to Fig. 1B. The obtained real-time swimmer position is used to 
identify the state s in which the swimmer currently resides. To move 
between states, we define eight actions a. The actions are carried out 
by placing the heating laser at the corresponding position on the 
circumference of the particle (see Fig. 1C). A sequence of actions 
defines an episode in the gridworld, which ends when the swimmer 
either leaves the gridworld to a boundary state or reaches the target 
state. During an episode, rewards or penalties are given. Specifical-
ly, the microswimmer gets a reward once it reaches the target state 
and a penalty in other cases (see the Supplementary Materials for 
details on the reward definitions). The reward function R thus only 
depends on the state s, i.e., R = R(s).

RL implementation
We have implemented the model-free Q-learning algorithm to find 
the optimal policy that solves the navigation problem (38). The 
gained experience of the agent is stored in the Q-matrix (10), which 
tracks the utilities of the different actions a in each state s. When the 
swimmer transitions between two states s and s′ (see the Supple-
mentary Materials for details on the choice of the next state), the 
Q-matrix is updated according to

   Q  t+t  (s, a ) =  Q  t  (s, a ) +  [ R( s ′   ) +   max  
 a ′       Q  t  ( s ′  ,  a ′   ) −  Q  t  (s, a ) ]  (1)

4) update Q-matrix

Active Particle Motion Action DefinitionsGridworld & Reward Definitions

propulsion
direction

Reinforcement Learning Loop

A B

heating laser
position

AuNP decorated
melamine particle

state

ac
tio

n

statestate

trajectory

transition

rewardstate
action

3) make transition2) determine action

R=-100 or 0 R=-1 R=5

1) determine state

D

C

Fig. 1. Gold nanoparticle–decorated microswimmer, states, and actions. (A) Sketch of the self-thermophoretic symmetric microswimmer. The particles used have an 
average radius of r = 1.09 µm and were covered on 30% of their surface with gold nanoparticles of about 10 nm diameter. A heating laser illuminates the colloid asymmet-
rically (at a distance d from the center), and the swimmer acquires a well-defined thermophoretic velocity v. (B) The gridworld contains 25 inner states (blue) with one 
goal at the top right corner (green). A set of 24 boundary states (red) is defined for the study of the noise influence. (C) In each of the states, we consider eight possible 
actions in which the particle is thermophoretically propelled along the indicated directions by positioning the laser focus accordingly. (D) The RL loop starts with measur-
ing the position of the active particle and determining the state. For this state, a specific action is determined with the ϵ greedy procedure (see the Supplementary Mate-
rials for details). Afterward, a transition is made, the new state is determined, and a reward for the transition is given. On the basis of this reward, the Q-matrix is updated, 
and the procedure starts from step 1 until an episode ends by reaching the goal or exiting the gridworld to a boundary state.
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taking into account the reward R(s′) of the next state, the utility of 
the next state Qt(s′, a′) after taking the best action a′, and the cur-
rent utility Qt(s, a). The influence of these values is controlled by 
two factors, the learning rate  and the discount factor . The learn-
ing rate defines the fraction at which new information is incorpo-
rated into the Q-matrix, and the discount factor determines the 
value of future events into the learning process. The reward func-
tion is the only feedback signal that the system receives to figure out 
what it should learn. The result of this RL procedure is the optimal 
policy function *(s) → a, which represents the learned knowledge 
of the system, *(s) = argmaxaQ(s, a),  Q(s, a ) =   lim  

t→∞
    Q  t  (s, a) . Figure 1D 

highlights the experimental procedure of actuating the swimmer 
and updating the Q-matrix. As compared with computer models solv-
ing the gridworld with deterministic agents, there are four important 
differences to note. (i) The swimmer can occupy all positions within 
each state of  6 µm by 6 µm  size. It can be arbitrarily close to the 
boundary. (ii) The swimmer moves in several steps through each state 
before making a transition. A swimmer velocity of  v = 3 m  s   −1   
leads to a displacement of about  6 m  within  2 s , corresponding to 
about 11 frames at an inverse frame rate    t  exp   = 180 ms  until a 

transition to the next state is made. (iii) The new state after a transi-
tion does not have to be the state that was targeted by the actions. 
The microswimmers are subject to Brownian motion with a mea-
sured diffusion coefficient of  D = 0.1   µm   2    s   −1  . The trajectory is 
therefore partially nondeterministic. With this respect, the system 
we consider captures a very important feature of active matter on 
small length scales that is inherent to all microscopic biological sys-
tems, where active processes have been optimized to yield robust 
functions in a noisy background. (iv) Due to a time delay in the 
feedback loop controlling the active particles, the action applied to 
the swimmer is not determined from its present position but from 
its position in the past, which is a common feature for all living and 
nonliving responsive systems.

Learning process
Figure 2 summarizes the learning process of our microswimmer 
for boundary states with R = 0 and a velocity of v∥ = 3.0 µm s−1, v∥ = 
〈r ⋅ e‖ 〉/texp where 〈r · e∥〉 is the mean projected displacement of 
the swimmer along the direction of the action e∥. Over the course of 
more than 5000 transitions (more than 400 episodes, about 7 hours 

A B

C

D Einitial policy initial Q matrix final Q matrixfinal policy

Fig. 2. Single microswimmer learning. (A) Learning progress for a single microswimmer in a gridworld at a velocity of v∥ = 3.0 µm s−1. The progress is quantified by the 
sum of all Q-matrix elements at each transition of the learning process. The Q-matrix was initialized randomly. The shaded regions denote a set of 25 episodes in the 
learning process, where the starting point is randomly chosen. (B) Mean number of steps required to reach the target when starting at the lower left corner as the number 
of the learning episodes increases. (C) Different examples of the behavior of a single microswimmer at different stages of the learning process. The first example corre-
sponds to a swimmer starting at the beginning of the learning process at an arbitrary position in the gridworld. The trajectory is characterized by a large number of loops. 
With an increasing number of learning episodes, the trajectories become more persistent in their motion toward the goal. This is also reflected by the decreasing average 
number of steps taken to reach the goal [see (B)]. The inset in the rightmost graph reveals trajectories from different starting positions. (D) Policies (s) = argmaxaQt(s, a) 
defined by the Q-matrix before (Qt(s, a) = Q0(s, a)) and after (Qt(s, a) = Q(s, a)) the convergence of the learning process. (E) Color representation of the initial and the final 
Q-matrix for the learning process. The small squares in each state represent the utility of the corresponding action (same order as in Fig. 1C) given by its Q-matrix entry, 
except for the central square. Darker colors show smaller utility, and brighter colors show a better utility of the corresponding action.
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of experiment), the sum of all Q-matrix entries converges (Fig. 2A). 
During this time, the mean number of transitions to reach the goal 
state decreases from about 600 transitions to less than 100 transi-
tions (Fig. 2B). Accordingly, the trajectories of the swimmer be-
come more deterministic, and the swimmer reaches the goal state 
independent of the initial state (Fig. 2C and inset). As a result of the 
learning process, the initial random policy is changing into a policy 
driving the swimmer toward the goal state. In this respect, the final 
policy provides an effective drift field with an absorbing boundary 
at the goal state (Fig. 2D). During this process, which correlates the 
actions of neighboring cells, the average projected velocity v∥ caus-
ing the drift toward the goal also increases. Although the obtained 
policy is reflecting the best actions only, the Q-matrix shown in 
Fig. 2E provides the cumulative information that the swimmer ob-
tained on the environment. It delivers, for example, also informa-
tion on how much better the best action in a state has been as 
compared with the other possible actions. The representation in 
Fig. 2E encodes the Q-matrix value in the brightness of eight squares 
at the boundary of each state (center square has no meaning). 
Brighter colors thereby denote larger Q-matrix value.

Because our gridworld is overlayed to the real-world sample, we 
may also define arbitrary obstacles by providing penalties in certain 
regions. Figure 3 (A and B) shows examples for trajectories and pol-
icies where the particles have been trained to reach a goal state close 
to a virtual obstacle. Similarly, real-world obstacles can be inserted 
into the sample to prevent the particle from accessing specific re-
gions and thus realizing certain actions. More complex applications 

can involve the emergence of collective behavior, where the motion 
of multiple agents is controlled simultaneously (30). Different levels 
of collective and cooperative learning may be addressed (14, 39). A 
true collective learning is carried out when the swimmer is taking 
an action to maximize the reward of the collective, not only its indi-
vidual one. Swimmers may also learn to act as a collective when 
positive rewards are given if an agent behaves like others in an en-
semble (17). This mimics the process of developing swarming be-
havior implicated, for example, by the Vicsek model (40). Our 
control mechanism is capable of addressing multiple swimmers 
separately such that they may also cooperatively explore the envi-
ronment. Instead of a true collective strategy, we are considering a 
low density of swimmers (number of swimmers ≪ number of states), 
which share the information gathered during the learning process 
by drawing their actions from and updating the same Q-matrix. 
The swimmers are exploring the same gridworld in different spatial 
regions, and thus, a speedup of the learning is expected. Figure 3C 
displays the trajectories of two particles sharing the same Q-matrix, 
which is updated in each learning step. As a result, the learning 
speed is enhanced (Fig. 3D). The proposed particle control therefore 
provides the possibility to explore a collective learning or the opti-
mization of collective behavior and thus delivers an ideal model 
system with real physical interactions.

Influence of thermal fluctuations on the learning process
A notable difference between macroscopic agents, like robots, and 
microscopic active particles is the Brownian motion of microswim-
mers. There is an intrinsic positional noise present in the case of 
active particles, which is also of relevance for small living organisms 
like bacteria, cells, and all active processes on microscopic length 
scales. The advantage of the presented model system, however, is 
that the influence of the strength of the noise can be explored for the 
adaption process and the final behavior, whereas this is difficult to 
achieve in biological systems.

The importance of the noise in Brownian systems is commonly 
measured by the Peclet number, Pe = rv/2D, comparing the product 
of particle radius r and the deterministic particle displacement vt 
to the corresponding square displacements by Brownian motion 
2Dt. To explore the influence of the noise strength, we change the 
speed of the active particle v, whereas the strength of the noise is 
given by the constant diffusion coefficient D. We further introduce 
a penalty in the boundary states R = − 100 to modify the environ-
ment in a way that the influence of noise can introduce quantitative 
consequences for the transitions.

When varying the speed v∥ between 2 and 5 m s−1, we make 
four general observations. (i) Due to time delay in the feedback loop 
controlling the particles, the noise influence depends on the particle 
speed nonmonotonously (Fig. 4E and the Supplementary Materials). 
As a result, we find an optimal particle speed for which the noise is 
least important, as discussed in more detail in the following section. 
For the parameters used in the experiment, the optimal velocity is 
close to the maximum speed available. When increasing the speed 
in the limited interval of the experiment, the importance of the 
noise thus decreases. (ii) The Q-matrix converges considerably faster 
for higher particle speeds corresponding to a lower relative strength 
of the noise. This effect is intuitive because the stronger the noise, 
the lower the correlation between action and desired outcome. 
Figure 4A shows the convergence of the sum of the Q-matrix ele-
ments (summed over all entries for a given transition) for different 

A

C D

B

learning with
2 particles

learning with
1 particles

Fig. 3. Learning with obstacles and shared information. (A) Example trajecto-
ries for a learning process with a virtual obstacle (red square, R = − 100) next to the 
goal state (R = 5) in the center of the gridworld. (B) Example trajectory for an active 
particle that has learned to reach a goal state (R = 5) behind a large virtual obstacle 
(red rectangle, R = − 100). (C) Example trajectories for two particles sharing infor-
mation during the learning process. The same rewards as in Fig. 2 have been used. 
(D) Sum of all Q-matrix elements at each transition comparing the learning speed 
with two particles sharing the information. In all the panels, the active particle 
speed during the learning process has been v∥ = 3.0 µm s−1.
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microswimmer speeds (v∥ = 2.8 µm s−1, v∥ = 4.0 µm s−1, and v∥ = 
5.1 µm s−1). Although the sum reaches 50% after 250 transitions for 
the highest velocity, this requires almost 10 times more transitions 
at about half the speed. (iii) The resulting optimal policy depends 
on the noise strength. In Fig. 4B, we show the policies obtained for 
two different velocities (v∥ = 1.6 µm s−1 and v∥ = 4.6 µm s−1). Differ-
ences in the two policies are, in particular, visible in the states close 
to the boundary. Most of the actions at the top and right edge of the 
low-velocity policy point inward, whereas actions parallel to the 
edge are preferred at the higher velocity (see highlighted regions in 
Fig. 4, B and C). (iv) The contrast between the best action and the 
average of the other actions, which we take as a measure of the deci-
sion strength, is enhanced upon increasing importance of the noise. 
This contrast for a given state sk is measured by

  G( s  k   ) =   1 ─ 


   { Q( s  k  ,  a   b  ) −  〈Q( s  k  ,  a  i   ) 〉  i  }  (2)

where ab denotes the best action for the state and   〈Q( s  k  ,  a  i   ) 〉  i   =  
∑ i=1  8    Q( s  k  ,  a  i   ) / 8 . The result is normalized by a factor  to make the 
largest contrast encoded in the color of the states in Fig. 4B equal to one.

DISCUSSION
Because the environment (gridworld with its rewards) stays con-
stant for all learning processes at different velocities, all our above 
observations for varying particle speed are related to the impor-
tance of the noise strength. According to Bellman’s equation (10)

  Q(s, a ) =  ∑  s ′       P( s ′  ∣s, a ) [R( s ′  ) +  max  
 a ′      Q( s ′  ,  a ′   ) ]  (3)

the influence of the noise on the learning process is encoded in the 
transition probabilities P(s′∣s, a), i.e., the probabilities that an ac-
tion a in the state s leads to a transition to the state s′. This equation 

250 980 2500

C

A B

48%(47%) 48%(47%)
4%(6%)

92%(95%)4%(3%)

Policy

Policy

D

E F

Fig. 4. Influence of Brownian motion on the learning process. (A) Sum of the Q-matrix elements as a function of the total number of transitions during the learning 
process. The different curves were obtained for learning with three different microswimmer speeds. (B) Policy obtained from learning processes at high noise (low veloc-
ity) (1 : v∥ = 1.6 µm s−1) and low noise (high velocity) (2 : v∥ = 4.6 µm s−1). The coloring of the states corresponds to the contrast between the value of the best action and 
the average of all other actions (Eq. 2). (C) Transition probabilities used in Bellman’s Eq. 3 for diagonal and nondiagonal actions as determined from experiments with 500 
trajectories for a velocity of 1.6 and 4.6 µm s−1. The blue lines indicate example experimental trajectories, which yield equivalent results for actions a2, a4, a5, a7 (top) and 
a1, a3, a6, a8 (bottom). The blue dots mark the first point outside the grid cell. The histograms to the right show the percentage arriving in the corresponding neighboring 
states. The numbers below denote the percentages for the two velocities (value in parentheses for higher velocity). (D) Origin of directional uncertainty. The green dots 
indicate the possible laser position due to the Brownian motion of the particle within the delay time t. The two graphs to the right display the experimental particle 
displacements of a single microswimmer within the delay time t = texp = 180 ms, when starting at the origin for two different particle velocities. (E) Variances of the point 
clouds in (D) parallel and perpendicular to the intended direction of motion. The dashed lines correspond to the theoretical prediction according to Eq. 4 for the perpen-
dicular motion (   ⊥  2   ) and    ∥  2   = 2Dt + (cosh(    

2  ) − 1 )  v ∥  2    t   2   for the tangential motion with      
2  ≈ 0.23  rad   2  , D = 0.1 µm2 s−1, and t = t = 180 ms. (F) Survival fraction of particles 

moving in the upper states at the boundary toward the goal state in policy 2 indicated in the inset. The survival has been determined from simulations for the same 
parameters as in (E).
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couples the element Q(s, a) of the optimized Q-matrix, correspond-
ing to a state s and action a, with the discounted elements      * ( s ′   ) =  
max  

 a ′      Q( s ′  ,  a ′  )  of the optimal policy in the future states s′ and the cor-
responding future rewards R(s′), weighted by transition probabili-
ties P(s′∣a, s). Using this equation, one can obtain the Q-matrix 
and the optimal policy by a Q-matrix value iteration procedure if 
the transition probabilities are known. The transition probabilities 
thus contain the physics of the motion of the active particle, includ-
ing the noise, and decide how different penalties or rewards of the 
neighboring states influence the value of Q.

We have measured the transition function for the two types of 
transitions (diagonal and nondiagonal) using 500 trajectories in a 
single grid cell. To obtain the transition function, we set the starting 
position of all the trajectories to the center of the grid cell, carried 
out the specific action, and determined the state in which the parti-
cle trajectory ended up. The results are shown in Fig. 4C with exem-
plary trajectories and a histogram to the right. The numbers below 
the histograms show the corresponding transition probabilities to 
the neighboring state in percent for a velocity of v∥ = 1.6 µm s−1 (v∥ = 
4.6 µm s−1 for the values in parentheses). The two velocities show 
only weak changes in the transition probabilities for the nondiago-
nal actions, which appear to be responsible for the changes in the 
policies in Fig. 4B. Carrying out a Q-matrix value iteration confirms 
the changes in the policy in the marked regions for the measured 
transition probability range (see the Supplementary Materials).

The advantage of our experimental system is that we can explore 
the detailed physical behavior of each microswimmer in dedicated 
experiments. To this end, we find two distinct influences of the Brown-
ian motion as the only noise source on the microswimmers’ motion. 
Figure 4D shows the distribution of microswimmer displacement 
vectors within a time texp = 180 ms for two different velocities. 
Each displacement starts at the origin, and the point cloud reflects 
the corresponding end points of the displacement vectors. With in-
creasing velocity, the particles increase their step length in the desired 
horizontal direction. The mean distance corresponds to the speed of 
the particle, and the end points are located close to a circle. At the 
same time, a directional uncertainty is observed where the angular 
variance      

2    is nearly constant for all speeds (see the Supplementary 
Materials for details). This directional noise is the result of a delayed 
action in the experiments (30, 41), i.e., a time separation between 
sensing (imaging the position of the particle) and action on the par-
ticle position (placing the laser for propulsion). Both are separated 
by a delay time t, which is the intrinsic delay of the feedback loop 
(t = texp = 180 ms in our experiments). A delayed response is a 
very generic feature of all active responsive systems, including bio-
logical species. In the present case of a constant propulsion speed, it 
leads to an anisotropic noise. In the direction perpendicular to the in-
tended action, the Brownian noise gets an additional component that 
is increasing nonlinearly with the particle speed, whereas the noise 
along the intended direction of motion is almost constant (Fig. 4E).

The increase in the variance perpendicular to the direction of 
motion can be analyzed with a simple model (see the Supplementa-
ry Materials for details), which yields

    ⊥  2   =  v ∥  2   t sinh(    
2   ) t + 2Dt  (4)

and corresponds well with experimental data (Fig. 4E) for      
2   ≈ 0.23  rad   2  

and fixed time t = t. In particular, it captures the nonlinear increase 
of    ⊥  2    with the particle speed v.

The increase has important consequences. When considering the 
motion in the top four states of policy 2 (Fig. 4B), the particle would 
move horizontally toward the goal starting at an arbitrary position 
in the leftmost state. From all trajectories that started, only a frac-
tion will arrive at the goal state before leaving these states through 
the upper, lower, or left boundaries of those four states. This surviv-
al fraction has been determined from simulations (also see the Sup-
plementary Materials for an approximate theoretical description). 
Overall, a change between the two policies 1 and 2 is induced by 
an increase of the survival by less than 10% when going from v∥ = 
1.6 µm s−1 to v∥ = 4.6 µm s−1. When further increasing the velocity, 
we find in simulations that an optimal velocity for maximum sur-
vival exists. This maximum corresponds to the minimum

   v   ‖   opt   =  √ 
_

   2D ─ 
sinh(    

2   ) t
      (5)

in the variance (Eq. 4) for a fixed traveled distance a = v∥t, which 
only depends on the diffusion coefficient D, the angular variance      

2   , 
and the sensorial delay t (see the Supplementary Materials for de-
tails). In the limit of instantaneous actions (t = 0), an infinitely fast 
motion would yield the best results. Any nonzero delay will intro-
duce a “speed limit” at which a maximum survival is ensured. We 
expect that the optimal policy for very high velocities should yield a 
similar policy as for low velocities. An experimental verification of 
this conjecture is currently out of reach, as Fig. 4F shows the results 
of the simulations.

The observed behavior of the survival probability, which exhib-
its a maximum for a certain particle velocity, implies that the prob-
ability to reach the target is maximal for the same optimal velocity. 
Moreover, because the underlying analysis is solely based on the 
competition of two noises omnipresent in (Brownian) active matter, 
namely the diffusion and the uncertainty in choosing the right di-
rection, we conjecture that the observed type of behavior is universal. 
The precision of reaching the target (long time variance of the distance 
from the target) by the run-and-tumble motion of bacteria exhibits 
a minimum as a function of the run-and-tumble times (42, 43) rem-
iniscent of our results. These results also demonstrate that the combi-
nation of machine learning algorithms with real-world microscopic 
agents can help to uncover physical phenomena (such as time delay 
in the present work), which play important roles in the microscopic 
motion of biological species.

Concluding, we have demonstrated RL with a self-thermophoretic 
microswimmer carrying out actions in a real-world environment 
with its information processing and sensing capabilities externalized 
to a computer and a microscopy setup. Already with this hybrid 
solution, one obtains a model system, where strategies in a noisy 
environment with virtual obstacles or collective learning can be ex-
plored. Although our simple realization of a gridworld is based on a 
global position detection defining the state of the swimmer, future 
applications will consider local information, e.g., the response to a 
temporal sequence of local physical or chemical signals, to allow for 
navigation in unknown environments. As compared with a computer 
simulation, our system contains a nonideal control limited by the 
finite reaction time of the feedback loop, presence of liquid flows, 
imperfections of the swimmers or sample container, hydrodynamic 
interactions, or other uncontrolled parameters that naturally influence 
the learning process. In this way, it resembles a new form of computer 
simulation using real-world agents. An important advantage is that 
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the physics of the agent can be explored experimentally in detail to un-
derstand the learned strategies, and the real-world interactions in more 
complex environments can be used to adapt the microswimmer’s 
behavior. In that sense, even the inverse problem of using the learned 
strategy to reveal the details of these uncontrolled influences may be 
addressed as a new form of environmental sensing. Similarly, the con-
trol of active particles by machine learning algorithms may be used in 
evolutionary robotics (8, 44), where the interaction of multiple particles 
may be optimized to yield higher-order functional structures based on 
environmental interactions. Although the implementation of signaling 
and feedback by physical or chemical processes into a single artificial 
microswimmer is still a distant goal, the current hybrid solution opens a 
whole branch of new possibilities for understanding adaptive behavior 
of single microswimmers in noisy environments and the emergence of 
collective behavior of large ensembles of active systems.

MATERIALS AND METHODS
Materials
Samples consisted of commercially available gold nanoparticle–coated 
melamine resin particles of a diameter of 2.19 µm (microParticles 
GmbH, Berlin, Germany). The gold nanoparticles were covering 
about 30% of the surface area and were between 8 and 30 nm in di-
ameter (see the Supplementary Materials for details.) Microscopy 
glass cover slides were dipped into a 5% Pluronic F127 solution, 
rinsed with deionized water, and dried with nitrogen. The Pluronic 
F127 coating prevented sticking of the particles to the glass cover 
slides. Two microliters of particle suspension was placed on the 
cover slides to spread about an area of 1 cm by 1 cm, forming a 3-µm-
thin water film. The edges of the sample were sealed with silicone oil 
(polydimethylsiloxane) to prevent water evaporation.

Methods
Samples were investigated in a custom-built inverted dark-field micros-
copy setup based on an Olympus IX-71 microscopy stand. The sample 
was held by a Piezo stage (Physik Instrumente) that was mounted on a 
custom-built stepper stage for coarse control. The sample was illuminat-
ed by a halogen lamp (Olympus) using a dark-field oil-immersion con-
denser [Olympus, numerical aperture (NA), 1.2]. The scattered light was 
collected by an oil-immersion objective lens (Olympus, 100×, NA 1.35 to 
0.6) with the NA set to 0.6 and captured with an Andor iXon emCCD 
camera. A  = 532 nm laser was focused by the imaging objective into the 
sample plane to serve as a heating laser for the swimmers. Its position in 
the sample plane was steered by an acousto-optic deflector (AOD; AA 
Opto-Electronic) together with a 4-f system (two f = 20 cm lenses). The 
AOD was controlled by an ADwin realtime board (ADwin-Gold, Jäger 
Messtechnik) exchanging data with a custom LabVIEW program. A re-
gion of interest of 512 pixels by 512 pixels (30 µm by 30 µm) was used for 
the real-time imaging, analysis, and recording of the particles, with an 
exposure time of texp = 180 ms. The details of integrating the RL proce-
dure are contained in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/6/52/eabd9285/DC1
Fig. S1. Symmetric swimmer structure.
Fig. S2. Swimmer speed as a function of laser power.
Fig. S3. Directional noise as function of the swimming velocity measured in the experiment.
Fig. S4. Directional noise model.
Fig. S5. Results of the analytical model of the influence of the noise.
Fig. S6. Q-matrix value iteration result.

Movie S1. Single-swimmer free navigation toward a target during learning.
Movie S2. Single-swimmer free navigation toward a target after learning.
Movie S3. Navigation toward a target with virtual obstacles.
Movie S4. Multiple-swimmer free navigation toward a target.
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1 Self-thermophoretic Swimmer

In the experiments, we used symmetric active particles with 30 % of their melamine resin surface covered
with gold nanoparticles (AuNP). The propulsion velocity v is the result of an asymmetric illumination with
a highly focused laser at a wavelength of λ = 532 nm, which heats the gold nanoparticles at the surface,
creating a surface temperature gradient and corresponding thermo-osmotic creep flows. A sketch of the
particle and a corresponding electron microscopy image are shown in Supplementary Figure 1.

ø~10 nm AuNP 
30% coverageø=2.19 µm

r
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Figure 1: (a) Sketch of the symmetric active particle of radius R. For the experiments a melamine particle
of R = 1.09µm covered with 10 nm gold nanoparticles at 30 % of its surface is heated with a focused laser.
The scale bar corresponds to 1µm.(b) Electron microscopy image of the gold nanoparticle at the surface of
the melamine resin particle.

The active particle has a propulsion velocity, which can be controlled with the help of the laser power.
Figure 4 shows the particle velocity as a function of the laser power for various inpedepndent measurements.
The velocity has been extratected from the particle displacements for an exposure time of δtexp = 180 ms
with a laser focused to a spotsize of 500 nm.

Figure 2: Dependence

The power dependence of the velocity is nonlinear since the particle is moving during the exposure while
the laser spot is fixed for the exposure time. This yields a nonlinear dependence, where the maximum
velocity is limited by the exposure time. Higher velocities are obtained for lower exposure times. A more
detailed analysis is contained in reference and its supplementary information [1].

2 Reinforcement Learning Procedure

The reinforcement learning procedure is implemented in LabView inside MatLab nodes. The LabView
program is using the NI Vision modules to perform real-time localization of the particles. The coordinates
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are provided to the MatLab nodes to analyze the state. When the state has been identified, the Q-matrix
values of the state are analyzed to select an appropriate action. To decide which action to take, an epsilon
greedy selection procedure is applied. A random number 0 ≤ η ≤ 1 is drawn from an equal distribution and
compared to ε = 0.2. For η > ε, the best action is selected according to the maximum value of the Q-matrix
for the state. In all other cases, random action is selected. The selected action is applied until the swimmer
transitions to one of the neighboring states. Note that image recording and action are seperated by the
time delay of the feedback loop which corresponds to one frame δt = ∆texp = 180 ms. When the swimmer
transitions to a new state s′, the Q matrix of the previous state (Q(s, a)) is updated according to

Qt+∆t(s, a) = Qt(s, a) + α
[
R(s′) + γmax

a′
Qt(s

′, a′)−Qt(s, a)
]
. (1)

The element Q(s, a) of the Q-matrix is updated by adding the amount inside the brackets multiplied by
the learning rate, which has been set to α = 0.5 in all experiments. The bracket contains the reward R(s′)
for the transition to the next state s′, the discounted Q-matrix element for the state s′ and the action
a′. The discount factor γ determines the type of the learning process (finite horizon, infinite horizon, or
average reward) [2]. In this work, we use the infinite horizon model, where future values of the Q-matrix are
discounted with γ = 0.8. Further the the current Q-matrix element Qt(s, a) is subtracted.

This procedure is repeated until the swimmer enters a boundary state or arrives at the goal. At this
point an episode ends and the swimmer is placed at an arbitrary position on the grid world to start the next
episode. The learning procedure is stopped manually when the sum of all Q matrix entries does not show
any notable change.

3 Directional Noise in the Experiment

The directional noise (see Figure 4 of the main text) has been evaluated in the experiments by recording
the motion of the swimmers and the corresponding actions during the learning process of the microswimmer
at different swimmer velocities. The swimmer displacements ∆~r between subsequent frames ∆t = ∆texp =
180ms have been projected to the direction of the action e‖ and perpendicular to it (e⊥). The results are
shown in Figure 3 for different microswimmer speeds.

A 

B 

Figure 3: Caption

The results in Fig. 3A show, that the average displacement in the direction of the action increases
due to the increase of the swimmer speed. From the displacement staistics, we have determined the mean
velocities as denoted on the top of the graph. All measurements show a directional noise, i.e. an uncertainty
in the direction of the velocity, while the mean direction follows the direction of the action. The angular
distribution of the velocity directions is depicted in 3B. The measured half opening angles according to the
variance of the angular distribution are 44◦, 32◦, 30◦ and 30◦ from left to right. The angular spread therefore
stays approximately constant with changing microswimmer velocity.
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Figure 4: The angle θ between the intended and the actual propulsion direction is a result of the diffusion
of the microswimmer from the position (0,0) to the position (x, y) during the time interval δt between the
measurement and switching on the laser.

4 Directional Noise Model

Consider the situation depicted in Fig. 4, and let us assume that we want to propel the microswimmer to
the right in the direction of the red arrow (along ~e‖). Then we need to focus the laser to the point at the
opposite end of the particle, corresponding to the blue dot at (−r, 0) in the space fixed ~e‖, ~e⊥ coordinate
system. However, during the time interval of length δt between the measurement (determination of the
target point for the laser) and switching on the laser, the particle diffuses from the position (0, 0) to (x,−y),
and thus the actual coordinates of the target point for the laser are [−(x+r), y] instead of (−r, 0). The actual
direction of the particle is thus declined by the angle θ = arctan y/(x+R) from the intended direction.

Due to the stochasticity of the Brownian motion, the angle θ is also random. Its probability density can
be calculated as

p(θ) =

∫ ∞

−∞

∫ ∞

−∞
dx dy δ

[
θ − tan

(
y

x+ r

)]
1

4πDδt
exp

[
−x

2 + y2

4Dδt

]
, (2)

where we integrate over the Gaussian distribution of the displacements (x, y) during time δt. The integration
can be performed without any approximation, but the result is not very enlightening. An intuitive formula
can be obtained if we assume that the variances

〈
y2
〉

=
〈
x2
〉

= 2Dδt are much smaller than r2, i.e. that
that the particle diffuses during the time δt by much less than r. Then the angle θ is small and we can
approximate tan [y/(x+ r)] as y/(x+ r) ≈ y/r yielding the Gaussian probability density

p(θ) ≈
∫ ∞

−∞

∫ ∞

−∞
dx dy δ

(
θ − y

r

) 1

4πDδt
exp

[
−x

2 + y2

4Dδt

]
=

1√
2σ2

θ

exp

(
− θ2

2σ2
θ

)
, (3)

with the variance

σ2
θ =

2Dδt

R2
. (4)

The probability density (eq. 3) is normalized for θ ∈ (−∞,∞) which might look strange since θ is an angle.
However, according to our assumption that θ is small, the Gaussian 3 decays very fast and the normalization,
caused by the used approximation, does not bring any practical problems as we see by comparing predictions
based on Eq. 3 to simulated and measured data.

Let us note that due to the diffusion of the particle from (0, 0) to (x, y), also the particle velocity imposed
by the laser fluctuates. However, this effect can be described by an effective average velocity and, different
from the distribution (eq. 3), it does not cause any qualitatively new behavior, compared to the situation
with a deterministic velocity.
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5 Noise Influence Model

Let us assume that the particle moves due to the drift velocity vx in the direction of the action (say the
x-direction) a certain distance a. The time required for the particle to arrive is then t = a/vx. On the other
hand, the particle position also spreads in the y-direction. Due to the action supplied after a delay time δt,
the particle in the y-direction not only diffuses, but it also acquires a drift velocity vy. This drift velocity
fluctuates with each step such that the motion of the particle during a single step can be described by the
following overdamped Langevin equation

ẋ = v cos(θ) +
√

2Dη, (5)

ẏ = v sin(θ) +
√

2Dη. (6)

Hereby, we assume that the angle θ between the intended direction (x-axis) and the actual direction is normal
distributed due to the delay with a distribution function given by Eq. 3. Therefore, the first terms on the
right side of the Langevin equation have the following properties

vx = 〈v cos(θ)〉 = v exp

(
−σ

2
θ

2

)
, (7)

vy = 〈v sin(θ)〉 = 0, (8)

〈v2 sin2(θ)〉 = v2σ2
yθ, (9)

with v denoting the thermophoretic velocity of the particle, and

σ2
yθ =

1

2

(
1− e−2σ2

θ

)
. (10)

Therefore the position y also obeys

〈y〉 − 〈y0〉 = 0 (11)

〈y2〉 − 〈y〉2 = σ2
yθv

2δt2 + 2Dδt (12)

(13)

after one time step δt. If the particle is now doing multiple steps in time to reach the goal, the variance of
the distribution in the direction of y is

σ2
⊥ = 〈y2〉t − 〈y〉2t = σ2

yθv
2δt2

t

δt
+ 2Dt, (14)

where we used the fact that the individual steps are statistically independet. Accordingly the particles have
traveled on average in the y-direction a distance

σ⊥ = exp

(
σ2
θ

4

)√
σ2
yθvaδt+ 2D

a

v
(15)

The plot below shows that at small velocities the width of the distribution is actually decreasing as the
drift starts to take over. At larger velocities the transverse drift becomes important and the uncertainty in
the particle direction increases the width almost linearly in time. The width σ⊥ reveals an optimal for the
velocity

vopt =

√
D

2

σ2
yθδt

. (16)

Thus a delayed action provides besides the positional noise a directional noise, which intrinsically yields
a speed limit for the motion towards a dedicated target region. At this speed limit a maximum probability
of arrival at the target region will be observed.

6 Q-matrix Value Iteration Results

We have calculated the optimal Q-matrix and policy with the help of a Q-matrix value iteration procedure.
According to that the Q-matrix value of state s for an action a is given by the Bellman equation
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Qπ(s, a) =
∑

s′

P (s′|s, a)
[
R(s′) + γmax

a′
Qπ(s′, a′)

]
, (17)

with P (s′|s, a) being the transition probability from state s by the action a to state s′, R(s′) is the
reward for the state s′, γ the discount factor. Equation 17 defines the Q-matrix for a certain policy π. Wehn
initializing the Q-matrix randomly, one obtaines an iterative procedure for updating the Q-matrix until it
converged and the optimal policy π∗ is obtained. For our iterative calculation we use a discount factor of
γ = 0.8 as in the experiments. The transition probabilities were also adapted from the experimental results.
Figure 5 A shows the definition of the used parameters for the transition probabilities for the two types of
actions (non-diagonal and diagonal). Other transition probabilities than indicated are set to zero. For the
non-diagonal actions we varied the parameter p1 between 0.9 and 1.0 reflecting the change of the transition
probability with the speed of the swimmer in the experiments. For the diagonal actions we chose p2 = 0.06,
which is kept fixed for all calculations. The iterations were carried out until no further change in the sum of
all Q-matrix values was observed, which typically happened after 10 to 20 iterations.

A 
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E 

Figure 5: Q-matrix value iteration result A) Definition of the transition probabilities for the Q-matrix
value iteration procedure. The left sketch is valid for the indicated actions and parameter p1 is varied
between 0.9 and 1.0 according to the experimental observation. The right sketch is valid for all diagonal
action as indicated. The parameter p2 if kept constant at a value of 0.06 during all simulation. B Optimal
policy obtained for p1 = 0.94. C Optimal policy obtained for p1 = 0.96. D Optimal policy obtained for
p1 = 0.98. E Optimal policy obtained for p1 = 1.0.

Figure 5B-E is showing the optimal policies obtained for different transition probabilities for the non-
diagonal actions. The main observation in the calculation is a change in the actions at boundary states at the
top grid cell row and the and right grid cell column. There the actions point for higher noise influence (low
microswimmer speed) diagonal to the inside of the grid world, while they are pointing along the row/column
for lower noise influence (higher particle speeds). Note that only small changes in the transition probability
p1 are required to obtain the observed change. While the obtained differences are similar to the experiment,
the iteration procedure neglects the position dependent transition probability given in the experiment.

7 Video Description

7.1 Single swimmer free navigation towards a target example

Video 1 shows the particle during the learning process after different amount of episodes. The starting
point of the swimmer is in the lower left cell and the absorption state (target) is placed as described in Fig.
1 of the main text in the top right corner. The video is 5X accelerated. The swimmer starts with a random
policy and random motion until it reaches the absorption state and the episode end. After more and more
episodes the system starts to find an optimal path to the absorption state. Measurements were carried out
at a swimmer velocity of v = 1.5µm s−1 and an inverse framerate of ∆texp = 180 ms.
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Video 2 shows directed motion of the particle from different starting locations in the grid world after
convergence of the Q-matrix.

7.2 Navigation towards a target with virtual obstacles

Video 3 displays the swimmer exploring the gridworld for a target inside the gridworld with different sized
obstacles (large penalty areas) right next to it. The video shows how the system has learned the actions to be
executed from different initial states. Measurements were carried out at a swimmer velocity of v = 1.5µm s−1

and an inverse framerate of ∆texp = 180 ms. Video is 5X accelerated. If the swimmer is placed behind the
wall it also finds the target after exploring. Even increasing the size of the virtual wall the system finds
a solution of the exploration problem by finding a direct path to the target. The policies obtained by the
reinforcement learning from these experiments are shown in Figure 3 of the main text.

7.3 Multiple swimmer free navigation towards a target

Video 4 shows different episodes where two swimmers are searching the absorption state (target) placed
again at the up right corner. The episodes finishes after one swimmer reaches the target. Pe = 80 and
framerate 180 ms.
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Living many-body systems often exhibit scale-free collective behavior reminiscent of thermal critical
phenomena. But their mutual interactions are inevitably retarded due to information processing and delayed
actuation. We numerically investigate the consequences for the finite-size scaling in the Vicsek model of
motile active matter. A growing delay time initially facilitates but ultimately impedes collective ordering
and turns the dynamical scaling from diffusive to ballistic. It provides an alternative explanation of swarm
traits previously attributed to inertia.

DOI: 10.1103/PhysRevLett.127.258001

Interacting assemblies of active elements ranging from
neural networks in the brain to forest fires and bird flocks
can exhibit scale-free behavior [1–4]. This might be
indicative of an underlying powerful physical ordering
principle overwriting their inherent complexity. Finite-size
scaling theory [5] associates such behavior with a corre-
lation length exceeding the system size and conjectured to
arise from a mechanism called self-organized criticality [6].
It is indeed an appealing idea that simple interaction rules,
when, e.g., individuals replicate actions of their neighbors,
can drive a nonequilibrium ensemble toward criticality.
Even though it does not generally seem to apply to both
natural systems [7,8] and their models [9–11], studying the
emergent finite-size scaling in natural assemblies is vital for
their prospective modeling in the spirit of nonequilibrium
many-body systems, as successful models should be
required to reproduce the observed scaling [10] and
correlations [12]. In this vein, the inertia spin model
[12] was proposed to overcome known deficiencies of
the classical Vicsek model (VM) [13] in comparison with
empirical data for natural swarms and flocks. Inspired by
observations of birds and insects [4], which cannot turn
instantaneously, it adds inertia to the navigation rules for
the individual motile spins and predicts dynamical scaling
with exponent z ¼ 1.5 for a small-particle-velocity
(“underdamped equilibrium”) regime and z ¼ 1.3 for a
large-velocity (“underdamped off-equilibrium”) regime
[14]. This brings the VM, with classical exponents z ¼ 2
and z ¼ 1.7, respectively, closer to the dynamical scaling
and time-correlation functions found in natural swarms of
moderate size (dynamical exponent z ≈ 1.1) [15,16].
However, for motile ensembles, physical inertia can have

quite similar effects as delayed reactions due to finite
speeds of information transfer processing, and actuation

[17–19]. Such traits are indeed ubiquitously found in
nature, from insects to birds, in various robotic systems
[20–22] and are also thought to cause traffic jams [23].
Recent experiments [24,25] with feedback-driven artificial
microswimmers [26] have moreover established their role
in the naturally overdamped microscopic world of active
Brownian particles such as bacteria, for which inertial
effects are negligible. Beyond oscillatory behavior, which
is also a common trait of inertial motion, time-delayed
interactions can give rise to multistability, instabilities, and
even chaos [19,27–29]. Conversely, intermediate time
delays may facilitate clustering compared with the classical
VM [28] and flocking in the Cucker–Smale model [30].
And recent indications that delay-dependent optimizations
play a role in artificial microswimmer assemblies [25] seem
reminiscentof theoptimumrun-and-tumble timesofbacteria
[31,32] or the improved localization achieved with feedback
cooling [33,34] or feedback-driving of robots [35].
In this Letter, we demonstrate that the classical VM [13]

with retarded reactions exhibits the same finite-size scaling
and time correlations near the ordering transition as the
inertia spin model [4]. This suggests that scaling and
correlations similar to natural swarms can be expected
for a wealth of systems with time-delayed interactions,
including overdamped Brownian particle assemblies. We
can also corroborate the observation that increasing delay
times may have a nonmonotonic effect on the stability of
coherent collective motion [28].
Model.—The (classical) VM [13] arguably is the sim-

plest model for motile active-particle assemblies, ranging
from bacteria to birds, and a central paradigm in the field of
motile active matter [36–39]. In each discrete time step, all
particles advance with the same constant speed v0. And
they instantaneously adapt their orientations to the previous
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average orientation of their neighbors within an interaction
sphere of radius R, up to some random error contributed by
a local noise term. The orientation is thus clearly an
overdamped variable, as it bears no inertia.
In the delay VM, depicted in Fig. S1 of the Supplemental

Material [40], particle i adapts at time t to the mean
orientation of all particles that had distance less than R
from its previous position, at time t − 1 − τ, with an integer-
valued time delay τ ≥ 0. The discrete time step and the
interaction radius R ¼ 1 serve as units of time and length,
respectively. The dynamics of the standard VM is recovered
for τ ¼ 0. The velocity vi and position ri of particle i in three
spatial dimensions (3D) thus obey the set of equations [13]

viðtþ 1Þ ¼ v0RαΘ
�
viðtÞ þ

X
j

nijðt − τÞvjðt − τÞ
�
; ð1Þ

riðtþ 1Þ ¼ riðtÞ þ viðtþ 1Þ: ð2Þ
The noise operator RαX randomly rotates its argument X
within a uniformly distributed solid angle 4πα centered
around X, and ΘðvÞ≡ v=jvj normalizes its argument. We
assume geometric interactions corresponding to the con-
nectivity matrix elements nijðtÞ ¼ 1 for i ≠ j if
rijðtÞ ¼ jriðtÞ − rjðtÞj < R, and nijðtÞ ¼ 0 otherwise.
We simulated the delay VM with fixed speed v0 ¼ 0.05

and noise strength α ¼ 0.45 inside a cube with size L3 and
periodic boundary conditions for six values of the particle
number N ¼ 2n, n ¼ 6;…; 11. In this setting, we repeated
the analysis performed in Refs. [15,49] for the static and
dynamic scaling and the correlation functions of the
standard VM, operating in its overdamped equilibrium
regime [14], for delay times τ ¼ 0;…; 20. As control
parameter, we prescribed the average nearest-neighbor
distance r1 between the individual particles by varying
L. Here, we present the main simulation results. Further
data, technical details, and some analytical discussion can
be found in the Supplemental Material [40].
The central object for our data analysis is the Fourier

transformed spatiotemporal correlation function (CF)

Cðk; tÞ ¼
�
1

N

XN
i;j

sin½krijðt; t0Þ�
krijðt; t0Þ

δv̂iðt0Þ · δv̂jðt0þ tÞ
�

ð3Þ

of the normalized velocity fluctuations [4,15,40]

δv̂i ¼
δviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N−1P
kδvk · δvk

p ; ð4Þ

where δvi ¼ vi −
P

k vk=N is the deviation of the velocity
of particle i from the average velocity, and rijðt0; tÞ ¼
jriðt0Þ − rjðtÞj is the distance between particles i and j at
times t and t0 < t. The average h…i is taken over t0 [40].
Static scaling.—At t ¼ 0, Cðk; 0Þ exhibits a global

maximum at k ¼ k⋆ ∼ 1=ξ, where ξ corresponds to the
correlation length. Assuming proportionality between

fluctuation and response, this value of the CF is interpreted
as a susceptibility χ ≡ Cðk�; 0Þ [4,15,40].
For given delay time τ and particle number N, the

susceptibility χ exhibits a maximum χ� ¼ χ�ðτ; NÞ as
a function of the nearest-neighbour distance at r�1 ¼
r�1ðτ; NÞ. The system is found to be ordered (large average
velocity) for r1 < r�1 and disordered (small averagevelocity)
otherwise.For agivenN, the susceptibilityχ� at the transition
decreases monotonically with growing τ and eventually
saturates [see Figs. 1(a) and 1(b) and, in the Supplemental
Material, Figs. S2 and S3 [40] ]. The equal-time orientation
correlations are thus generally reduced for retarded as
opposed to instantaneous interactions, which suggests that
the sensitivity to external perturbations decreases accord-
ingly. For sufficiently large τ and N, the derivative of the
susceptibility with respect to r1 abruptly increases at some
r1 < r�1; see thevertical dotted line atr1 ≈ 0.4 inFig. 1(b).No
such kink is observed for small τ [40]. For a given τ and large
enough N, the susceptibility in the vicinity of the ordering
transition [49] exhibits finite-size scaling according to
Ref. [50]:

r�1 ∼ rC þ N−1=ð3νÞ; ð5Þ

χ ∼ Nγ=ð3νÞ: ð6Þ

In other words, for any given τ, the limiting location rC ¼
r�1ðτ;∞Þ of the transition for large (infinite) particle numbers
and the critical exponents γ and ν of the susceptibility χ ∼
ðr�1 − rCÞ−γ and the correlation length ξ ∼ ðr�1 − rCÞ−ν,
respectively, can all be extrapolated from a data collapse
of the susceptibilities for different N. The procedure is
illustrated in Figs. 1(c) and 1(d). The resulting exponents
and rC exhibit strong dependencies on τ, which saturate as
τv0=R ≈ 1=2, when the advance during one delay time
becomes comparable to the interaction radius [Figs. 1(e)–
1(h)]. An analytical argument corroborates that a further
increase of τ should not significantly alter the qualitative
physical picture [40]. For a particle of characteristic size
2.5 mm traveling with velocity 1 meter per second with an
interaction radius of 4× body length (10 mm), the condition
τv0=R ¼ 1=2 impliesa timedelayof5ms,whicharenumbers
roughly in accord with data available for fruit flies [51–54].
Since the static critical exponents in the standard VM are

known to depend strongly on the density, speed, and
interaction radius [56], their absolute values are of limi-
ted interest. Rather, their trends and dependencies are
revealing. The critical nearest-neighbor distance rC in
Fig. 1(h), proportional to the critical density of the system,
exhibits a pronounced maximum at τv0=R ≈ 0.2, indicating
that a system with an intermediate delay time favors order
already at lower densities as compared with the system
without delay. This somewhat counterintuitive result is in
agreement with findings of Refs. [28,35] that intermediate
delays stabilize collective motion. For larger delay times,
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the critical nearest-neighbor distance rC drops sharply to a
value below that for the standard VM. A possible explan-
ation can be based on the decrease of the maximum
susceptibility with delay time, shown in Sec. S2 in the
Supplemental Material [40]. The susceptibility measures
both the sensitivity to destabilizing perturbations and the
ability to align in the flocking regime. The local maximum
in rC could thus originate from a trade-off between these
tendencies, the increased resistance to fluctuations domi-
nating at small τ and the waning alignment at large τ.
The exponents ν and γ also display local maxima, but at

somewhat larger τ. Their saturation values are much higher
than the respective critical exponents in all known univer-
sality classes, including the standard VM. To attribute the
observed finite-size scaling to a critical point in the infinite-
size limit according to the conventional scaling hypothesis
[57] would require an extraordinarily sharp divergence of
the correlation length and the susceptibility at criticality,
which is approached extraordinarily slowly with increasing
particle number N [see the solid lines in Figs. 1(a) and 1(b).
As detailed in Sec. S1 of the Supplemental Material [40],
we expect the observed scaling to hold whenever the
density is approximately homogeneous, as it is the case

for intermediate N. Then, also, the standard VM shows the
truly critical scaling of its incompressible variant [16,37],
while, for very large N, it exhibits large density fluctuations
leading to a discontinuous phase transition with microphase
separation.
Time correlation functions.—The time dependence of

the CFs [Eq. (3)] for the delay VM at the transition,
quantifying the temporal loss of orientational correlations
[4,15], is strongly influenced by the delay. Figure 2(a)
shows that the normalized CFs C̄ðtÞ≡ Cðk�; tÞ=Cðk�; 0Þ
acquire oscillations with period (τ þ 1) and an amplitude
increasing with τ. They reveal the transmission of orienta-
tional correlations over discrete time steps τ þ 1 and can be
understood analytically by a spin wave theory that accounts
for the delay [40]. In Fig. 2(d), we show that logarithms of
CFs for N ¼ 2n, n ¼ 8;…; 11, and τ ¼ 0 collapse onto the
master curve −t=τR upon rescaling time by the relaxation
times τR obtained from Eq. (S14) in the Supplemental
Material [40]. Figure 2(g) shows the corresponding increas-
ingly negative time derivatives for t → 0, indicating the
exponential loss of correlation in the standard VM [15].
Due to the delay-induced superimposed oscillations, the
initial slope of the CFs always steepens with increasing
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FIG. 1. Static finite-size scaling in the 3D delay VM. Each simulation departed from a random initial state and was evolved for a transient
period of 1500 time steps before measurements started. (a),(b) The susceptibilities χ ≡maxkCðk; 0Þ averaged over 11 trajectories of 104

time steps for N ¼ 64, 128, 256, 512, 1024, 2048 particles (from bottom to top) and delay times τ ¼ 0 [(a), standard VM] and τ ¼ 15 [(b),
τv0=R ¼ 0.75], respectively, over the mean nearest-neighbour distance r1. (c),(d) The data collapse achieved for N ≥ 256. (e)–(h) Box
plots [55] of the exponent ratio γ=ν, the individual exponents, and the extrapolated critical parameter rC for N → ∞, respectively, all for
delay times τ from 0 to 20. Broken dashed lines mark averages over the 11 realizations. The horizontal dotted lines depict the values
ν ≈ 0.75, γ ≈ 1.53, and rC ≈ 0.41 obtained for τ ¼ 0, where the model reduces to the standard VM, consistent with the data in Ref. [49]. In
(a) and (b), black squares mark susceptibility maxima χðr�1Þ and solid lines are computed using the finite-size scaling relation χ ∼ ðr�1 −
rCÞ−γ with parameters from (e)–(h). The vertical dotted line in (b) marks the abrupt changes in the slope of χ.
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delay time τ. In contrast, the overall decay flattens with τ,
as revealed by the upper envelopes C̄mðtÞ of C̄ðtÞ, in
Fig. 2(b). As intuitively expected, the delayed interactions
thus tend to increase the memory in the VM. The data
collapse of C̄mðt=τRÞ in Fig. 2 confirms the nonexponential
relaxation, while its slope in Fig. 2(h) still increases for
t → 0 (see Sec. S5 in the Supplemental Material [40] for an
approximate analytical result).
However, we note that the sampling rates used in

practical measurements may not always be sufficient to
resolve delay induced oscillations [40], which might more-
over have a tendency to be washed out by a natural
dispersion of the delay times. To account for undersam-
pling, Fig. 2(c) shows normalized CFs ĈðtÞ calculated from
particle positions that were (under-)sampled with frequency
1=ðτ þ 1Þ, i.e., we calculated the corresponding velocities
as viðtÞ ¼ ½riðtÞ − riðt − τ − 1Þ�=ðτ þ 1Þ. In Fig. S10 of the
Supplemental Material [40], we show that the under-
sampled CFs are independent of the sampling rate as long
as it is comparable to or smaller than 1=τ. The resulting CFs
are shown in Fig. 2(c). The exponential initial decay for the
vanishing delay time τ ¼ 0 is seen to increasingly flatten
with growing τ, as also corroborated by the data collapse in

Fig. 2(f). For v0τ=R≳ 1=2, the absolute slope j _̄CðtÞj starts
to decrease for t → 0 as shown in Fig. 2(i) and in Figs. S7
and S9 in the Supplemental Material [40]. The under-
sampled delay VM yields qualitatively the same relaxation
of orientational correlations as observed for natural swarms
[15]. It thus provides an alternative explanation for the data,
which were so far interpreted within the inertia spin model
[58]. The dynamics induced by a discrete time delay
appears to be more prone to developing oscillatory patterns,
such as the ones illustrated in Fig. 2(a), though.
Dynamical scaling.—The dynamical scaling hypothesis

[57] states that the relaxation time τR diverges with the
correlation length as τR ∼ ξz ∼ ðk�Þ−z, at a critical point.
Directly fitting the relation

log τRðNÞ ¼ −z log k�ðNÞ ð7Þ

for the relaxation times of C̄m and Ĉ as functions of time
delay τ yields the dynamical exponent z as depicted by
circles in Figs. 2(j) and 2(k), respectively. The figures also
show box plots [55] resulting from the best data collapse of
CFs C̄m and Ĉusing ðk�Þ−zwith z as a free parameter in place

FIG. 2. Dynamical scaling of the orientational correlations at the susceptibility maximum displayed in Fig. 1. (a) Normalized time-
correlation functions C̄ðtÞ for delays τ ¼ 0, 5, 20 and N ¼ 2048. (b) The upper envelopes C̄m of the curves in (a). (c) The correlation
functions ĈðtÞ calculated from trajectories (under)sampled with frequency 1=ðτ þ 1Þ for N ¼ 2048. (d)–(f) The normalized CFs C̄, C̄m,
and Ĉ collapse upon measuring time in units of the relaxation time τR for τ ¼ 0 (d) and τ ¼ 20 (e) and (f) and system sizes N ¼ 2n,
n ¼ 8;…; 11 (50 simulation runs for each system size). (g)–(i) The corresponding collapsed slopes. Box-plots [55] in (j) and (k) show
the dynamical exponent z obtained from collapsing the CFs C̄m and Ĉ by rescaling time as tξz. Examples of the corresponding collapses
are shown in Figs. S13 and S14 in the Supplemental Material [40]. The green circles are from linear fits to log τRðNÞ ¼ −z log k�ðNÞ for
all 50 datasets with 95% confidence intervals of the fits (dashed).
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of the relaxation time τR, itself. The exponents z obtained
from these two approaches nicely agree for each CF. While
the values for z obtained from the two alternative CFs differ,
they exhibit the same robust trend: a crossover from the
overdamped equilibrium to the underdamped off-equilib-
rium signature [14,40], i.e., from z ≈ 2 for τ ¼ 0 to about
z ≈ 1.1 for τv0=R ≈ 1 [59]. Our analysis thus suggests that
increasing the delay time drives the system further from
equilibrium as if one had effectively increased the particle
speed v0. Analytical arguments corroborate this, at least for
large τ (Sec. S6 in the Supplemental Material [40]). Our
results can therefore reconcile the standard VM predictions
with the observations for natural swarms.
Conclusion.—We analyzed the VM with retarded inter-

actions, as they are expected from natural delays between
sensing and reaction. It provides an alternative to the
rotational inertia hypothesis for reconciling the discrepan-
cies in the dynamical scaling and relaxation between the
standard VM and natural swarms [4,58]. While the
navigation of insects and other flying species is certainly
influenced both by inertia and time delay, our focus on
delay could help to better understand their relation to
feedback-driven robotic [35] or microparticle [24,25,60]
swarms. Especially in the latter, current experimental
techniques [26] allow inertial effects to be suppressed so
that only the unavoidable time delay remains. While our
analysis proves that the delay VM is compatible with finite-
size scaling for the investigated system sizes, it raises many
questions. Will larger systems exhibit a discontinuous
transition with a phase separation, as in the standard
VM? Will it mask the finite-size signatures of a continuous
phase transition for practically relevant particle numbers?
How does the phase diagram depend on the delay time? We
hope to address some of these questions in the future.
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Here we provide more theoretical background for the discussion in the main text as well as a full
set of simulation results. This includes a review of critical behavior of Vicsek-type models in Sec. S1,
simulation details in Sec. S2, definitions of correlation functions and their relation to susceptibility
in Sec. S3, and details of the finite-size static and dynamical scaling in the delay Vicsek model (Secs.
S4 and S5). In Sec. S6, we provide an analytical evidence for the saturation of the behavior of the
delay Vicsek model for large delay times. The final section presents exact results obtained using an
analytically solvable linearised version of the delay Vicsek model.
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S1. CRITICALITY AND SCALING IN
VICSEK-TYPE MODELS

Simulations of very large systems show that neither the
variant of the Vicsek model (VM) with topological inter-
action nor the metric one is truly critical [1]. The situ-
ation is reminiscent of the forest-fire model, which was
long believed to be critical [2, 3]. It turns out that fluc-
tuations in the VM induce a density-dependent shift of
the onset of order predicted from models without noise,
which changes the nature of the order–disorder transi-
tion from continuous (second-order) to a discontinuous
(first-order) phase-separation scenario. Concerning the
VM with rotational inertia (inertia spin model - ISM)

FIG. S1. Sketch of the delayed Vicsek model defined by
Eqs. (1) and (2) in the main text (also Eqs. (S19) and (S20)
here). The conventional alignment rule with interaction range
R is executed with a time delay τ .

∗ viktor.holubec@gmail.com

and the delay VM introduced in the main text, in-depth
investigations concerning the existence and type of the
phase transition have not been performed yet. However,
it is reasonable to assume that the density fluctuations
will, for very large systems, again lead to a similar phe-
nomenology. Further, it is plausible that, as for the stan-
dard VM, the discontinuous transition could be avoided
and criticality restored if density fluctuations were sup-
pressed [4, 5].
Computer simulations can currently address large

enough systems that boundary effects can be safely ne-
glected. But reaching systems sizes that allow for a de-
tailed study of the mentioned large-scale density fluctu-
ations remains challenging. Systems that are not large
enough to admit large density fluctuations are therefore
likely to exhibit finite-size scaling indicative of a second-
order transition [6, 7]. The corresponding ‘critical’ expo-
nents can be determined either by directly applying the
finite-size scaling predictions to data from computer sim-
ulations of such systems or from a renormalization group
analysis of their incompressible variants. This way it was
found that the dynamical critical exponent z as a func-
tion of agent speed v0 and inertia in the VM generalized
to the ISM exhibits an interesting phenomenology:

1. Low speed v0 and overdamped dynamics (negligi-
ble inertia) lead to z = 2. This exponent is thus
observed in the standard VM if the speed is too
low to break free from the equilibrium Heisenberg
universality class. In the main text, we recover this
limit for vanishing delay time τ .

2. High speed v0 and overdamped dynamics lead to
z = 1.7. This is the regime reached in the standard
VM when driven far from equilibrium and domi-
nated by large frictional losses. It cannot be ob-
served for our choice of parameters.

3. Low speed v0 and underdamped dynamics lead to
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z = 1.5. This regime corresponds to a ballistic mo-
tion with negligible friction. It pertains to the equi-
librium Heisenberg model with spin inertia and ex-
tends to the ISM with agents moving at low speed.
We do not observe it in our simulations.

4. Large speed v0 and underdamped dynamics lead
to z = 1.3. In this regime, frictional losses are
significant and the system is far from equilibrium.
This behavior occurs for the ISM with fast agents
and also in the delay VM, introduced in the main
text, for large delay times τ .

In accord with intuition from previous studies [8], time
delay induces a similar behavior as inertia and thus the
shift from overdamped to underdamped behavior with an
increasing delay could have been expected. An intuitive
explanation of why an increase of the time delay also
drives the system further from equilibrium, correspond-
ing to an effective increase in v0, is given in Sec. S6.

S2. SIMULATION DETAILS

We simulated the delay VM, sketched in Fig. S1, inside
a three-dimensional cube of size L3 and periodic bound-
ary conditions. In the simulations, the initial positions
and orientations of the N individuals were drawn from
a uniform distribution and we let the system evolve for
an ‘equilibration period’ of 1500 time steps. Then, we
collected data for further processing for another T = 104

time-steps. The static exponents were obtained by aver-
aging over 50 runs and the dynamical exponent by aver-
aging over 11 runs of the simulation for each delay and
particle number.

For all simulations, we fixed the angular noise strength
α = 0.45 rad and the speed v0 = 0.05, and used the
interaction radius as our length unit, i.e., we set R =
1. To get a direct comparison with results obtained in
Ref. [9], we used as control parameter the mean nearest-
neighbor distance

r1 =

〈
min
j

|ri(t)− rj(t)|
〉

i,t

=
1

NT

N∑

i=1

T∑

t=1

min
j

|ri(t)− rj(t)|. (S1)

adjusted by changing the linear system size L.
In this setting, we first detected the position r∗1 of

the order-disorder transition for each of the six values
N = 2n, n = 6, . . . , 11 of particle number and twenty-one
values τ = 0, . . . , 21 of delay time. We based the evalua-
tion of the exponents on the data collapse (as predicted
by finite-size scaling, see e.g. Sec. S4B), rather than a di-
rect fitting of the exponents to scaling relations, as it was
done in Refs. [9–11]. The reason is that the range of par-
ticle numbers considered here leads to large fitting errors
in the latter approach, even though the overall trends

are the same as using the data collapse. Due to the im-
mense computational costs, simulating also the systems
of 212 and 213 particles for all the delay times is currently
beyond our reach. To obtain the presented data, we al-
ready used several months of CPU and GPU time at the
university’s computing cluster.

S3. CORRELATION FUNCTION C(k, t)

Following the analysis in Ref. [11], the main theoreti-
cal tool used in our discussion is the correlation function
(CF) C(k, t) defined in Eq. (3) in the main text. Roughly
speaking, it quantifies to which extent particles at differ-
ent locations and different times behave similarly. These
correlations are induced by interactions between the indi-
vidual particles and thereby by an exchange of informa-
tion. To ensure that the correlations are not dominated
by the average velocity of the system 1

N

∑
k vk, which

is for finite particle numbers N at the point of phase
transition nonzero, we consider the correlations of the
dimensionless velocity fluctuations

δv̂i =
δvi√

1/N
∑

k δvk · δvk

, (S2)

with

δvi = vi −
1

N

∑

k

vk. (S3)

The spatio-temporal CF is defined by

C(r, t) =
1

N4πr2ρ

〈∑

i,j

δv̂i(t0) · δv̂j(t0 + t)

× δD (r − rij(t0, t))

〉
(S4)

and measures correlations of velocity fluctuations at dif-
ferent points in space and time. Here, ρ = N/L3 is the
average particle density, and rij(t0, t) = |ri(t0)−rj(t0+t)|
is the distance between particles i and j at different times.
The average is taken with respect to the earlier time, t0,
according to

⟨f(t0, t0 + t)⟩ ≡ 1

T − t

T−t∑

t0=1

f(t0, t0 + t). (S5)

Due to the normalization N4πr2ρ, representing the av-
erage number of particles in the neighborhood of radius
r, the CF (S4) is dimensionless.
For our purposes, it is advantageous to use instead of

C(r, t) its Fourier transform C(k, t) ≡ ρ
∫
dr eikrC(r, t).

In 3D, it is given by Eq. (3) in the main text, which reads

C(k, t) =

〈
1

N

N∑

i,j

sin[krij(t, t0)]

krij(t, t0)
δv̂i(t0) · δv̂j(t0 + t)

〉
.

(S6)



S3

0 0.5 1

0

10

20

0 0.5 1

0

5

10

15

0 0.5 1

0

5

10

0 0.5 1

0

5

10

0 0.5 1

0

5

10

0 0.5 1

0

5

10

0 0.5 1

0

5

10

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

0 0.5 1

0

5

FIG. S2. Susceptibilities χ as functions of the control parameter r1 for systems with different delay times τ = 0, . . . , 20
(from top-left to bottom-right panel) and particle numbers N = 64, 128, 256, 512, 1024, and 2048 (from bottom to top data
set in each panel). Each shown data set was obtained by averaging over 11 simulation runs with the same parameters. The
maximum susceptibilities are highlighted by black squares interconnected by solid lines. Their positions r∗1 mark the order-
disorder transition of the VM. For given particle number, the susceptibility decreases with increasing delay time up to τ ≈ 10,
when the susceptibilities saturate.
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FIG. S3. Maximum susceptibilities from Fig. S2 as functions
of the delay for all simulated system sizes. Their decline shows
that the strength of correlations in the system decreases with
increasing delay up to τv0/R ≈ 0.5, when it saturates.

S4. STATIC CORRELATIONS

In this section, we briefly review definitions of the cor-
relation length, susceptibility, and the finite-size scal-
ing theory given in Ref. [10]. Furthermore, we provide
Figs. S2–S4 showing all susceptibilities obtained for the
considered particle numbers N and delay times τ .

A. Static correlation functions and susceptibility

The correlation length ξ measures the decay of corre-
lations in the system with increasing distance and it is
often given by an exponential decay rate. However, for
scale-free systems, there is no such characteristic length
scale and it is reasonable to define ξ as the smallest length
for which the equal time CF C(r, 0) vanishes. Particles
farther apart than ξ can be both correlated and anti-
correlated. The integral

∫ r

0
dr′ C(r′, 0) over the CF thus

reaches its maximum for r = ξ. This maximum measures
the total correlation in the system and is, in the spirit of
equilibrium fluctuation-dissipation relations, tentatively
identified as its susceptibility, χ [11].
The static CF in the Fourier domain, C(k, 0), follows
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FIG. S4. Data collapse according to Eqs. (S8) and (S9) of all susceptibilities obtained from the 11 simulation runs for particle
numbers N = 256, 512, 1024, and 2048 (different data sets in the individual panels) and delay times τ = 0, . . . , 20 (from top-left
to bottom-right panel). These data collapses were used for determination of the exponents γ and ν and the critical value of
the order parameter rC shown in Fig. 1 in the main text.

from the behavior of C(r, 0) after realising that k ∼ 1/r.
For large wave vectors k only the terms with i = j con-
tribute to the sum (S6) and thus limk→∞ C(k, 0) = 1.
For small k, a large number of uncorrelated terms con-
tribute to the sum and thus limk→0 C(k, 0) = 0. The CF
C(k, 0) attains its global maximum for k = k∗ ∼ 1/ξ,
which corresponds to the integration of C(r, 0) up to
r = ξ (for a plot of C(k, 0), see Ref. [12]). The height of
the maximum is thus used as a measure for the suscepti-
bility χ. To evaluate the correlation length and suscep-
tibility from the position and height of global maximum
of C(k, 0) is technically easier than from C(r, 0). In the
following, we use the definition

χ ≡ max
k

C(k, 0). (S7)

Susceptibilities as functions of the nearest neighbour dis-
tance obtained for the considered system sizes N and de-
lay times τ are shown in Fig. S2. Positions of the maxima
in the susceptibilities, r∗1 , mark the phase transition be-
tween the ordered (large mean velocity of the system) and
disordered (small mean velocity) phase. With increasing
delay, the particles are less correlated as witnessed by the
decrease in χ(r∗1), plotted in Fig. S3. The delay depen-
dence of susceptibilities saturates for τ ⪆ 10.

B. Finite-size scaling

The finite-size scaling hypothesis [13] predicts that sys-
tems with correlation length, ξ, on the order of the sys-
tem size, L, exhibit a specific scaling of susceptibility and
correlation length with the particle number. For all con-
sidered delay times τ and particle numbers N , the delay
VM exhibits large correlations at the point of the phase
transition, r∗1 . The corresponding finite-size scaling reads

r∗1 ∼ rC +N−1/(3ν), (S8)

χ ∼ Nγ/(3ν), (S9)

where rC is the position of the putative transition in
the thermodynamic limit of infinite N , and ν and γ de-
note the associated critical exponents. The scaling rela-
tions (S8) and (S9) define the data collapse of the suscep-
tibilities obtained for different N and the same τ , shown
in Fig S4. The values for rC , ν, and γ shown in Fig 1 of
the main text are those that yield the best data collapse.
For systems with second order phase transition in the

thermodynamic limit, the exponents correspond to the
scaling of the correlation length,

ξ ∼ (r1 − rC)
−ν , (S10)
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and the susceptibility ,

χ ∼ (r1 − rC)
−γ , (S11)

as the control parameter r1 reaches its critical value rC .
However, as reviewed in Sec. S1, both the metric and the
topological VM exhibit a discontinuous transition, where
the scaling (S8) and (S9) eventually break down for very
large N . In the thermodynamic limit, both variants of
the VM exhibit a discontinuous phase separation into
periodically altering ordered and disordered regions [14],
unless the system is made incompressible [4, 5]. The size
of these regions imposes an upper bound on the correla-
tion length and thus on the validity of the relation (S10).
In any case, for our finite systems, one can still under-
stand the exponents ν and γ as scaling exponents for
correlation length and susceptibility if r1 in Eqs. (S10)
and (S11) is substituted by r∗1 = r∗1(N) and the scaling
relations are understood as finite-size scaling relations of
ξ and χ with the particle number N at the transition.
The scaling relation for the maximum susceptibility and
different delay times is depicted by solid lines in Fig. S2.
At first glance, the curves are steeper for larger delays,
which results in the large values of the exponent γ for
large τ shown in Fig. 1 in the main text.

S5. DYNAMICAL CORRELATIONS

In this section, we provide all the results of our analysis
of the time dependence of the CF (S6) at the phase tran-
sition. We also provide details on the definition of their
relaxation time τR and dynamical scaling. The discussed
results are depicted in Figs. S5–S11.

A. Dynamical correlation functions

In the main text, we introduced three variants of the
CF (S6), C(t), Cm(t), and Ĉ(t), and discussed their de-
cay with time t and dependence on the delay time τ .
All these CFs were calculated at the transition and for
k∗ ∼ 1/ξ, yielding their maximum value for t = 0. The
CF C(t) is defined as

C(t) ≡ C(k∗, t)/C(k∗, 0), (S12)

and Cm(t) represents its upper envelope. For the CF

Ĉ(t), we sampled the simulated trajectories of the delay
VM with sampling frequency 1/∆tm < 1, ∆tm = τ + 1,
and from the obtained under-sampled trajectories calcu-
lated the corresponding velocities as

vi(t) =
|ri(t)− ri(t−∆tm)|

∆tm
. (S13)

Using these under-sampled trajectories and velocities,
Ĉ(t) was calculated in the same way as C(t) (S12).

Throughout the text, we reserve the symbol Ĉ(t) for the

specific value of ∆tm = τ + 1 corresponding to the dis-
tance between the spikes of CFs in Fig. S5. For other val-
ues of the sampling time, we denote this CF as Ĉ∆tm(t).

Representative plots of these CFs as functions of time
t for various values of delay time τ , and their time deriva-
tives at t = 0 are depicted in Fig. 2 in the main text and
discussed below the figure. Here, we give these figures
for all the investigated values of delay time. Namely, in
Figs. S5, S6, and S7 we show the obtained CFs C(t),

Cm(t), and Ĉ(t), respectively. Time derivatives Cm(t)

and Ĉ(t) are given in Figs. S8 and S9. The relaxation
times τR used to scale the time axis in these two figures
are defined in Eq. (S17).

The reason behind the definition of the CF Ĉ(t) is that
in the field experiments, it can happen that the sampling
frequency (e.g. of the camera) is lower than the delay
times in the interactions. For example, in Ref. [10] the
snapshots, used to detect the positions of the individual
insects, were taken with the sampling time ∆tm ∼ 6ms
which is comparable to reaction times of the smallest in-
sects, reviewed in Tab. S1. Figures S5–S9 show that large
enough under-sampling washes away the delay-induced
oscillation of the CF C(t) and also makes it initially
flat. To evaluate the robustness of these results against
the chosen sampling frequency, we give in Fig. S10 CFs
Ĉ∆tm(t) obtained for various sampling times ∆tm. The

figure shows that the oscillations in Ĉ∆tm(t) gradually
disappear with increasing sampling time, and its time
derivative at t = 0 flattens. The shape of the CFs sat-
urates for ∆tm ≈ τ , i.e. the CFs obtained for larger
sampling times fall on top of each other.

While models with a single delay time perfectly de-
scribe experiments with feedback-driven Brownian par-
ticles [15–17], where there is a single sharp value of in-
strumental delay time, the situation in nature is more
complicated. Each individual may have its own (possi-
bly time-dependent) reaction time, which leads to a dis-
tribution of delay times. A similar effect may also arise
from sequential instead of parallel sampling of the envi-
ronment as found for certain fish [18]. Furthermore, the
delay times interfere with inertia of the motion. The com-
bination of these ingredients can probably lead to similar
effects on the CF C(t) as the under sampling. To give a
more precise answer, we plan to investigate effects of the
distributed delay and sequential sampling in our future
work.

B. Relaxation time

In agreement with Ref. [12], we define the relaxation

time τR of the CFs K(t), K = C,Cm, and Ĉ using the
formula

∫ ∞

0

dt
K(t)

t
sin

(
t

τR

)
=

π

4
. (S14)
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FIG. S5. Time-correlation functions (S12) for delay times τ = 0, ..., 20 (from top-left to bottom-right panel) and system sizes
N = 256, 512, 1024, and 2048 (bottom to top curves in each panel) as functions of time. The data were obtained from 50
simulation runs for each delay time and system size. The correlation functions are discussed in the main text. In Sec. S7C, we
describe an exactly solvable linearised version of the delay VM model, which provides qualitatively similar correlation functions
as depicted.

Animal Stimulus/Response Reaction Time [ms]
Human auditory 140− 160 [19, 20]

visual 180− 200 [19, 20]
touch 140− 160 [19, 20]

Fruit fly roll perturbation ∼ 5 [21]
pitch perturbation ∼ 12 [22]
yaw perturbation 10− 25 [23]

Starling startling sound stimuli 64− 80 [24]
startling light stimuli 38− 76 [24]

Teleost fish startle response 5− 10 [25, 26]
Calanoida stirring water < 2.5 [27]

TABLE S1. Reaction times measured as the time between a
certain stimulus and the corresponding response for various
animals and stimuli.

This expression is equivalent [28] to the formula

∫ 1/τR

−1/τR
K̃(ω)

dω

2π
=

1

2
K(0), (S15)

for the Fourier transform

K̃(ω) =

∫ ∞

−∞
dtK(t) exp(iωt)

= 2

∫ ∞

0

dtK(t) cos(ωt). (S16)

The relaxation time defined by Eqs. (S14) and (S15)
thus corresponds to the characteristic frequency 1/τR for
which half of spectral contributions to the static corre-
lation function results from the interval [−1/τR, 1/τR].
To actually evaluate the relaxation time using Eq. (S14)
from the obtained data, we numerically solved the equa-
tion [10]

N∑

ti=1

K(ti)

ti
sin

(
ti
τR

)
=

π

4
. (S17)

Noteworthy, the dynamical scaling relations described
in the next section are independent of the definition of the
relaxation time as long as it measures the characteristic
decay of the correlation function. Hence, the relaxation
time can alternatively be defined as the time at which the
CF K(t) decayed to a specific value, say K(τR) = 1/2.
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FIG. S6. The upper envelopes of time-correlation functions depicted in Fig. S5.

FIG. S7. Time-correlation functions (S12) calculated form under-sampled trajectories with sampling with frequency 1/(τ + 1)
as functions of time. The individual curves correspond to those depicted in Fig. S5, where the sampling frequency is 1. The
shape of the depicted curves is discussed in the main text.

We have tested that this definition leads to similar results as the definition (S17).
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FIG. S8. Time derivatives of the time correlation functions Cm(t) shown in Fig. S6.

FIG. S9. Time derivatives of the time correlation functions Ĉ(t) shown in Fig. S7.

C. Dynamical scaling

According to the dynamical scaling hypothesis [28], not
only the static correlations (susceptibility) but also time

dependent correlations in scale free systems obey a cer-
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time τ = 20. The oscillations disappear for ∆tm ≈ τ . A
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FIG. S11. Dynamical exponent z obtained by fitting the re-
lation (S18) with τR obtained using Eq. (S17) from the CF

C (top left), Cm (top right), and Ĉ (bottom left). The ex-
ponent z shown in bottom right panel was calculated from
the CF Cm using the same procedure but with the relaxation
time defined by C(τR) = 1/2. Dashed lines mark the 95%
confidence intervals of the fits.

tain scaling with particle number.
Specifically, the CFs K(t), K = C,Cm, and Ĉ, for dif-

ferent particle numbers at a phase transition are conjec-
tured to collapse onto a single master curve after rescal-
ing the time by the appropriate relaxation times τR(N).
We verified that this conjecture is valid for the delay VM
for all the considered values of τ and N . In Fig. 2 of
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FIG. S12. Relaxation times τR for correlation functions Cm(t)
for N = 256, 512, 1024, 2048 as functions of the delay time,
respectively. The data were obtained from all 50 runs of the
simulation. Relaxation times obtained from Ĉ(t) are qualita-
tively the same.

the main text, we provide representative examples of the
obtained data collapse.
Furthermore, the relaxation time at the transition for

given N is conjectured to be related to the corresponding
correlation length ξ, and, through Eqs. (S8) and (S10),
also to N , according to the relation

τR ∼ ξz ∼ (k∗)−z ∼ Nz/3, (S18)

with the dynamical exponent z. For all the considered
delay times and particle numbers, we verified that the
delay VM conforms also with this relation.
The former two results provide two strategies for eval-

uation of the exponent z. The first one is to seek for
the best data collapse of the CFs by rescaling time as
t/ξz with parameter z. The second one is to create for
each delay time the parametric plot log k∗(N) against
log τR(N) and determine z as a slope of linear fit to the
plotted data.
The exponents as functions of delay time obtained us-

ing the latter procedure from CFs C, Cm, and Ĉ with
relaxation time defined by Eq. (S17) are depicted in the
first three panels of Fig. S11. In the last panel, we addi-
tionally give z obtained from Cm using the same proce-
dure but with relaxation time defined by Cm(τR) = 1/2.
All the obtained results except for the one from the CF
C are qualitatively the same: with increasing delay time
the dynamic exponent decays from z ≈ 2 for τ = 0 to
z ≈ 1.1 for large τ . In Fig. 2 in the main text, we show
that the dynamical exponents obtained from the CFs Cm

and Ĉ using the first method also exhibit the described
behavior. Examples of the corresponding data collapses
of CFs Cm and Ĉ are given in Figs. S13 and S14, re-
spectively. The exponent obtained from C in Fig. S11



S10

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

0 100 200

0

0.5

1

FIG. S13. Data collapse of CFs Cm used for determination of the dynamical exponent z obtained using one of the 50 runs of
the simulation. The box-plots showing z in Fig. 3j of the main text follow from statistical analysis of data collapses obtained
for all 50 runs.

exhibits a maximum for v0τ ≈ 0.4 and then decays to
zero. Due to the disagreement of this result with z ob-
tained using all other methods, we consider it as wrong
and attribute the error to the unsuitable use of Eq. (S17)
for calculation of relaxation times for rapidly oscillating
functions such as C.

To further support our conclusion about convergence
of z with increasing delay time made on the basis of
Fig. S11, we show in Fig. S12 the corresponding con-
vergence of relaxation times. The relaxation time con-
verges with delay faster for larger particle numbers. In
particular for the larges particle number N = 2048 con-
sidered, τR seems to relax for delays about τv0/R = 1.
The dynamical critical exponent z is determined by cor-
relation length ξ and τR. Convergence of ξ follows from
our analysis of the static scaling, namely from the con-
vergence of the susceptibility S2 with delay time. The
provided strong numerical evidence for convergence of
both τR and ξ thus also supports convergence of z. In
the next section, we provide further analytical evidence
for this result.

S6. LONG DELAY LIMIT

Let us now investigate how the dynamical equations
for the delay VM change for τ much larger than the unit
discrete update time. The dynamical equations read

vi(t+ 1) = v0RαΘ


vi(t) +

∑

j ̸=i

nij(t− τ)vj(t− τ)


 ,

(S19)

ri(t+ 1) = ri(t) + vi(t+ 1). (S20)

Re-scaling time as t̃ = t/τ , space as xi = ri/τ , and

defining quantities in the scaled time as f̃(t̃) = f(τ t̃),
with f = xi and vi, we find

ṽi(t̃+ 1/τ)− ṽi(t̃)

1/τ
= v0τRi

(
t̃, t̃− 1

)
(S21)

x̃i(t̃+ 1/τ)− x̃i(t̃)

1/τ
= ṽi(t̃+ 1/τ), (S22)

where the functions

Ri = RαΘ


ṽi(t̃) +

∑

j

ñij(t̃− 1)ṽj(t̃− 1)


− ṽi(t̃)

v0
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FIG. S14. Data collapse of CFs Ĉm used for determination of the dynamical exponent z obtained using one of the 50 runs of
the simulation. The box-plots showing z in Fig. 3k of the main text follow from statistical analysis of data collapses obtained
for all 50 runs.

do not depend on the delay. Taking now the limit τ ≫ 1
on the left-hand sides of Eqs. (S21) and (S22), we find a
continuous version of the delay VM

˙̃vi(t̃) = v0τRi

(
t̃, t̃− 1

)
(S23)

˙̃xi(t̃) = ṽi(t̃), (S24)

where the delay time appears on the same footing with
the speed v0. This suggests that the critical behavior of
the delay VM should for large delays be independent of
the specific value of τ , similarly as for v0 [29]. The values
of the exponents in this regime are given by the plateau
values of exponents reached for v0τ/R → 1 in the main
text.

S7. EXACTLY SOLVABLE LINEARIZED DELAY
VICSEK MODEL

Time correlations in the delay VM can be investigated
analytically in the so-called spin-wave expansion around
the perfectly ordered state. In this section, we formulate
the approximation, solve the corresponding dynamical
equations, and show that the resulting CFs are qualita-
tively similar to the CFs obtained from our simulations
of the complete delay VM, depicted Fig. S5.

A. Continuous-time delay Vicsek model

In order to treat the delay VM analytically, we adopt
its simpler time-continuous version

ηv̇i(t) =


J
∑

j

nijvj(t− τ) +
√
2Dξi(t)



⊥

i

, (S25)

ẋi(t) = vi(t), (S26)

based on the time-continuous version of the standard VM
described in detail in Refs. [11, 12]. Above, η sets the
timescale, J measures the strength of the alignment in-
teraction, nij is the connectivity matrix from the time-
discrete delay VM (S19)–(S20), and D controls the inten-
sity of the standard Gaussian white noise ξi defined by
⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = dδijδ(t−t′), where d is the
spatial dimension, i.e., d = 3 in our case. The operation

[w]⊥i ≡ w −
(
w · vi(t)

v0

)
vi(t)

v0
(S27)

keeps the magnitude of the velocity vi(t) constant by
projecting the right-hand side of Eq. (S25) onto its per-
pendicular direction.
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B. Spin-wave expansion of the Vicsek equations

The continuous-time version (S25)–(S26) of the delay
VM can be treated analytically using the so-called spin-
wave expansion [11, 12] around the completely ordered
state. To be specific, we assume that velocities vi(t) of
the individual particles in the system point, up to small
fluctuations, in the direction of the x-axis. In symbols,

vi(t) = v0

(
1− 1

2

π2
i

v20

)
ex + πi(t), (S28)

where πi(t) = [0, φy
i (t), φ

z
i (t)] measures the (small) fluc-

tuations around the average direction of the system,
ex = (1, 0, 0), and π2

i = πi(t) ·πi(t). Inserting the veloc-
ities (S28) into Eq. (S25) and keeping only the leading
order terms in the fluctuations φy(t), φz(t), we obtain
the linear delay Langevin equation

ηφ̇i(t) = J
∑

j

nij [φj(t− τ)− φi(t)] +
√
2Dξ(t). (S29)

Here, φ stands either for φy
i or φz

i and ξ is a stan-
dard Gaussian white noise described by ⟨ξ⟩ = 0 and
⟨ξ(t)ξ(t′)⟩ = δ(t− t′).

For vanishing delay time (τ = 0), this equation is
derived in Ref. [11]. Following further the discussion
therein, we apply the so-called fixed network approxi-
mation, i.e., we assume that the connectivity matrix nij

is constant in time and rewrite Eq. (S29) as

ηφ̇i(t) = −J
∑

j

Λijφj(t− τ)

+ J
∑

j

nij [φi(t− τ)− φi(t)] +
√
2Dξ(t). (S30)

Here, we introduced the matrix Λij = −nij + δij
∑

k nik,
which defines a discrete version of the Laplace opera-
tor. In the limit of continuous space variable, φi = φ(r),∑

j Λij = −nca
2△, and the above equation transforms

to the analytically manageable form

ηφ̇(r, t) = Jnca
2△φ(r, t−τ)+Jnc [φ(r, t− τ)− φ(r, t)]

+
√
2Da3ξ(r, t). (S31)

Above, a is the lattice constant, nc =
∑

j ̸=i nij is the
number of nearest neighbours of a lattice point, r =
(x, y, z) denotes the three dimensional position vector,
and the Gaussian white noise ξ fulfills ⟨ξ(r, t)⟩ = 0 and
⟨ξ(r, t)ξ(r′, t′)⟩ = δ(3)(r− r′)δ(t− t′) with δ(3)(r− r′) =
δ(x− x′)δ(y − y′)δ(z − z′).

C. Green’s function

The Fourier-transformed Eq. (S31) reads

φ̇(k, t) = τ−1J̃(1− a2k2)φ(k, t− τ)− τ−1J̃φ(k, t)

+
√
2D̃ξ(k, t), (S32)

with the Gaussian white noise fulfilling ⟨ξ(k, t)⟩ = 0,

⟨ξ(k, t)⟩ = (2π)3δ(t − t′)δ(3)(k + k′), J̃ = Jncτ and

D̃ = Da3/η2. The general solution to this equation is
given by [8]

φ(k, t) = λ(k, t)φ0+τ−1J̃b
∫ 0

−τ
dt′ λ(k, t−t′−τ)φ(k, t′)

+
√

2D̃

∫ t

0

dt′ λ(k, t− t′)ξ(k, t′), (S33)

where φ0 = φ(k, t = 0) denotes the value of φ(k, t) for
t = 0, and

b = 1− a2k2. (S34)

The Green’s function λ(k, t) solves Eq. (S32) with van-

ishing noise term (D̃ = 0) and the initial condition
λ(k, t) = 0 for t < 0 and λ(k, 0) = 1, i.e.

λ̇(k, t) = τ−1J̃bλ(k, t− τ)− τ−1J̃λ(k, t). (S35)

The most straightforward way to solve this equation with
the above initial conditions is to employ the Laplace
transform in time. Multiplying Eq. (S35) by exp(−st)
and integrating over time, we obtain

sλ(k, s)−λ0 = −τ−1J̃b exp(−sτ)λ(k, s)− τ−1J̃x(k, s)

− τ−1J̃b
∫ 0

−τ
dt exp(−sτ) exp(−st)λ(k, t), (S36)

where λ0 is the value of λ(k, t) for t = 0. The Laplace
transform of λ(k, t),

λ(k, s) =

∫ ∞

0

dt exp(−st)λ(k, t), (S37)

thus reads

λ(k, s) =
1

s− τ−1J̃b exp(−sτ) + τ−1J̃
, (S38)

where we used the initial conditions λ0 = 1 and λ(k, t) =
0 for t < 0. Expanding the denominator of this expres-
sion, we obtain the series

λ(k, s) =

∞∑

l=0

(τ−1J̃b)l

(s+ τ−1J̃)l+1
exp(−lsτ). (S39)

The inverse Laplace transform of exp(−lsτ)/(s+J)l+1 is

given by (t− lτ)l exp
[
−τ−1J̃(t− lτ)

]
Θ(t− lτ)/l!, where

Θ denotes the Heaviside theta function. The inverse
Laplace transform of Eq. (S39) thus yields the Green’s
function

λ(k, t) =

∞∑

l=0

(J̃b)l

l!

(
t

τ
− l

)l

e−J̃(
t
τ−l)Θ

[
t

τ
− l

]
.

(S40)
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Except for the exponential factor exp
(
−J̃ t/τ

)
, this

Green’s function is of the same form as the one for
Eq. (S35) without the term proportional to λ(k, t) on
the right-hand side, which was derived in Ref. [8]. Pulling

it out of the sum yields the expression exp(−J̃ t/τ)λ̃(t),

where λ̃(t) is the Greens function obtained in Ref. [8] for

˙̃
λ(t) = J̃b exp(J̃)λ̃(t− τ). (S41)

Properties of the Green’s function (S40) can be in-
ferred from inserting the exponential ansatz λE(k, t) =
exp(−κt) in the Eq. (S35). One finds that it solves the
equation for (W denotes the Lambert W function)

κ =
1

τ

{
J̃ −W

[
bJ̃ exp(J̃)

]}
, (S42)

which corresponds to the dispersion relation ω(k) = i−1κ
between the frequency ω and the wave vector k, reveal-
ing which plane waves can propagate through the sys-
tem [11]. The real part of the ansatz

ℜ [λE(k, t)] = exp(−t/tR) cos (νt) (S43)

describes well the long-time behavior of the Green’s func-
tion λ(k, t), allowing us to comfortably determine its re-
laxation time tR and the frequency ν as

tR = 1/ℜ(κ), (S44)

ν = ℑ(κ). (S45)

For tR > 0 we find an exponential decay, while for tR < 0
the system explodes/diverges. For ν ̸= 0 the solutions ex-
hibit damped or exploding oscillations. However, initial
oscillations that eventually die out over time can also be
present for ν = 0.

For the VM, the magnitude of the wave vector k is
bounded from below by the linear system size as 1/L
and from above by the lattice constant as 1/a. Therefore,
the term ak in the parameter b (S34) is always smaller
than one and thus b > 0. In Fig. S15, we show various
examples of the Green’s function (S40) in this parameter
regime. The spikes in the figures are separated by one
delay time and physically originate in the tendency to
align with the average orientation of the neighbors before
one delay time. Mathematically, they result from the
summation with theta-functions in the Green’s function.
For b > 0, each summand is positive, largest at t = nτ ,
and decays exponentially with increasing time. Thus, the
sum in Eq. (S40) suddenly increases at instants t = nτ ,
which induce the spikes. These spikes start to vanish
when the factorials in the denominator of the summands
become much larger than the numerator. After that, only
the behavior captured by the exponential ansatz (S43)

survives. This happens roughly after k ≈ J̃b steps in the
sum, corresponding to t ≈ J̃bτ .

D. Correlation functions from spin-wave expansion

In the stable regime tR > 0, where the Green’s func-
tion eventually decays to zero, limt→∞ λ(k, t) = 0, the
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FIG. S15. Panels a), c), and e) show the Green’s func-
tion (S40) as function of time for ak = 0.5, τ = 1, and

J̃ = 1, 5, 15, respectively. Panels b), d), and f) show the
corresponding time-correlation functions (S48). The shape of
these correlation functions is qualitatively similar to the shape
of the correlation functions obtained from the complete delay
Vicsek, e.g., see Fig. S16. The dashed and dotted overlapping
lines represent the exponential envelope exp(−t/tR) and the
full expression (S43), respectively.
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FIG. S16. Correlation function C(t) as function of time
obtained from the simulation of the complete delay VM with
N = 2048 and τ = 20.

general solution (S33) to Eq. (S32) can be used for
calculation of the time-correlation function in k-space,
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C(k, t) = limt0→∞ ⟨φ(k, t0 + t)φ(−k, t0)⟩. We find that
for t > 0 (see also Ref. [8])

C(k, t) = 2D̃ lim
t0→∞

∫ t0

0

dt′ λ(k, t+ t0 − t′)λ(k, t0 − t′).

(S46)
This expression can be used for plotting the time corre-
lation function (see Fig. S15 for a comparison between
the Green’s function and the correlation function), how-
ever, it is not very suitable for mathematical analysis.
Following the approach in Refs. [8, 30], we take the time
derivative of Eq. (S46) and use Eq. (S35) for the Green’s
function. In this way, we obtain for C(k, t) the dynamical
equation

Ċ(k, t) = τ−1J̃bC(k, t− τ)− τ−1J̃C(k, t), (S47)

valid for t > 0, due to the nonanalyticity of λ(k, t) at
t = 0. The solution to this equation is given by Eq. (S33),

C(k, t) = λ(k, t)C0+τ−1J̃b
∫ 0

−τ
dt′ λ(k, t−t′−τ)C(k, t′),

(S48)
and thus the decay time of the time-correlation function
is given by the decay time (S44) of the Green’s function
λ(k, t).

To evaluate the above expression, we need to find the
static correlation function C0 ≡ C(k, 0) and the initial
condition C(k, t) for t ∈ (−τ, 0). This can be done as
follows. Employing the symmetry C(k, t) = C(k,−t) of
the stationary correlation function, we rewrite Eq. (S47)
as

Ċ(k, t) = τ−1J̃bC(k, τ − t)− τ−1J̃C(k, t). (S49)

For t ∈ (0, τ), we can differentiate this equation once
again. The result is

C̈(k, t) = −Ω2C(k, t), (S50)

where we used Eq. (S47) and defined the (possibly imag-

inary) frequency Ω = τ−1J̃
√
b2 − 1. From Eq. (S50), we

find that for t ∈ [−τ, τ ]

C(k, t) = C0 cos (Ωt) + Ċ0Ω
−1 sin (Ω|t|) , (S51)

with Ċ0 = limt→0+ Ċ(k, t) denoting the time-derivative
of the correlation function infinitesimally close to 0 from
the right (its time-derivative) is discontinuous at t =

0 [30]). Since the derivative Ċ0 is evaluated at t > 0
(even though infinitesimally close to t = 0), it can be
obtained from Eq. (S46). We find that

Ċ0 = 2D̃ lim
t0→∞

∫ t0

0

dt′λ̇(k, t0 − t′)λ(k, t0 − t′)

= −D̃ lim
t0→∞

∫ t0

0

dt′
d

dt′
λ2(k, t0 − t′)

= −D̃ lim
t0→∞

[
λ2(k, 0)− λ2(k, t0)

]
= −D̃. (S52)

In order to evaluate C0, we note that Ċ0 also follows
from Eq. (S49) with t = 0, yielding Ċ0 = −D̃ =

τ−1J̃bC(k, τ)− τ−1J̃C0. Using C(k, τ) = C0 cos (Ωτ)−
D̃Ω−1 sin (Ωτ) given by Eq. (S51) for t > 0, we find

C0 =
D̃τ

J̃

[
1− b sin(Ωτ)√

b2 − 1

]
1

1− b cos(Ωτ)
. (S53)

For b > 0, C0 monotonously decreases with the delay
time in agreement with the behavior of susceptibilities in
Figs. S2 and S3.
Since the involved integration runs just from −τ to 0

instead of from 0 to ∞, the expressions (S48, S51 – S53)
provide a much more comfortable (and accurate) way to
evaluate the correlation function than Eq. (S46). More-
over, the formula (S51) describes explicitly the short-time
behavior of C(k, t). Its initial slope is determined solely

be the noise strength D̃ = Da3. On the other hand,
the initial slope of the normalized correlation function
C(k, t) = C(k, t)/C0, usually evaluated in the experi-
ments, reads

Ċ0 =
Ċ0

C0
=

J̃

τ

√
b2 − 1 [1− b cos(Ωτ)]√
b2 − 1− b sin(Ωτ)

=
J̃
√
b2 − 1

τ

1− b cos(J̃
√
b2 − 1)√

b2 − 1− b sin(J̃
√
b2 − 1)

(S54)

which is noise-independent. Note that both C0 and Ċ0

are real valued even for b2 − 1 < 0.
The correlation function in the presented approximate

model is thus in general not initially flat (Ċ0 ̸= 0). This
might seem surprising in the light of results of Cavagna
et al. [10–12]. They showed that the time-derivative of
the correlation function C(k, t) at t → 0 is nonzero if
the Fourier transform of the corresponding Green’s func-
tion has a single pole in the positive plane, and that
limt→0 Ċ(k, t) = 0 for two and more poles in the positive
semi-plane. In general, the pole structure determines the
dispersion polynomial [31]. Multiple poles with non-zero
real parts point to propagation of spin-waves through
the system, while a single pole means that the waves are
overdamped and the relaxation is purely exponential.
The Fourier transform of the Green’s function (S40)

follows from Eq. (S38) after the substitution s → −iω.
The resulting Green’s function λ(k, ω) contains in the
denominator a polynomial of infinite order in ω and thus
possesses infinitely many poles in the positive semi-plane.
However, the time-derivative of the time correlation func-
tion C(k, t) at t → 0 (S52) is in general nonzero and thus
the argument of Cavagna et al. [10–12] does not apply in
our situation. The reason is that the contour integration
used in their derivation can be performed only if all the
poles are located in a finite region in the complex plane.
Nevertheless, our analysis of the full delay VM in the

main paper and in the first part of this Supplemental
Information strongly suggests that the delay VM is in-
deed very similar to a standard model with finite number
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of positive poles – namely, the corresponding correlation functions becomes initially flat if low-pass filtered, e.g.
by a suitable undersampling of the trajectories.
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Physical interactions generally respect certain symmetries, such as reciprocity and energy conservation, which
survive in coarse-grained isothermal descriptions. Active many-body systems usually break such symmetries
intrinsically, on the particle level, so that their collective behavior is often more naturally interpreted as a result
of information exchange. Here we study numerically how information spreads from a “leader” particle through
an initially aligned flock, described by the Vicsek model without noise. In the low-speed limit of a static spin
lattice, we find purely conductive spreading, reminiscent of heat transfer. Swarm motility and heterogeneity can
break reciprocity and spin conservation. But what seems more consequential for the swarm response is that the
dispersion relation acquires a significant convective contribution along the leader’s direction of motion.

DOI: 10.1103/PhysRevE.106.014609

I. INTRODUCTION

Transfer of information, energy, or mass through complex
interacting networks is of ubiquitous interest in many scien-
tific disciplines. As examples think of the World Wide Web
and social media [1,2], epidemics [3–6], or heat conduction
and diffusion [7–9]. In particular, information, rather than
the elementary physical interactions transmitting it, is key to
groups of motile living agents, such as bird flocks [10,11] or
bacterial colonies [12,13]. To understand the behavior of such
far-from-equilibrium many-body systems is a main task of the
surging field of active matter [14–16]. Many new interesting
phenomena have been uncovered, including motility-induced
phase separation (MIPS) [17] and related forms of self-
organization [18,19] and pattern formation [20,21]. Such
studies could eventually lead to the development of novel
types of “smart (meta-)materials” [22,23]. Yet systematic
studies of the mechanisms of information spreading through
active matter systems are still scarce.

In this work, we therefore analyze the information spread-
ing in a two-dimensional Vicsek model (VM) [24], which
is a paradigmatic model of dry active matter (without mo-
mentum conservation in the solvent) [25,26]. It provides a
minimalistic description of active collective phenomena such
as the formation of bird flocks or insect swarms. The VM
resembles a magnet consisting of N spins, which describe
the orientations of the self-propelled particles. Their positions
advance at constant speed, while their orientations are subject
to mutual alignment interactions with their neighbors. Com-
pared to the limit of interacting lattice spins or also to the
case of digital information transport through disordered static
networks (frequently studied in network theory) the VM is ca-

*viktor.holubec@mff.cuni.cz

pable of more complex behavior. Its neighbor configurations
are neither regular nor static but constitute a dynamical graph
[27,28]. As a consequence, information in the VM spreads
not only by conduction but also by convection, hitchhiking
with the motile particles [6]. Moreover, the information about
particle positions and orientations is continuous, not digital.

In the following, we try to disentangle the various com-
plications, by first studying information spreading on a static
square lattice. For vanishing noise, this limit allows for an
exact solution, which simplifies the analysis and provides
good insight. Then we investigate the full deterministic (no
noise) VM with nonzero velocity. For both cases, we study
the information spreading for a scenario known as flooding in
network theory [28–31]: Starting in an orientationally ordered
state with a single “leader” particle that deviates from the
rest, we investigate how its perturbing effect spreads to the
others. So far, flooding dynamics was mostly studied for static
graphs; but see Ref. [28] for a more general approach. To
assess the spatiotemporal information spreading in the VM,
we numerically determine the corresponding dispersion rela-
tion. Naturally, the convective flooding due to particle motion
is found to dominate over conduction at higher speeds and
over long distances. But it also gives rise to a considerable
forward-backward symmetry breaking, rendering the disper-
sion relation spatially highly nonisotropic.

The paper is structured as follows: In Sec. II we introduce
the VM. The zero-speed limit of the VM is discussed in
Sec. III, which introduces the two flooding scenarios con-
sidered in this work: The firm leader with constrained spin
orientation, which eventually guides the flock into a new di-
rection; and the lax leader, which delivers an initial impulse
but afterwards relaxes freely, like all other spins. Finally, in
Sec. IV we consider the general case of nonvanishing particle
speeds, where the dispersion relation becomes ambiguous,
before we conclude in Sec. V.
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II. VICSEK MODEL

Since its introduction in 1995, many modifications of the
original VM have been discussed in the literature [32]. Here
we consider the deterministic discrete-time variant describ-
ing N particles self-propelling with constant speed v0 in two
dimensions with topological alignment interactions. The posi-
tion ri(t ) and velocity vi(t ) of ith particle obey the dynamical
equations

vi(t + 1) = v0�
[
vi(t ) + ∑

j �=ini j (t )v j (t )
]
, (1)

ri(t + 1) = ri(t ) + vi(t + 1), (2)

where �(v) ≡ v/|v| normalizes the velocity. The connectiv-
ity matrix ni j (t ) defines the interaction network. We assume
topological interactions: Each particle interacts with its Nint

nearest neighbors at time t . For these ni j (t ) = 1, while it
vanishes otherwise. We have tested that metric interactions,
where each particle interacts with all neighbors within a given
spatial distance, leads to qualitatively the same results (data
not shown). In contrast to the standard VM, we neglect the
noise.

Instead of using the particle velocities vi(t ) to characterize
the system state, one can equivalently describe it by the angu-
lar variables θi(t ), defined by vi(t ) = v0(cos θi, sin θi ). In this
language, Eq. (1) assumes the form [33]

θi(t + 1) = θi(t ) + 1

Ni(t )

∑
j �=i

ni j (t ) sin[θ j (t ) − θi(t )], (3)

where Ni(t ) ≡ v−1
0 |vi(t ) + ∑

j �=ini j (t )v j (t )| stems from the
normalization in Eq. (1).

We consider the situation where one of the particles (the
leader) in a completely polarized system suddenly changes
its direction and initiates a collective maneuver [10,34–36],
due to the spreading of information about its flight direction
through the flock [37,38]. To analyze the spreading of in-
formation in different directions with respect to the leader’s
velocity, it is useful to position it initially, at time t = 0, in
the center of the flock. In the next section, we investigate the
information transfer for the static spin lattice (v0 = 0), where
the information spreads only by conduction. The interplay
of conduction and convection, appearing for nonzero particle
velocity, is then addressed in Sec. IV.

III. ZERO-VELOCITY LIMIT OF THE VM

A. Linearized lattice VM and its continuous limits

To make contact with classical spin models, the particles
are placed on grid points ri of a two-dimensional square lattice
and interact only with their direct neighbors. In this limit, the
dynamics of the well-known XY model is restored. In the
following, we label the orientations θk of the individual spins
(or particles) by their positions i j in the lattice. If all spins on
the square lattice are well aligned, Eq. (3) can be expanded in
fluctuations around the aligned state as

θi j (t + 1) = 1
5 [θi j (t ) + θi−1 j (t ) + θi j−1(t )

+ θi+1 j (t ) + θi j+1(t )], (4)

where we assumed that the average orientation of the system is
0 and θi j � 1. In this limit, the periodic boundary conditions

for θi j do not need to be taken into account. An analogous
linear formulation of the low-velocity VM has recently been
employed [39] to calculate the total number of particles in a
Vicsek flock from the orientational diffusion coefficient of a
single particle.

Noteworthy, the same equation describes occupation prob-
abilities of the individual grid-points for a symmetric random
walk on a two-dimensional square lattice with equal probabil-
ities to stay at a given point or to jump to a neighboring point.
Unlike the standard Vicsek model, it thus conserves the total
amount of “information”

∑
i j θ (t ) unless some of the lattice

points serve as sources or sinks of information. Information
conservation would also be lost for less symmetric lattices,
breaking reciprocity of the interactions (for details, see the
Appendix).

Besides being exactly solvable, the importance of this sim-
plified lattice model for understanding of information transfer
in the VM is its similarity to other physical models such as
lattice models of ferromagnetism, where θi j (t ) describes spin
of the given grid point [40–44], the Google Search PageRank
algorithm [45,46], measuring the importance of a web page
by counting all links to it and weighting them by their quality,
the majority vote model, and, most importantly, lattice models
of heat conduction [47,48].

A central finding from the latter is that the heat flux is well
described by Fourier’s law implying that the local temperature
θ obeys the parabolic (diffusion)

∂tθ = D∇2θ (5)

with the diffusion coefficient D. However, this equation leads
to unphysical infinite propagation speed of heat [47,49], in the
sense that a change in the temperature at the origin leads to
infinitesimal changes in temperature far from the origin after
an infinitesimally short time. Another issue is that Eq. (5) in
general cannot describe the propagation of second sound, i.e.,
the thermal wave [8] encountered in low-temperature physics
[50]. The most popular and simplest generalization of Eq. (5)
which can describe both diffusive and wave-like transfer is the
hyperbolic equation

∂tθ + τ

2
∂2

t θ = τ

2
c2∇2θ, (6)

with maximum heat transfer velocity c and a characteristic
time τ . A standard derivation of this equation is based on
Cattaneo’s generalization of Fourier’s law [51,52].

Interestingly, it turns out that both these equations are spe-
cial limiting case of Eq. (4) [47,48]. Specifically, introducing
a lattice constant � and the time τ the signal needs to travel
between two lattice points, it can be rewritten as

θ (x, y, t + τ ) = 1
5 [θ (x, y, t ) + θ (x + �, y, t )

+ θ (x − �, y, t ) + θ (x, y + �, t )

+ θ (x, y − �, t )]. (7)

Now, taking the continuum limit τ → 0 and � → 0, while
keeping constant the ratio 5D ≡ �2/τ yields in the zeroth
order in τ the diffusion equation (5). On the other hand, taking
the limit while keeping constant the velocity c

√
5/2 ≡ �/τ

leads in the first order in τ to the hyperbolic equation (6).
These nonstandard definitions of speed and diffusion coef-
ficient result from the term θ (x, y, t ) on the right-hand side
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of Eq. (7), which is not present in a standard random walk.
The speed c, denoting the maximum speed of propagation in
Eq. (6), is smaller than the maximum speed of propagation
in the lattice model, v = l/τ . Identifying τc2/2 in Eq. (6)
with D, one can consider the parabolic equation (5) as a
limit of infinitely fast (τ = 0) signal transmission between
the neighboring lattice points. While this limit is often a
good approximation for heat conduction [8] it might not be
appropriate for biological agents with finite response time. A
general statement about which of the two continuum limits fits
better the description of the VM is not possible. It can heavily
depend on the quantity of interest and the chosen parameters.
Nonetheless, from our analysis below, it follows that the in-
formation spreading in the VM is approximately diffusive for
small speeds v0 and increasingly nondiffusive as v0 grows.

B. Firm and lax leaders

We now consider the following two specific flooding sce-
narios for the static VM (4). (1) In the firm leader scenario, the
leader’s orientation is held fixed. Measuring the angular vari-
ables θi j � 1 in units of the initial orientation of the leader, we
set θ00(t ) = 1 for all times. This amounts to a steady informa-
tion influx into the system. (2) In the lax leader scenario, the
orientation of the leader is set to 1 at time 0 but then evolves
according to Eq. (4). In both scenarios, all other particles are
initially aligned with the x axis, θi j (0) = 0 for i j �= 00. While
(1) can be interpreted as a flock following a leader, (2) might
describe a flock reacting to a sudden perturbation.

In the firm-leader scenario, the dynamical equation (4)
is most easily written and solved using the matrix form
θ(t + 1) = M0θ(t ) + θ(0), where the vector θ(t ) contains the
values of orientations at all grid points at time t , θi j (t ), and
M0 incorporates the interactions. It has vanishing entries for
the feedback onto the leader’s orientation, which is set by
θ(0), which has vanishing entries for all other particles. The
solution is θ(t ) = ∑t

i=0 Mi
0θ(0). In the lax leader scenario, the

dynamical equation is θ(t + 1) = Mθ(t ), and M incorporates
the interactions between all the grid points, as described by
Eq. (4), including the feedback onto the leader. The solution
is θ(t ) = Mtθ(0). Both solutions nicely demonstrate that due
to the linearity of the dynamics, the transmission of the in-
formation obeys the principle of superposition: The impact
onto θi j (t ) depends on the number of possible paths of length
t the signal may take from (0,0) to (i, j), namely, the sum-
mation induced by the matrix multiplication in Mt

0). And it
decays with time and distance due to the conservation en-
forced by the repeated normalization via the prefactor (1/5)t

in Mt
0.

In Fig. 1 we depict the information spreading in the
linearized lattice VM for both scenarios. As expected, the
information spreading quickly becomes isotropic, since dis-
cretizing the diffusion equation on a square lattice destroys
the radial symmetry only for short paths and affects only the
initial stage of the dynamics. The spreading for the firm leader
scenario, with a fixed source at the origin, eventually aligns
all particles to the leader. The rate of this approach decreases
with growing distance of the grid points from the leader, and
the saturation curves exhibit maximum slopes at intermediate
times.
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FIG. 1. Information spreading in the firm (a), (b) and lax (c), (d)
leader scenarios. (a), (c) The spatial spreading of the orientation θi j (t )
at different times over the distance d = √

i2 + j2, transverse (filled
blue markers) and diagonal (open red markers) relative to the leader.
(b), (d) The time evolution of the orientation for different grid points.

C. Signal speed

In general, there is no unique definition of the speed of
information spreading in the linearized lattice VM. The most
obvious definition v = l/τ = 1 refers to the signal transfer be-
tween neighboring lattice points [cf. Eqs. (4)–(7)]. It provides
the time d/v after which a grid point at distance d from the
leader starts to receive the information. Yet it is of limited use
because the strength of the received information is negligible
if the grid point is far from the leader and there are only a
few paths for the signal between the leader and the grid point.
For example, in the case of a single path the signal strength
received at time d/v is proportional to (1/5)d .

A more informative definition is obtained from the time
Tmax(d ) when the change of orientation induced by the leader
at distance d becomes maximal. The rate of change of orien-
tation of the grid points is measured by the time derivatives
θ̇i j (t ), which exhibit a clear maximum [cf. Figs. 1(b) and
1(d)]. One may thus identify Tmax(d ) with the time when
θ̇i j (t ) with

√
i2 + j2 = d is maximal. In Fig. 2(a) we show the

resulting dispersion relation d (Tmax) obtained from evaluating
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FIG. 2. (a) The dispersion relation for the linearized lattice VM
transverse (blue filled circles) and diagonal (red open circles) relative
to the leader. The solid line shows a fit d (t ) = atm with exponent
m = 0.48 and a ≈ 1.1. (b) The corresponding signal speed cs = ḋ as
function of the distance d to the leader.
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FIG. 3. (a) The dispersion relation for a generalized lattice VM
where each grid point interacts with all neighbors at distances up to
r lattice edges for three values of r. (b) The corresponding signal
speeds cs(d ) = ḋ , respectively.

the signal propagation on the horizontal and on the diagonal
axis with respect to the leader in the firm leader scenario. As
expected, the found information spreading is well described
by the diffusion relation d (Tmax) = √

4Deff Tmax. However, the
diffusion coefficient Deff = a2/4 ≈ 0.3, obtained by fitting
the data, is much different than the diffusion coefficient D =
0.2, predicted from the limiting process leading to Eq. (5). In
Fig. 2(b) we show the corresponding signal speed cs = ḋ (t ) ∝
1/

√
t ∝ 1/d . The results obtained for the lax leader scenario

are qualitatively the same (data not shown).
As an aside, we note that, while evaluating the evolution

of the maxima of θ̇i(t ) is a reasonable approach for studying
the signal spreading in the two flooding scenarios consid-
ered here, it is not suitable for more complex situations. A
more universally applicable proxy for signal speed can be
obtained by evaluating the connected acceleration correla-
tions [10]. For our specific setting with a single leader and
aligned initial state, the two approaches lead to the same
results.

To close this section, we investigate the information
spreading in a direct generalization of the linearized lattice
VM (4), where the individual grid points interact not only
with their nearest neighbors, but also with all grid points up
to a distance of r lattice edges from the leader. Consequently,
each grid point interacts with its Nint = 2r(r + 1) nearest
neighbors. The maximum speed of information propagation,
v, is determined just by distances between particles at the
circumference of the interaction zone, and thus it increases
linearly with r. On the other hand, the r dependence of the
speed cs, shown in Fig. 3, is sublinear as the signal maximum
is “slowed down” by the particles inside the interaction radius.
Interestingly, the curves for different r values cannot be col-
lapsed into a single master curve by multiplying each of them
by a constant factor. Our analysis suggests that such a collapse
is possible for long times only, with numerically obtained
scaling factors 1.565 and 2.105 yielding the best asymptotic
collapse of the curves for r = 1 to those for r = 2 and r = 3,
respectively. These factors are close to the factors 1.64 (r =
1 → 2) and 2.28 (r = 1 → 3) obtained from the diffusion
limit (5) of the individual lattice models as

√
Dr/D1 with Dr

denoting the diffusion coefficient obtained for the individual
values of r. Even though the diffusive scaling d = √

4Drt ,
predicted from Eq. (5), does not describe the data perfectly
(in particular the prefactor 4Dr is wrong), we take this as an
indication that the formula d = √

4Defft with Deff ∼ Dr is a

reasonable qualitative model for the spreading of information
over long time and large length scales.

To sum up, in the linearized static spin model, the informa-
tion spreads essentially diffusively. We next investigate how
the situation changes when we allow particles to translate
along their orientations.

IV. THE MOTILE CASE

A. The role of convection

Compared to equilibrium systems, active matter breaks
certain local symmetries such as momentum and energy con-
servation. It is not a priori obvious whether this fundamental
difference will lead to important effects on the information
spreading and swarm behavior or if it is largely irrelevant,
in practice. Differently from the lattice VM, the standard
VM does not place the particles onto a regular lattice, and
if so, this order would not be maintained for long. Notice
that this breaks two important symmetries, namely, reciprocity
and information conservation (see the Appendix). While the
disorder itself does not affect the diffusive information spread-
ing, the evolution of the neighborhood relations for v0 > 0
additionally allows for information convection. This situation
is thus very similar to a moving heat source with the main
difference that particles addressed by the leader tend to follow
it, while heated passive particles generally do not induce a
comparable flux.

Let us now derive a rough estimate for the particle speed
v0 at which convection becomes important. The maximum
conduction speed is given by the speed with which the signal
spreads due to the interactions, i.e., �int/�t . Here �t = 1 is
the discrete update time in the VM and �int = √

Nint/(πρ) =√
Nint/N is the average interaction radius, assuming a more

or less homogeneous density ρ = N/π after initiation inside
a unit circle. The speed of convection is given by the relative
speed of the individual particles on the order of v0. Conduc-
tion and convection should thus compete when v0 ≈ √

Nint/N .
Alternatively, as in Sec. III C, we could measure the speed of
signal propagation by the ratio di/Ti, where Ti is the time when
the signal sent at time 0 causes a maximum change θ̇i(t ) of
orientation at distance di, i.e., θ̇i(Ti ) ≡ maxt θ̇i(t ). As we find
below, the latter approach, which predicts a significantly lower
conduction speed, is more appropriate to describe the data,
yielding a correspondingly lower threshold velocity for the
onset of convective transport. (For our choice of parameters,
convection plays role already for velocities of about v0 = 0.01
while

√
Nint/N ≈ 0.16.)

Besides inducing convection, motility further complicates
the definition of a signal speed. Due to the relative motions
of the particles there is no a priori choice of the distance di

traveled by a signal. For this reason, we analyzed the speed of
information propagation using two different definitions of di.
First, the (average) initial distance |ri(0) − rL(0)| between the
particles and the leader, which is the initial position of particle
i at time 0, also encoded in the initial density ρ. Second, the
distance |ri(Ti ) − 1/N

∑
j rj(Ti )| between the particle i and

the position of the center (of mass) of the flock at the charac-
teristic “interaction time” Ti for conductive transport. We have
performed the analysis below for both these definitions of the
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distance and found no qualitative differences. Therefore, we
show only the results obtained for the former, in the following.

B. Numerical procedure

In the simulations, we place the leader always into the cen-
ter of a unit circle. Positions of all N = 1000 other particles
are picked randomly inside the circle. All particles interact
with their Nint = 24 nearest neighbors, corresponding to r = 3
in Fig. 3. Small density fluctuations in the initial condition
are found to induce strong noise in the measured functions
θi(t ) and θ̇i(t ). To be able to determine the overall trend from
these measurements, we averaged the resulting curves over
Nruns runs with different initial conditions. We also employed
two different smoothening procedures:

The average 〈·〉nn is calculated as follows. First, we collect
the data {di, θi(t ), θ̇i(t )}i=1,...,N from Nruns = 100 runs of the
simulation. Then we sort the data according to the distance di

to the origin at time 0. Finally, we calculate the smoothed vari-
ables 〈di〉nn, 〈θi(t )〉nn, and 〈θ̇i(t )〉nn by averaging di, θi(t ), and
θ̇i(t ) over Nav neighbors of the particle i, i.e., over the particles
j with Nav smallest distances |di − d j |. Since the dispersion
relation is a strictly monotonous function of time, one may
alternatively perform the averaging with respect to nearest
neighbors in time Ti, according to when the maximum signal
has arrived at particle i. In other words one can average over
the particles j with Nav smallest distances |Ti − Tj |. We have
tested that both averaging procedures lead to qualitatively the
same results. In the following, we show only those obtained
using the averaging 〈·〉nn over Nav spatially nearest neighbors.

C. Firm leader scenario

We now consider the firm leader scenario of Sec. III B,
where the leader’s orientation is fixed to ϕ at all times and
all other particles are initially aligned with the perpendicular
x axis and subsequently obey the dynamical equations (1) and
(2). Note that this condition implies that reciprocity between
the leader and the flock is maximally broken.

In Figs. 4(a) and 4(b) we show the resulting averaged
orientations, 〈θi(t )〉nn, and the averaged changes in the orien-
tation, 〈θ̇i(t )〉nn, as functions of the averaged distance 〈di〉nn.
To investigate the directional dependence of the information
spreading, we distinguish between two directions of signal
propagation. As the leader’s orientation points into the pos-
itive half-plane, we identify the particles with positive y
coordinates at time 0 as lying in the “positive direction” with
respect to the leader. The remaining particles are lying in the
“negative direction.” The results for 〈θi(t )〉nn and 〈θ̇i(t )〉nn for
the positive and negative directions are given in Figs. 4(c) and
4(d) and Figs. 4(e) and 4(f), respectively. As the leader carries
the source of information with it, particles lying in the positive
direction show a significantly larger change of orientation than
those in the negative direction. Furthermore, the leader affects
nearby particles more than more distant ones. This leads to
correspondingly stronger average direction changes 〈θ̇i(t )〉nn

in its vicinity. Consequently, upon traversing the flock, the
leader seems to drag around a cloud of “followers.” However,
since the interaction rule allows only imperfect alignments,
particles begin to realign with the less informed surroundings
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FIG. 4. Firm leader scenario. The average orientation, 〈θi(t )〉nn

and change in orientation 〈θ̇i(t )〉nn, as functions of the average dis-
tance 〈di〉nn at three different times: For the whole swarm (a), (b),
along the leader direction (c), (d), and along the negative leader di-
rection (e, f). Parameters used: N = 1000, v0 = 0.01, Nint = 24, ϕ =
π/4, Nruns = 100, Nav = Nruns.

after the leader has left their neighborhood. This is depicted
by the moving maxima of 〈θi(t )〉nn and 〈θ̇i(t )〉nn in Figs. 4(c)
and 4(d). In the negative direction, where the information
propagates by pure conduction, no such structure is visible.
The response of the swarm as a whole is dominated by the dy-
namics in positive direction. Repeating the described analysis
for v0 = 0, we found the same behavior as for the linearized
lattice VM in Sec. III.

In Fig. 5(a) we show the time evolution of the change of
orientation 〈θ̇i(t )〉N,Nruns averaged over all particles in the cho-
sen particle set (total system, positive direction, and negative

0 100 200

0

10

20
10 -4

10 -3 10 -2 10 -1
10 0

10 1

(a) (b)

FIG. 5. Firm leader scenario. (a) Time evolutions of the change
of direction averaged over the total system and the positive and
negative directions for v0 = 0.01 and v0 = 0, respectively. (b) The
corresponding ratio (8) as function of the particle speed. Other pa-
rameters as in Fig. 4.
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FIG. 6. Dispersion relation for the firm-leader scenario for pos-
itive (blue circles) and negative (red stars) directions and speeds
v0 = 0, 0.001, 0.01, 0.03 increasing from the upper left to the bottom
right panel. The black solid lines are fits of a〈Ti〉m

nn to the data for the
positive direction with m = 0.376, 0.417, 0.449, 0.451 correspond-
ing to the individual speeds. The slope of the data for speed v0 = 0.03
for the positive direction is ≈0.018 while the corresponding speed
of the leader projected to the positive direction is v0 sin ϕ ≈ 0.021.
Parameters as in Fig. 4, except for NAv = 10Nruns.

direction) and all simulations for v0 > 0 and v0 = 0. For v0 >

0, the average signal strength for the total system and particu-
larly in the positive direction continuously increases until the
leader approaches the edge of the system. This can be under-
stood as follows. The change of orientation of the individual
particles is largest when their orientation differs most from
the average orientation of their neighbors. A moving leader
constantly meets on its way in the positive direction particles
(almost) aligned with the x axis, leading to a steady increase of
the corresponding signal. Subsequently, at times t � 50 when
the leader has left the flock, 〈θ̇i(t )〉N,Nruns rapidly decreases,
and eventually it also changes sign. Since the leader mainly
affects nearby particles, more distant particles are much less
aligned with its orientation when it leaves. Therefore, particles
that aligned with the leader during its passage through the
flock begin to realign with the less affected particles after the
leader has left. In the negative direction, the signal strength
monotonously decreases, similarly as for v0 = 0 and the lin-
earized lattice VM.

To quantify the asymmetry between the positive and nega-
tive direction, we integrate the positive areas

�θ± =
∫ ∞

t0

〈θ̇i(t )〉±N,Nruns
�

(〈θ̇i(t )〉±N,Nruns

)
, (8)

beneath the corresponding curves in Fig. 5(a). Here + (−)
corresponds to the positive (negative) direction and �(·) de-
notes the unit step function. The ratio �θ+/�θ− is shown in
Fig. 5(b). As expected, it monotonously increases with the
particle speed v0 and particle density N/π .

The main result of this section are the dispersion relations
for four different velocities shown in Fig. 6. Regardless of v0,
the information initially spreads conductively, hence similarly
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FIG. 7. Lax leader scenario. (a), (b) The orientation, 〈θi(t )〉nn,
and the averaged change in the orientation, 〈θ̇i(t )〉nn, as functions
of the averaged distance 〈di〉nn for three different times averaged
over the overall system. (c) The ratio (8) of the integrated positive
changes in the orientation in the positive and negative directions as
functions of the particle speed for the firm and lax leader scenario.
(d) The dispersion relation for the positive and negative directions
for the firm and lax leader scenario. We used the same parameters as
in Fig. 4.

as in the linearized lattice VM, as diffusion beats convection
over short times and distances. With increasing velocity v0 >

0, the spreading in the positive direction becomes gradually
more convective at late times. The slope of the dispersion
relation converges to the velocity of the leader projected to
the positive direction, v0 sin ϕ. In the negative direction, the
spreading stays conductive regardless of v0. Even though the
particles in the negative direction are less affected by the
turning event induced by the leader, the dispersion relation
shows that the information reaches them faster than those in
the positive direction. This counterintuitive effect is a con-
sequence of the employed definition of Ti: The dispersion
relation follows from determining times maximizing θ̇i(t ). As
the leader moves away from the particles behind it, the rates of
change θ̇i(t ) of their orientations peak sooner than those in the
positive direction. This somewhat counterintuitive behavior is
reminiscent of observations of faster speeds for smaller pulses
[8] or propagation of second sound against the heat flow [53].

D. Lax leader scenario

The information spreading is somewhat different in the lax
leader scenario. For the same initial condition as in the preced-
ing section, the leader now adapts dynamically according to
Eqs. (1) and (2) to its neighbors for t > 0. It thereby virtually
loses the information passed on to them. The interaction with
the neighbors is thus more reciprocal than for the unwavering
firm leader, yet not entirely so, since the topological notion
of next neighbors is not necessarily fully reciprocal (see the
Appendix).

In Figs. 7(a) and 7(b) we depict again the average
orientation 〈θi(t )〉nn and the averaged change in the orientation
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〈θ̇i(t )〉nn for the lax leader scenario. The parameters are the
same as for the firm leader scenario in Fig. 4. Comparing
the results for the two scenarios, we find the following dif-
ferences: (1) the amplitudes of both 〈θi(t )〉nn and 〈θ̇i(t )〉nn are
much smaller and the time derivative in the averaged angle
converges to zero much faster, since the leader realigns with
the rest of the flock in the lax leader scenario. (2) The time
derivative 〈θ̇i(t )〉nn exhibits an excursion to negative values at
small distances to the leader, due to the feedback from the
flock, which requires a realignment of the leader and its neigh-
borhood with the “winning majority” of other particles in the
flock. At larger distances, the derivative returns to positive
values, as expected for a moderate realignment of the merely
slightly disturbed more distant particles. (3) There is again a
directional dependence of the response, as in the firm-leader
scenario. However, it is now much weaker, due to the mutual
information exchange.

In fact, for the parameters used in the figure, it is not
worthwhile to show the corresponding spatial distributions, as
they would be hardly discernible from those for the total sys-
tem in Fig. 7. The directional dependence of the information
spreading in the lax leader scenario becomes noteworthy only
for substantially larger speeds v0, as demonstrated in Fig. 7(c).
There we compare the ratio �θ+/�θ− of responses (8) in-
tegrated in the positive and negative directions between the
lax and firm leader scenarios. Because of weaker total signal
strength in the lax leader scenario, the changes of orientation
θ̇i(t ) of the individual particles peak sooner, leading to steeper
(but directionally barely distinguishable) dispersion relations;
cf. Fig. 7(d).

V. CONCLUSION

We studied transport of information about orientation of
a leader in the Vicsek model (VM) with topological in-
teractions. The two main mechanisms for propagation of
information are conduction and convection. We have shown
that the conductive aspect in the VM can well be understood
using a simplified, exactly solvable variant of the model,
where the individual particles are fixed at grid points of a
regular lattice. This static spin lattice model allows for an
analogy with heat transfer, which ceases to hold in the full
dynamic VM. Nonlinearity and heterogeneity then break the
underlying symmetries such as reciprocity and spin conserva-
tion. Yet this has no major practical consequences by itself.
The visible changes between the dynamic model and the spin
lattice are entirely dominated by the convective dynamics.

We considered two scenarios of information spreading
from a single misaligned leader particle. While the diffu-
sive or conductive spreading prevails over short times and
distances, the spreading over longer times and distances grad-
ually acquires a convective contribution, as the particle speed
increases. We quantified this intuitive conclusion by measur-
ing the dispersion relation. It was formulated for the timescale
at which the signal induces its largest change in orientation
of the particles at a given distance. The analysis revealed a
strong directional dependence of the information transfer for
the firm-leader scenario, in which the reciprocity of the mutual
information exchange is maximally violated. A significant
effect of convective information spreading is observed only

in the direction of the leader motion. In the wake zone behind
the leader, the spreading remains diffusive, regardless of the
speed.

While measuring the dispersion relation for zero speed of
the particles is a relatively straightforward task, the definition
of the distance over which the signal has propagated becomes
ambiguous for the motile swarm. Nevertheless, we found that
different length definitions lead to qualitatively close results.

Besides this ambiguity in the definition of the dispersion
relation, which might deserve further analysis, our findings
raise several questions. First, while some preliminary runs
seemed to confirm the expectation that the inclusion of noise
in the VM would yield qualitatively similar results, one could
wish to study this issue more extensively, in particular with re-
gard to the stability of the flocking transition; i.e., under which
conditions can a leader move induce an ordering transition
or the breakup of a flock? Further, many natural interaction
networks are more heterogeneous than our flocks, contain-
ing, e.g., certain hierarchical structures [54,55] or distance-
and density-weighted interactions [24]. Moreover, it might be
interesting to consider a more realistic modification of the
standard VM where the orientation of a particle under con-
sideration would have a stronger weighting than the average
orientation of its neighbors. This would yield a more persis-
tent motion and might impact the information propagation.
We took first steps in this direction in a follow-up study to the
present work [56]. There we investigate information spreading
in a 2D VM with time-delayed metric interactions [57] and
also address the pertinence of the notion of linear response
[58–60] and its relation to information propagation. Next, it
might be interesting to connect information spreading in ac-
tive matter with corresponding results in other research fields,
such as network theory or epidemiology. Especially in the
latter, the effects of network heterogeneity on the spreading of
diseases is a widely studied aspect [6,61–63]. Finally, it would
seem interesting to pursue the question how the interaction
rules in the VM can be optimized to facilitate information
transfer.
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APPENDIX: BREAKING OF INFORMATION
CONSERVATION IN THE LINEARIZED VM

As discussed in Sec. III, the interaction rule in the lin-
earized lattice VM,

θi j (t + 1) = 1

Ni j (t )

∑
〈(i j),(kl )〉

θkl (t ), (A1)

where the sum goes over all neighbors (kl ) of (i j) includ-
ing (i j) itself, and Ni j = ∑

〈(i j),(kl )〉 denotes the number of
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neighbors, conserves the total information content

θtot (t ) ≡
∑

i j

θi j (t ). (A2)

While the linearized Vicsek interaction rule yields recipro-
cal interactions if the interaction network is regular, it can
render nonreciprocal interparticle interactions for irregular
interaction networks, e.g., if the particle density of the sys-
tem is inhomogeneous in space. The conservation condition
θ̇tot (t ) = 0 will then be broken. For a closed system, the re-
verse also holds: If the conservation is broken, this indicates
the presence of some nonreciprocal interactions. As an il-
lustrative example, consider the following closed interaction
network consisting of three particles. Particle 1 and 3 inter-
act solely with particle 2, which interacts with both 1 and
3. Assuming the initial condition θ1(0) = 1 and θ2,3(0) = 0,
then θ1(1) = 1/2, θ2(1) = 1/3, θ3(1) = 0. We thus see that
θtot (0) = 1 > θtot (1) = 5/6. If we instead consider the initial

condition θ2(0) = 1 and θ1,3(0) = 0, we find θtot (0) = 1 <

θtot (1) = 3/2. These examples manifest a more general find-
ing that θtot (t ) decreases when the information flows from a
less to a more connected region, and vice versa. In this case,
reciprocity is broken since the normalization Ni j of neighbor-
ing particles varies. Beyond the linear regime, the situation
is more complicated as the normalization Ni j depends on the
angular variables.

Similarly, also for topological interactions, the informa-
tion content is not conserved. While each particle interacts
with exactly the same number of neighbors (i.e., Ni j =
const), density gradients may induce unilateral interactions.
As an example, consider a closed system of four particles
with topological interactions with two nearest neighbors.
Let the particles 1, 2, and 3 reciprocally communicate with
each other, while the distant particle 4 adjusts its direc-
tion to that of particles 2 and 3 without influencing them.
Assuming the initial condition θ2(0) = 1 and θ1,3,4(0) =
0, we find θ1,...,4(1) = 1/3 and thus θtot (0) = 1 < θtot (1) =
4/3.
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Physical interactions generally respect certain symmetries, such as reciprocity and energy conservation, which
survive in coarse-grained isothermal descriptions. Active many-body systems usually break such symmetries
intrinsically, on the particle level, so that their collective behavior is often more naturally interpreted as a result
of information exchange. Here we study numerically how information spreads from a “leader” particle through
an initially aligned flock, described by the Vicsek model without noise. In the low-speed limit of a static spin
lattice, we find purely conductive spreading, reminiscent of heat transfer. Swarm motility and heterogeneity can
break reciprocity and spin conservation. But what seems more consequential for the swarm response is that the
dispersion relation acquires a significant convective contribution along the leader’s direction of motion.
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I. INTRODUCTION

Transfer of information, energy, or mass through complex
interacting networks is of ubiquitous interest in many scien-
tific disciplines. As examples think of the World Wide Web
and social media [1,2], epidemics [3–6], or heat conduction
and diffusion [7–9]. In particular, information, rather than
the elementary physical interactions transmitting it, is key to
groups of motile living agents, such as bird flocks [10,11] or
bacterial colonies [12,13]. To understand the behavior of such
far-from-equilibrium many-body systems is a main task of the
surging field of active matter [14–16]. Many new interesting
phenomena have been uncovered, including motility-induced
phase separation (MIPS) [17] and related forms of self-
organization [18,19] and pattern formation [20,21]. Such
studies could eventually lead to the development of novel
types of “smart (meta-)materials” [22,23]. Yet systematic
studies of the mechanisms of information spreading through
active matter systems are still scarce.

In this work, we therefore analyze the information spread-
ing in a two-dimensional Vicsek model (VM) [24], which
is a paradigmatic model of dry active matter (without mo-
mentum conservation in the solvent) [25,26]. It provides a
minimalistic description of active collective phenomena such
as the formation of bird flocks or insect swarms. The VM
resembles a magnet consisting of N spins, which describe
the orientations of the self-propelled particles. Their positions
advance at constant speed, while their orientations are subject
to mutual alignment interactions with their neighbors. Com-
pared to the limit of interacting lattice spins or also to the
case of digital information transport through disordered static
networks (frequently studied in network theory) the VM is ca-

*viktor.holubec@mff.cuni.cz

pable of more complex behavior. Its neighbor configurations
are neither regular nor static but constitute a dynamical graph
[27,28]. As a consequence, information in the VM spreads
not only by conduction but also by convection, hitchhiking
with the motile particles [6]. Moreover, the information about
particle positions and orientations is continuous, not digital.

In the following, we try to disentangle the various com-
plications, by first studying information spreading on a static
square lattice. For vanishing noise, this limit allows for an
exact solution, which simplifies the analysis and provides
good insight. Then we investigate the full deterministic (no
noise) VM with nonzero velocity. For both cases, we study
the information spreading for a scenario known as flooding in
network theory [28–31]: Starting in an orientationally ordered
state with a single “leader” particle that deviates from the
rest, we investigate how its perturbing effect spreads to the
others. So far, flooding dynamics was mostly studied for static
graphs; but see Ref. [28] for a more general approach. To
assess the spatiotemporal information spreading in the VM,
we numerically determine the corresponding dispersion rela-
tion. Naturally, the convective flooding due to particle motion
is found to dominate over conduction at higher speeds and
over long distances. But it also gives rise to a considerable
forward-backward symmetry breaking, rendering the disper-
sion relation spatially highly nonisotropic.

The paper is structured as follows: In Sec. II we introduce
the VM. The zero-speed limit of the VM is discussed in
Sec. III, which introduces the two flooding scenarios con-
sidered in this work: The firm leader with constrained spin
orientation, which eventually guides the flock into a new di-
rection; and the lax leader, which delivers an initial impulse
but afterwards relaxes freely, like all other spins. Finally, in
Sec. IV we consider the general case of nonvanishing particle
speeds, where the dispersion relation becomes ambiguous,
before we conclude in Sec. V.
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II. VICSEK MODEL

Since its introduction in 1995, many modifications of the
original VM have been discussed in the literature [32]. Here
we consider the deterministic discrete-time variant describ-
ing N particles self-propelling with constant speed v0 in two
dimensions with topological alignment interactions. The posi-
tion ri(t ) and velocity vi(t ) of ith particle obey the dynamical
equations

vi(t + 1) = v0�
[
vi(t ) + ∑

j �=ini j (t )v j (t )
]
, (1)

ri(t + 1) = ri(t ) + vi(t + 1), (2)

where �(v) ≡ v/|v| normalizes the velocity. The connectiv-
ity matrix ni j (t ) defines the interaction network. We assume
topological interactions: Each particle interacts with its Nint

nearest neighbors at time t . For these ni j (t ) = 1, while it
vanishes otherwise. We have tested that metric interactions,
where each particle interacts with all neighbors within a given
spatial distance, leads to qualitatively the same results (data
not shown). In contrast to the standard VM, we neglect the
noise.

Instead of using the particle velocities vi(t ) to characterize
the system state, one can equivalently describe it by the angu-
lar variables θi(t ), defined by vi(t ) = v0(cos θi, sin θi ). In this
language, Eq. (1) assumes the form [33]

θi(t + 1) = θi(t ) + 1

Ni(t )

∑
j �=i

ni j (t ) sin[θ j (t ) − θi(t )], (3)

where Ni(t ) ≡ v−1
0 |vi(t ) + ∑

j �=ini j (t )v j (t )| stems from the
normalization in Eq. (1).

We consider the situation where one of the particles (the
leader) in a completely polarized system suddenly changes
its direction and initiates a collective maneuver [10,34–36],
due to the spreading of information about its flight direction
through the flock [37,38]. To analyze the spreading of in-
formation in different directions with respect to the leader’s
velocity, it is useful to position it initially, at time t = 0, in
the center of the flock. In the next section, we investigate the
information transfer for the static spin lattice (v0 = 0), where
the information spreads only by conduction. The interplay
of conduction and convection, appearing for nonzero particle
velocity, is then addressed in Sec. IV.

III. ZERO-VELOCITY LIMIT OF THE VM

A. Linearized lattice VM and its continuous limits

To make contact with classical spin models, the particles
are placed on grid points ri of a two-dimensional square lattice
and interact only with their direct neighbors. In this limit, the
dynamics of the well-known XY model is restored. In the
following, we label the orientations θk of the individual spins
(or particles) by their positions i j in the lattice. If all spins on
the square lattice are well aligned, Eq. (3) can be expanded in
fluctuations around the aligned state as

θi j (t + 1) = 1
5 [θi j (t ) + θi−1 j (t ) + θi j−1(t )

+ θi+1 j (t ) + θi j+1(t )], (4)

where we assumed that the average orientation of the system is
0 and θi j � 1. In this limit, the periodic boundary conditions

for θi j do not need to be taken into account. An analogous
linear formulation of the low-velocity VM has recently been
employed [39] to calculate the total number of particles in a
Vicsek flock from the orientational diffusion coefficient of a
single particle.

Noteworthy, the same equation describes occupation prob-
abilities of the individual grid-points for a symmetric random
walk on a two-dimensional square lattice with equal probabil-
ities to stay at a given point or to jump to a neighboring point.
Unlike the standard Vicsek model, it thus conserves the total
amount of “information”

∑
i j θ (t ) unless some of the lattice

points serve as sources or sinks of information. Information
conservation would also be lost for less symmetric lattices,
breaking reciprocity of the interactions (for details, see the
Appendix).

Besides being exactly solvable, the importance of this sim-
plified lattice model for understanding of information transfer
in the VM is its similarity to other physical models such as
lattice models of ferromagnetism, where θi j (t ) describes spin
of the given grid point [40–44], the Google Search PageRank
algorithm [45,46], measuring the importance of a web page
by counting all links to it and weighting them by their quality,
the majority vote model, and, most importantly, lattice models
of heat conduction [47,48].

A central finding from the latter is that the heat flux is well
described by Fourier’s law implying that the local temperature
θ obeys the parabolic (diffusion)

∂tθ = D∇2θ (5)

with the diffusion coefficient D. However, this equation leads
to unphysical infinite propagation speed of heat [47,49], in the
sense that a change in the temperature at the origin leads to
infinitesimal changes in temperature far from the origin after
an infinitesimally short time. Another issue is that Eq. (5) in
general cannot describe the propagation of second sound, i.e.,
the thermal wave [8] encountered in low-temperature physics
[50]. The most popular and simplest generalization of Eq. (5)
which can describe both diffusive and wave-like transfer is the
hyperbolic equation

∂tθ + τ

2
∂2

t θ = τ

2
c2∇2θ, (6)

with maximum heat transfer velocity c and a characteristic
time τ . A standard derivation of this equation is based on
Cattaneo’s generalization of Fourier’s law [51,52].

Interestingly, it turns out that both these equations are spe-
cial limiting case of Eq. (4) [47,48]. Specifically, introducing
a lattice constant � and the time τ the signal needs to travel
between two lattice points, it can be rewritten as

θ (x, y, t + τ ) = 1
5 [θ (x, y, t ) + θ (x + �, y, t )

+ θ (x − �, y, t ) + θ (x, y + �, t )

+ θ (x, y − �, t )]. (7)

Now, taking the continuum limit τ → 0 and � → 0, while
keeping constant the ratio 5D ≡ �2/τ yields in the zeroth
order in τ the diffusion equation (5). On the other hand, taking
the limit while keeping constant the velocity c

√
5/2 ≡ �/τ

leads in the first order in τ to the hyperbolic equation (6).
These nonstandard definitions of speed and diffusion coef-
ficient result from the term θ (x, y, t ) on the right-hand side
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of Eq. (7), which is not present in a standard random walk.
The speed c, denoting the maximum speed of propagation in
Eq. (6), is smaller than the maximum speed of propagation
in the lattice model, v = l/τ . Identifying τc2/2 in Eq. (6)
with D, one can consider the parabolic equation (5) as a
limit of infinitely fast (τ = 0) signal transmission between
the neighboring lattice points. While this limit is often a
good approximation for heat conduction [8] it might not be
appropriate for biological agents with finite response time. A
general statement about which of the two continuum limits fits
better the description of the VM is not possible. It can heavily
depend on the quantity of interest and the chosen parameters.
Nonetheless, from our analysis below, it follows that the in-
formation spreading in the VM is approximately diffusive for
small speeds v0 and increasingly nondiffusive as v0 grows.

B. Firm and lax leaders

We now consider the following two specific flooding sce-
narios for the static VM (4). (1) In the firm leader scenario, the
leader’s orientation is held fixed. Measuring the angular vari-
ables θi j � 1 in units of the initial orientation of the leader, we
set θ00(t ) = 1 for all times. This amounts to a steady informa-
tion influx into the system. (2) In the lax leader scenario, the
orientation of the leader is set to 1 at time 0 but then evolves
according to Eq. (4). In both scenarios, all other particles are
initially aligned with the x axis, θi j (0) = 0 for i j �= 00. While
(1) can be interpreted as a flock following a leader, (2) might
describe a flock reacting to a sudden perturbation.

In the firm-leader scenario, the dynamical equation (4)
is most easily written and solved using the matrix form
θ(t + 1) = M0θ(t ) + θ(0), where the vector θ(t ) contains the
values of orientations at all grid points at time t , θi j (t ), and
M0 incorporates the interactions. It has vanishing entries for
the feedback onto the leader’s orientation, which is set by
θ(0), which has vanishing entries for all other particles. The
solution is θ(t ) = ∑t

i=0 Mi
0θ(0). In the lax leader scenario, the

dynamical equation is θ(t + 1) = Mθ(t ), and M incorporates
the interactions between all the grid points, as described by
Eq. (4), including the feedback onto the leader. The solution
is θ(t ) = Mtθ(0). Both solutions nicely demonstrate that due
to the linearity of the dynamics, the transmission of the in-
formation obeys the principle of superposition: The impact
onto θi j (t ) depends on the number of possible paths of length
t the signal may take from (0,0) to (i, j), namely, the sum-
mation induced by the matrix multiplication in Mt

0). And it
decays with time and distance due to the conservation en-
forced by the repeated normalization via the prefactor (1/5)t

in Mt
0.

In Fig. 1 we depict the information spreading in the
linearized lattice VM for both scenarios. As expected, the
information spreading quickly becomes isotropic, since dis-
cretizing the diffusion equation on a square lattice destroys
the radial symmetry only for short paths and affects only the
initial stage of the dynamics. The spreading for the firm leader
scenario, with a fixed source at the origin, eventually aligns
all particles to the leader. The rate of this approach decreases
with growing distance of the grid points from the leader, and
the saturation curves exhibit maximum slopes at intermediate
times.
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FIG. 1. Information spreading in the firm (a), (b) and lax (c), (d)
leader scenarios. (a), (c) The spatial spreading of the orientation θi j (t )
at different times over the distance d = √

i2 + j2, transverse (filled
blue markers) and diagonal (open red markers) relative to the leader.
(b), (d) The time evolution of the orientation for different grid points.

C. Signal speed

In general, there is no unique definition of the speed of
information spreading in the linearized lattice VM. The most
obvious definition v = l/τ = 1 refers to the signal transfer be-
tween neighboring lattice points [cf. Eqs. (4)–(7)]. It provides
the time d/v after which a grid point at distance d from the
leader starts to receive the information. Yet it is of limited use
because the strength of the received information is negligible
if the grid point is far from the leader and there are only a
few paths for the signal between the leader and the grid point.
For example, in the case of a single path the signal strength
received at time d/v is proportional to (1/5)d .

A more informative definition is obtained from the time
Tmax(d ) when the change of orientation induced by the leader
at distance d becomes maximal. The rate of change of orien-
tation of the grid points is measured by the time derivatives
θ̇i j (t ), which exhibit a clear maximum [cf. Figs. 1(b) and
1(d)]. One may thus identify Tmax(d ) with the time when
θ̇i j (t ) with

√
i2 + j2 = d is maximal. In Fig. 2(a) we show the

resulting dispersion relation d (Tmax) obtained from evaluating

0 200 400
0
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10 -1

10 0(a) (b)

FIG. 2. (a) The dispersion relation for the linearized lattice VM
transverse (blue filled circles) and diagonal (red open circles) relative
to the leader. The solid line shows a fit d (t ) = atm with exponent
m = 0.48 and a ≈ 1.1. (b) The corresponding signal speed cs = ḋ as
function of the distance d to the leader.
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FIG. 3. (a) The dispersion relation for a generalized lattice VM
where each grid point interacts with all neighbors at distances up to
r lattice edges for three values of r. (b) The corresponding signal
speeds cs(d ) = ḋ , respectively.

the signal propagation on the horizontal and on the diagonal
axis with respect to the leader in the firm leader scenario. As
expected, the found information spreading is well described
by the diffusion relation d (Tmax) = √

4Deff Tmax. However, the
diffusion coefficient Deff = a2/4 ≈ 0.3, obtained by fitting
the data, is much different than the diffusion coefficient D =
0.2, predicted from the limiting process leading to Eq. (5). In
Fig. 2(b) we show the corresponding signal speed cs = ḋ (t ) ∝
1/

√
t ∝ 1/d . The results obtained for the lax leader scenario

are qualitatively the same (data not shown).
As an aside, we note that, while evaluating the evolution

of the maxima of θ̇i(t ) is a reasonable approach for studying
the signal spreading in the two flooding scenarios consid-
ered here, it is not suitable for more complex situations. A
more universally applicable proxy for signal speed can be
obtained by evaluating the connected acceleration correla-
tions [10]. For our specific setting with a single leader and
aligned initial state, the two approaches lead to the same
results.

To close this section, we investigate the information
spreading in a direct generalization of the linearized lattice
VM (4), where the individual grid points interact not only
with their nearest neighbors, but also with all grid points up
to a distance of r lattice edges from the leader. Consequently,
each grid point interacts with its Nint = 2r(r + 1) nearest
neighbors. The maximum speed of information propagation,
v, is determined just by distances between particles at the
circumference of the interaction zone, and thus it increases
linearly with r. On the other hand, the r dependence of the
speed cs, shown in Fig. 3, is sublinear as the signal maximum
is “slowed down” by the particles inside the interaction radius.
Interestingly, the curves for different r values cannot be col-
lapsed into a single master curve by multiplying each of them
by a constant factor. Our analysis suggests that such a collapse
is possible for long times only, with numerically obtained
scaling factors 1.565 and 2.105 yielding the best asymptotic
collapse of the curves for r = 1 to those for r = 2 and r = 3,
respectively. These factors are close to the factors 1.64 (r =
1 → 2) and 2.28 (r = 1 → 3) obtained from the diffusion
limit (5) of the individual lattice models as

√
Dr/D1 with Dr

denoting the diffusion coefficient obtained for the individual
values of r. Even though the diffusive scaling d = √

4Drt ,
predicted from Eq. (5), does not describe the data perfectly
(in particular the prefactor 4Dr is wrong), we take this as an
indication that the formula d = √

4Defft with Deff ∼ Dr is a

reasonable qualitative model for the spreading of information
over long time and large length scales.

To sum up, in the linearized static spin model, the informa-
tion spreads essentially diffusively. We next investigate how
the situation changes when we allow particles to translate
along their orientations.

IV. THE MOTILE CASE

A. The role of convection

Compared to equilibrium systems, active matter breaks
certain local symmetries such as momentum and energy con-
servation. It is not a priori obvious whether this fundamental
difference will lead to important effects on the information
spreading and swarm behavior or if it is largely irrelevant,
in practice. Differently from the lattice VM, the standard
VM does not place the particles onto a regular lattice, and
if so, this order would not be maintained for long. Notice
that this breaks two important symmetries, namely, reciprocity
and information conservation (see the Appendix). While the
disorder itself does not affect the diffusive information spread-
ing, the evolution of the neighborhood relations for v0 > 0
additionally allows for information convection. This situation
is thus very similar to a moving heat source with the main
difference that particles addressed by the leader tend to follow
it, while heated passive particles generally do not induce a
comparable flux.

Let us now derive a rough estimate for the particle speed
v0 at which convection becomes important. The maximum
conduction speed is given by the speed with which the signal
spreads due to the interactions, i.e., �int/�t . Here �t = 1 is
the discrete update time in the VM and �int = √

Nint/(πρ) =√
Nint/N is the average interaction radius, assuming a more

or less homogeneous density ρ = N/π after initiation inside
a unit circle. The speed of convection is given by the relative
speed of the individual particles on the order of v0. Conduc-
tion and convection should thus compete when v0 ≈ √

Nint/N .
Alternatively, as in Sec. III C, we could measure the speed of
signal propagation by the ratio di/Ti, where Ti is the time when
the signal sent at time 0 causes a maximum change θ̇i(t ) of
orientation at distance di, i.e., θ̇i(Ti ) ≡ maxt θ̇i(t ). As we find
below, the latter approach, which predicts a significantly lower
conduction speed, is more appropriate to describe the data,
yielding a correspondingly lower threshold velocity for the
onset of convective transport. (For our choice of parameters,
convection plays role already for velocities of about v0 = 0.01
while

√
Nint/N ≈ 0.16.)

Besides inducing convection, motility further complicates
the definition of a signal speed. Due to the relative motions
of the particles there is no a priori choice of the distance di

traveled by a signal. For this reason, we analyzed the speed of
information propagation using two different definitions of di.
First, the (average) initial distance |ri(0) − rL(0)| between the
particles and the leader, which is the initial position of particle
i at time 0, also encoded in the initial density ρ. Second, the
distance |ri(Ti ) − 1/N

∑
j rj(Ti )| between the particle i and

the position of the center (of mass) of the flock at the charac-
teristic “interaction time” Ti for conductive transport. We have
performed the analysis below for both these definitions of the

014609-4



INFORMATION CONDUCTION AND CONVECTION IN … PHYSICAL REVIEW E 106, 014609 (2022)

distance and found no qualitative differences. Therefore, we
show only the results obtained for the former, in the following.

B. Numerical procedure

In the simulations, we place the leader always into the cen-
ter of a unit circle. Positions of all N = 1000 other particles
are picked randomly inside the circle. All particles interact
with their Nint = 24 nearest neighbors, corresponding to r = 3
in Fig. 3. Small density fluctuations in the initial condition
are found to induce strong noise in the measured functions
θi(t ) and θ̇i(t ). To be able to determine the overall trend from
these measurements, we averaged the resulting curves over
Nruns runs with different initial conditions. We also employed
two different smoothening procedures:

The average 〈·〉nn is calculated as follows. First, we collect
the data {di, θi(t ), θ̇i(t )}i=1,...,N from Nruns = 100 runs of the
simulation. Then we sort the data according to the distance di

to the origin at time 0. Finally, we calculate the smoothed vari-
ables 〈di〉nn, 〈θi(t )〉nn, and 〈θ̇i(t )〉nn by averaging di, θi(t ), and
θ̇i(t ) over Nav neighbors of the particle i, i.e., over the particles
j with Nav smallest distances |di − d j |. Since the dispersion
relation is a strictly monotonous function of time, one may
alternatively perform the averaging with respect to nearest
neighbors in time Ti, according to when the maximum signal
has arrived at particle i. In other words one can average over
the particles j with Nav smallest distances |Ti − Tj |. We have
tested that both averaging procedures lead to qualitatively the
same results. In the following, we show only those obtained
using the averaging 〈·〉nn over Nav spatially nearest neighbors.

C. Firm leader scenario

We now consider the firm leader scenario of Sec. III B,
where the leader’s orientation is fixed to ϕ at all times and
all other particles are initially aligned with the perpendicular
x axis and subsequently obey the dynamical equations (1) and
(2). Note that this condition implies that reciprocity between
the leader and the flock is maximally broken.

In Figs. 4(a) and 4(b) we show the resulting averaged
orientations, 〈θi(t )〉nn, and the averaged changes in the orien-
tation, 〈θ̇i(t )〉nn, as functions of the averaged distance 〈di〉nn.
To investigate the directional dependence of the information
spreading, we distinguish between two directions of signal
propagation. As the leader’s orientation points into the pos-
itive half-plane, we identify the particles with positive y
coordinates at time 0 as lying in the “positive direction” with
respect to the leader. The remaining particles are lying in the
“negative direction.” The results for 〈θi(t )〉nn and 〈θ̇i(t )〉nn for
the positive and negative directions are given in Figs. 4(c) and
4(d) and Figs. 4(e) and 4(f), respectively. As the leader carries
the source of information with it, particles lying in the positive
direction show a significantly larger change of orientation than
those in the negative direction. Furthermore, the leader affects
nearby particles more than more distant ones. This leads to
correspondingly stronger average direction changes 〈θ̇i(t )〉nn

in its vicinity. Consequently, upon traversing the flock, the
leader seems to drag around a cloud of “followers.” However,
since the interaction rule allows only imperfect alignments,
particles begin to realign with the less informed surroundings
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FIG. 4. Firm leader scenario. The average orientation, 〈θi(t )〉nn

and change in orientation 〈θ̇i(t )〉nn, as functions of the average dis-
tance 〈di〉nn at three different times: For the whole swarm (a), (b),
along the leader direction (c), (d), and along the negative leader di-
rection (e, f). Parameters used: N = 1000, v0 = 0.01, Nint = 24, ϕ =
π/4, Nruns = 100, Nav = Nruns.

after the leader has left their neighborhood. This is depicted
by the moving maxima of 〈θi(t )〉nn and 〈θ̇i(t )〉nn in Figs. 4(c)
and 4(d). In the negative direction, where the information
propagates by pure conduction, no such structure is visible.
The response of the swarm as a whole is dominated by the dy-
namics in positive direction. Repeating the described analysis
for v0 = 0, we found the same behavior as for the linearized
lattice VM in Sec. III.

In Fig. 5(a) we show the time evolution of the change of
orientation 〈θ̇i(t )〉N,Nruns averaged over all particles in the cho-
sen particle set (total system, positive direction, and negative

0 100 200
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20
10 -4

10 -3 10 -2 10 -1
10 0

10 1

(a) (b)

FIG. 5. Firm leader scenario. (a) Time evolutions of the change
of direction averaged over the total system and the positive and
negative directions for v0 = 0.01 and v0 = 0, respectively. (b) The
corresponding ratio (8) as function of the particle speed. Other pa-
rameters as in Fig. 4.
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FIG. 6. Dispersion relation for the firm-leader scenario for pos-
itive (blue circles) and negative (red stars) directions and speeds
v0 = 0, 0.001, 0.01, 0.03 increasing from the upper left to the bottom
right panel. The black solid lines are fits of a〈Ti〉m

nn to the data for the
positive direction with m = 0.376, 0.417, 0.449, 0.451 correspond-
ing to the individual speeds. The slope of the data for speed v0 = 0.03
for the positive direction is ≈0.018 while the corresponding speed
of the leader projected to the positive direction is v0 sin ϕ ≈ 0.021.
Parameters as in Fig. 4, except for NAv = 10Nruns.

direction) and all simulations for v0 > 0 and v0 = 0. For v0 >

0, the average signal strength for the total system and particu-
larly in the positive direction continuously increases until the
leader approaches the edge of the system. This can be under-
stood as follows. The change of orientation of the individual
particles is largest when their orientation differs most from
the average orientation of their neighbors. A moving leader
constantly meets on its way in the positive direction particles
(almost) aligned with the x axis, leading to a steady increase of
the corresponding signal. Subsequently, at times t � 50 when
the leader has left the flock, 〈θ̇i(t )〉N,Nruns rapidly decreases,
and eventually it also changes sign. Since the leader mainly
affects nearby particles, more distant particles are much less
aligned with its orientation when it leaves. Therefore, particles
that aligned with the leader during its passage through the
flock begin to realign with the less affected particles after the
leader has left. In the negative direction, the signal strength
monotonously decreases, similarly as for v0 = 0 and the lin-
earized lattice VM.

To quantify the asymmetry between the positive and nega-
tive direction, we integrate the positive areas

�θ± =
∫ ∞

t0

〈θ̇i(t )〉±N,Nruns
�

(〈θ̇i(t )〉±N,Nruns

)
, (8)

beneath the corresponding curves in Fig. 5(a). Here + (−)
corresponds to the positive (negative) direction and �(·) de-
notes the unit step function. The ratio �θ+/�θ− is shown in
Fig. 5(b). As expected, it monotonously increases with the
particle speed v0 and particle density N/π .

The main result of this section are the dispersion relations
for four different velocities shown in Fig. 6. Regardless of v0,
the information initially spreads conductively, hence similarly
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FIG. 7. Lax leader scenario. (a), (b) The orientation, 〈θi(t )〉nn,
and the averaged change in the orientation, 〈θ̇i(t )〉nn, as functions
of the averaged distance 〈di〉nn for three different times averaged
over the overall system. (c) The ratio (8) of the integrated positive
changes in the orientation in the positive and negative directions as
functions of the particle speed for the firm and lax leader scenario.
(d) The dispersion relation for the positive and negative directions
for the firm and lax leader scenario. We used the same parameters as
in Fig. 4.

as in the linearized lattice VM, as diffusion beats convection
over short times and distances. With increasing velocity v0 >

0, the spreading in the positive direction becomes gradually
more convective at late times. The slope of the dispersion
relation converges to the velocity of the leader projected to
the positive direction, v0 sin ϕ. In the negative direction, the
spreading stays conductive regardless of v0. Even though the
particles in the negative direction are less affected by the
turning event induced by the leader, the dispersion relation
shows that the information reaches them faster than those in
the positive direction. This counterintuitive effect is a con-
sequence of the employed definition of Ti: The dispersion
relation follows from determining times maximizing θ̇i(t ). As
the leader moves away from the particles behind it, the rates of
change θ̇i(t ) of their orientations peak sooner than those in the
positive direction. This somewhat counterintuitive behavior is
reminiscent of observations of faster speeds for smaller pulses
[8] or propagation of second sound against the heat flow [53].

D. Lax leader scenario

The information spreading is somewhat different in the lax
leader scenario. For the same initial condition as in the preced-
ing section, the leader now adapts dynamically according to
Eqs. (1) and (2) to its neighbors for t > 0. It thereby virtually
loses the information passed on to them. The interaction with
the neighbors is thus more reciprocal than for the unwavering
firm leader, yet not entirely so, since the topological notion
of next neighbors is not necessarily fully reciprocal (see the
Appendix).

In Figs. 7(a) and 7(b) we depict again the average
orientation 〈θi(t )〉nn and the averaged change in the orientation
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〈θ̇i(t )〉nn for the lax leader scenario. The parameters are the
same as for the firm leader scenario in Fig. 4. Comparing
the results for the two scenarios, we find the following dif-
ferences: (1) the amplitudes of both 〈θi(t )〉nn and 〈θ̇i(t )〉nn are
much smaller and the time derivative in the averaged angle
converges to zero much faster, since the leader realigns with
the rest of the flock in the lax leader scenario. (2) The time
derivative 〈θ̇i(t )〉nn exhibits an excursion to negative values at
small distances to the leader, due to the feedback from the
flock, which requires a realignment of the leader and its neigh-
borhood with the “winning majority” of other particles in the
flock. At larger distances, the derivative returns to positive
values, as expected for a moderate realignment of the merely
slightly disturbed more distant particles. (3) There is again a
directional dependence of the response, as in the firm-leader
scenario. However, it is now much weaker, due to the mutual
information exchange.

In fact, for the parameters used in the figure, it is not
worthwhile to show the corresponding spatial distributions, as
they would be hardly discernible from those for the total sys-
tem in Fig. 7. The directional dependence of the information
spreading in the lax leader scenario becomes noteworthy only
for substantially larger speeds v0, as demonstrated in Fig. 7(c).
There we compare the ratio �θ+/�θ− of responses (8) in-
tegrated in the positive and negative directions between the
lax and firm leader scenarios. Because of weaker total signal
strength in the lax leader scenario, the changes of orientation
θ̇i(t ) of the individual particles peak sooner, leading to steeper
(but directionally barely distinguishable) dispersion relations;
cf. Fig. 7(d).

V. CONCLUSION

We studied transport of information about orientation of
a leader in the Vicsek model (VM) with topological in-
teractions. The two main mechanisms for propagation of
information are conduction and convection. We have shown
that the conductive aspect in the VM can well be understood
using a simplified, exactly solvable variant of the model,
where the individual particles are fixed at grid points of a
regular lattice. This static spin lattice model allows for an
analogy with heat transfer, which ceases to hold in the full
dynamic VM. Nonlinearity and heterogeneity then break the
underlying symmetries such as reciprocity and spin conserva-
tion. Yet this has no major practical consequences by itself.
The visible changes between the dynamic model and the spin
lattice are entirely dominated by the convective dynamics.

We considered two scenarios of information spreading
from a single misaligned leader particle. While the diffu-
sive or conductive spreading prevails over short times and
distances, the spreading over longer times and distances grad-
ually acquires a convective contribution, as the particle speed
increases. We quantified this intuitive conclusion by measur-
ing the dispersion relation. It was formulated for the timescale
at which the signal induces its largest change in orientation
of the particles at a given distance. The analysis revealed a
strong directional dependence of the information transfer for
the firm-leader scenario, in which the reciprocity of the mutual
information exchange is maximally violated. A significant
effect of convective information spreading is observed only

in the direction of the leader motion. In the wake zone behind
the leader, the spreading remains diffusive, regardless of the
speed.

While measuring the dispersion relation for zero speed of
the particles is a relatively straightforward task, the definition
of the distance over which the signal has propagated becomes
ambiguous for the motile swarm. Nevertheless, we found that
different length definitions lead to qualitatively close results.

Besides this ambiguity in the definition of the dispersion
relation, which might deserve further analysis, our findings
raise several questions. First, while some preliminary runs
seemed to confirm the expectation that the inclusion of noise
in the VM would yield qualitatively similar results, one could
wish to study this issue more extensively, in particular with re-
gard to the stability of the flocking transition; i.e., under which
conditions can a leader move induce an ordering transition
or the breakup of a flock? Further, many natural interaction
networks are more heterogeneous than our flocks, contain-
ing, e.g., certain hierarchical structures [54,55] or distance-
and density-weighted interactions [24]. Moreover, it might be
interesting to consider a more realistic modification of the
standard VM where the orientation of a particle under con-
sideration would have a stronger weighting than the average
orientation of its neighbors. This would yield a more persis-
tent motion and might impact the information propagation.
We took first steps in this direction in a follow-up study to the
present work [56]. There we investigate information spreading
in a 2D VM with time-delayed metric interactions [57] and
also address the pertinence of the notion of linear response
[58–60] and its relation to information propagation. Next, it
might be interesting to connect information spreading in ac-
tive matter with corresponding results in other research fields,
such as network theory or epidemiology. Especially in the
latter, the effects of network heterogeneity on the spreading of
diseases is a widely studied aspect [6,61–63]. Finally, it would
seem interesting to pursue the question how the interaction
rules in the VM can be optimized to facilitate information
transfer.
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APPENDIX: BREAKING OF INFORMATION
CONSERVATION IN THE LINEARIZED VM

As discussed in Sec. III, the interaction rule in the lin-
earized lattice VM,

θi j (t + 1) = 1

Ni j (t )

∑
〈(i j),(kl )〉

θkl (t ), (A1)

where the sum goes over all neighbors (kl ) of (i j) includ-
ing (i j) itself, and Ni j = ∑

〈(i j),(kl )〉 denotes the number of
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neighbors, conserves the total information content

θtot (t ) ≡
∑

i j

θi j (t ). (A2)

While the linearized Vicsek interaction rule yields recipro-
cal interactions if the interaction network is regular, it can
render nonreciprocal interparticle interactions for irregular
interaction networks, e.g., if the particle density of the sys-
tem is inhomogeneous in space. The conservation condition
θ̇tot (t ) = 0 will then be broken. For a closed system, the re-
verse also holds: If the conservation is broken, this indicates
the presence of some nonreciprocal interactions. As an il-
lustrative example, consider the following closed interaction
network consisting of three particles. Particle 1 and 3 inter-
act solely with particle 2, which interacts with both 1 and
3. Assuming the initial condition θ1(0) = 1 and θ2,3(0) = 0,
then θ1(1) = 1/2, θ2(1) = 1/3, θ3(1) = 0. We thus see that
θtot (0) = 1 > θtot (1) = 5/6. If we instead consider the initial

condition θ2(0) = 1 and θ1,3(0) = 0, we find θtot (0) = 1 <

θtot (1) = 3/2. These examples manifest a more general find-
ing that θtot (t ) decreases when the information flows from a
less to a more connected region, and vice versa. In this case,
reciprocity is broken since the normalization Ni j of neighbor-
ing particles varies. Beyond the linear regime, the situation
is more complicated as the normalization Ni j depends on the
angular variables.

Similarly, also for topological interactions, the informa-
tion content is not conserved. While each particle interacts
with exactly the same number of neighbors (i.e., Ni j =
const), density gradients may induce unilateral interactions.
As an example, consider a closed system of four particles
with topological interactions with two nearest neighbors.
Let the particles 1, 2, and 3 reciprocally communicate with
each other, while the distant particle 4 adjusts its direc-
tion to that of particles 2 and 3 without influencing them.
Assuming the initial condition θ2(0) = 1 and θ1,3,4(0) =
0, we find θ1,...,4(1) = 1/3 and thus θtot (0) = 1 < θtot (1) =
4/3.
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