
Recognizing physical systems by machine learning

■ Goal: To develop a machine-learning methodology for recognizing physical systems based on snap-
shots of their evolution (for instance Figure 1).

Figure 1: For instance, our Direct Poisson Neural networks identify what Hamiltonian system has
generated these trajectories[2].

■ Methodology: Figure 2 shows the main tool to learn the underlying physics – neural networks.
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Figure 2: A neural networks approximates a multi-dimensional mapping. The approximation is a
composition of mappings starting at the leftmost (input) layer and giving the rightmost (output)
values.

The networks encode the underlying Poisson bracket and energy that describe the motion of a
Hamiltonian system. For dissipative systems, we shall use the framework of General Equation for
Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) [1].

■ Specific tasks:
1. Cleaning our numerical code.
2. Extending the code to learn also dissipative systems.

■ Contact: Michal Pavelka (Mathematical Institute of Charles University), pavelka@karlin.mff.cuni.cz
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