
Mathematical Logic

Lecturer: Mgr. Emil Jeřábek, Ph.D.
Scribe: Bc. Jindřich Novák

5 July 2024

Contents

1 Syntax and semantics of logic 1
1.1 Propositional logic . 1
1.2 Completeness of propositional logic 5
1.3 First-order logic . 9
1.4 First-order proof system . 12
1.5 Completeness of first-order logic 16
1.6 Consequences of the completeness theorem 21

2 Computability 24
2.1 Turing machines . 24
2.2 Universal Turing machines and the halting problem 31

3 Arithmetic 35
3.1 Robinson and Peano arithmetic 35
3.2 Σ1-completeness of Q . 36
3.3 Sequence encoding and definability of computation 39
3.4 Undecidability and incompleteness 42

Mathematical Logic 3

Course remarks

Additional information, including some voluntary exercises, about this
course may be found at the address

https://users.math.cas.cz/~jerabek/teaching/mathlog.html.

Complementary information may be found at

https://www.karlin.mff.cuni.cz/~krajicek/mll.html.

This course follows, or is at least consistent with, Lou van den Dries’s Mathem-
atical Logic (Lecture Notes) and Michael Sipser’s Introduction to the Theory of
Computation for the first and second part of the lecture as listed below respect-
ively. The third part will not follow any particular source.

https://users.math.cas.cz/~jerabek/teaching/mathlog.html
https://www.karlin.mff.cuni.cz/~krajicek/mll.html

Mathematical Logic 1

1 Syntax and semantics of logic

1.1 Propositional logic

Convention 1.1. Throughout the course, N denotes the set of natural numbers
including 0. Ordered pairs and other tuples are denoted using the angle brackets
xx, yy.

Definition 1.2 (Strings). Given an alphabet Σ, the strings of a given length n
over Σ are elements of Σn. The set of all strings over Σ is

Σ˚ “

8
ď

n“0

Σn.

Notation 1.3. The length of w P Σ˚ is denoted |w|; i.e., |w| is the n P N such
that w P Σn.

Given u, v P Σ˚, their concatenation is denoted u⌣v, or simply uv.

Remark 1.4. Observe |u⌣v| “ |u| ` |v|.

Convention 1.5. Observe there is a formal distinction between a symbol a P Σ
and a string of length one ‘a’ P Σ1. Both will, however, be denoted the same.

Definition 1.6 (Atoms, propositional formulas). Let A be a set of atoms (or
propositional variables). The set PropA of propositional formulas over A is the
smallest subset of

pAY t␣,^,_,K,J, p, quq˚

such that

(1) a P A ùñ a P PropA,

(2) ϕ, ψ P PropA ùñ ␣ϕ, pϕ^ ψq, pϕ_ ψq,K,J P PropA.

Notation 1.7. We introduce the shorthands pϕÑ ψq “ p␣ϕ_ ψq, pϕØ ψq “
pp␣ϕ_ ψq ^ p␣ψ _ ϕqq.

Lemma 1.8. (Unique readability) For any formula ϕ P PropA, exactly one of
the following cases happens:

(1) ϕ P A (ϕ is atomic).

(2) ϕ “ ␣ϕ0 for some ϕ0 P PropA.

(3) ϕ “ pϕ0 ^ ϕ1q for some ϕ0, ϕ1 P PropA.

(4) ϕ “ pϕ0 _ ϕ1q for some ϕ0, ϕ1 P PropA.

(5) ϕ “ K.

(6) ϕ “ J.

Moreover, the formulas ϕ0 and ϕ1 in (2)–(4) are uniquely determined by ϕ.

Mathematical Logic 2

Remark 1.9. Note that formulas may be uniquely described by so-called syn-
tactic trees. Lemma 1.8 can be generalized to show that every formula has a
unique syntactic tree.

Convention 1.10. When writing formulas, we will omit outermost brackets,
and, in contexts where it does not matter, brackets occurring in repeated con-
junctions or disjunctions (e.g., ϕ^ ψ ^ ω).

Notation 1.11. Given a sequence of formulas of arbitrary length ϕ0, . . . , ϕn´1,
their repeated conjunction is abbreviated by

ľ

iăn

ϕi “ ϕ0 ^ ¨ ¨ ¨ ^ ϕn´1.

Analogous notation is introduced for logical disjunction. For n “ 0, this is
understood as

Ź

iă0 ϕi “ J,
Ž

iă0 ϕi “ K; for n “ 1,
Ź

iă1 ϕi “
Ž

iă1 ϕi “ ϕ0.

Lemma 1.12 (Algebraic equivalences). Conjunction and disjunction are com-
mutative, associative, and idempotent operators up to equivalence. Moreover, J
is a neutral element for conjunction, and a zero element for disjunction; dually
for J. We also have the lattice absorption and distributivity laws:

ϕ^ pψ ^ χq ” pϕ^ ψq ^ χ ϕ_ pψ _ χq ” pϕ_ ψq _ χ

ϕ^ ψ ” ψ ^ ϕ ϕ_ ψ ” ψ _ ϕ

ϕ^ ϕ ” ϕ ϕ_ ϕ ” ϕ

ϕ^ pϕ_ ψq ” ϕ ϕ_ pϕ^ ψq ” ϕ

ϕ^ pψ _ χq ” pϕ^ ψq _ pϕ^ χq ϕ_ pψ ^ χq ” pϕ_ ψq ^ pϕ_ χq

ϕ^J ” ϕ ϕ_K ” ϕ

ϕ^K ” K ϕ_J ” J.

Lemma 1.13. The following so called De Morgan laws hold:

␣pϕ_ ψq ” ␣ϕ^␣ψ, ␣pϕ^ ψq ” ␣ϕ_␣ψ.

(We also have ␣␣ϕ ” ϕ.) More generally,

␣
ł

iăn

ϕi ”
ľ

iăn

␣ϕi, ␣
ľ

iăn

ϕi ”
ł

iăn

␣ϕi.

The structure tPropA,^,_,␣,K,Ju {” is a Boolean algebra.

Definition 1.14. A propositional assignment, or truth assignment, or simply
an assignment, is a function α : A Ñ t0, 1u. The set of all assignments on A is

denoted t0, 1u
A
.

Lemma 1.15 (Formula evaluation). Any truth assignment α has a unique ex-
tension α̂ : PropA Ñ t0, 1u such that

(1) α̂paq “ αpaq for any a P A,

Mathematical Logic 3

(2) α̂p␣ϕq “ 1´ α̂pϕq,

(3) α̂pϕ^ ψq “ min tα̂pϕq, α̂pψqu,

(4) α̂pϕ_ ψq “ max tα̂pϕq, α̂pψqu,

(5) α̂pKq “ 0 and α̂pJq “ 1.

Lemma 1.16. For any sequence of formulas ϕ0, . . . , ϕn´1, we have

α̂
´

ł

iăn

ϕi

¯

“ 1 ðñ Di ă n α̂pϕiq “ 1

and

α̂
´

ľ

iăn

ϕi

¯

“ 1 ðñ @i ă n α̂pϕiq “ 1.

Definition 1.17 (Satisfaction, tautology, satisfiability, equivalent formulas).

(1) If α̂pϕq “ 1, then we say that α satisfies ϕ, or that α is a satisfying
assignment of ϕ; this is denoted α |ù ϕ.

(2) A formula ϕ is a tautology if every truth assignment α : A Ñ t0, 1u satis-
fies ϕ. This fact is denoted |ù ϕ.

(3) Dually, ϕ is satisfiable if there exists a truth assignment α : A Ñ t0, 1u
satisfying ϕ.

(4) Formulas ϕ and ψ are equivalent, written ϕ ” ψ, if

@α P t0, 1u
A
α̂pϕq “ α̂pψq.

Observation 1.17.1. ϕ ” ψ if and only if |ù pϕØ ψq.

Definition 1.18 (Satisfaction of Γ, entailment). Let Γ Ď PropA be a set of
propositional formulas. We say that a truth assignment α satisfies Γ (or that α
is a model of Γ), in symbols α |ù Γ, if α satisfies every formula ϕ in Γ.

Γ entails ϕ if for each α P t0, 1u
A
, whenever α |ù Γ, then α |ù ϕ. This fact is

denoted Γ |ù ϕ.

Definition 1.19 (Boolean function). A Boolean function is any function of the

form f : t0, 1u
n
Ñ t0, 1u. We can identify it with f : t0, 1u

A
Ñ t0, 1u if |A| “ n;

i.e., A “ ta0, . . . , an´1u. A formula ϕ P Prop represents a Boolean function f if

for each α P t0, 1u
A
we have fpαq “ α̂pϕq.

Lemma 1.20. Every ϕ represents a unique Boolean function — the truth-table
function ttϕ : t0, 1u

A
Ñ t0, 1u defined by ttϕpαq “ α̂pϕq.

10 October 2023

Lemma 1.21. If A is a finite set of atoms, every Boolean function f : t0, 1u
A
Ñ

t0, 1u can be represented by a formula.

Mathematical Logic 4

Proof. Check that

fpp⃗q ”
ł

αPf´1p1q

ľ

iPA

p
αpiq
i ”

ľ

αPf´1p0q

ł

iPA

p
1´αpiq
i . QED

This is often expressed by saying that the set of connectives t^,_,␣,K,Ju is
functionally complete on t0, 1u.

Definition 1.22 (Literal, clause, CNF, DNF).

(1) A literal is an atom or its negation. We write p1 “ p, p0 “ ␣p.

(2) A clause is a (possibly empty) disjunction of literals.

(3) A formula in conjunctive normal form, or CNF, is a conjunction of a
(possibly empty) set of clauses.

(4) A formula in disjunctive normal form, or a DNF, is a (possibly empty)
disjunction of a (possibly empty) conjunction of literals.

Conjunctions of literals are also called terms, but we will refrain from this ter-
minology to avoid clash with Definition 1.37 below.

The proof of Lemma 1.21 actually shows:

Corollary 1.22.1. Every Boolean function can be represented by a CNF and
by a DNF.

Corollary 1.22.2. Every formula is equivalent to a CNF and to a DNF.

Definition 1.23 (Formula size). The size of a formula ϕ, denoted |ϕ|, is the
number of atoms and connectives that occur in ϕ.

Remark 1.24. It follows from the proof of Lemma 1.21 that any Boolean
function in n variables can be represented by a formula of size Op2nnq. We can
improve this to Op2nq by an inductive construction, expressing fpx0, . . . , xnq as
p␣xn ^ f0px0, . . . , xn´1qq _ pxn ^ f1px0, . . . , xn´1qq. One may ask if we could
do better. The answer is no, not by much.

In fact, there are Boolean functions f : t0, 1u
n
Ñ t0, 1u such that any formula

representing f has size Ωp2n{ log nq. (Conversely, every Boolean function has a
formula of size Op2n{ log nq, but this small improvement takes a lot of work to
prove.)

This may be proved by a simple counting argument: a formula ϕ of size s is
a string of length s made of n ` 5 possible symbols, thus the number of such
formulas is ď pn ` 5qs, while there are 22

n

Boolean functions. If all functions
can be represented by formulas of size s, then 22

n

ď pn ` 5qs, which implies
2n ď s ¨ logpn` 5q, whence s ě 2n{ logpn` 5q.

It is an open problem to construct an explicit sequence of Boolean functions that
require formulas of size more than Ωpncq for all constants c. We can construct
functions that require formulas of cubic size, but we cannot do any better.

Mathematical Logic 5

This falls into the field of study known as circuit complexity, which is related to
various problems in computational complexity.

Propositional logic may seem, at first sight, trivial, but it is related to many
very difficult and very intensely studied areas of mathematics.

Another open problem is the question: given a formula, how difficult is it to com-
pute whether it is satisfiable? One obvious way to go about this is to brute-force
the solution by trying all possible assignments. This is an inefficient algorithm,
however, with computational complexity on the order of 2n.

Another possibility is to convert the given formula to a DNF and check the
satisfiability thereof. Note that it is trivial to check the satisfiability of DNFs,
which can be done in polynomial time. The conversion itself, however, requires
exponential time to compute.

Observe that we can easily verify that ϕ is satisfiable if we are given a satisfying
assignment as a witness. Problems like this, where a positive answer has an
efficiently checkable witness, are said to belong to the complexity class NP. In
fact, satisfiability is a “complete” problem for NP in a suitable sense. The

famous question P
?
“ NP in effect asks whether there exists an efficient (i.e.,

polynomial-time) algorithm for satisfiability testing. It is generally conjectured
that this is not the case, and in fact, that every satisfiability-testing algorithm
requires time 2Ωpnq.

Exercise 1.25. There is a CNF formula of size Opnq such that any equivalent
DNF has size Ωp2nq.

1.2 Completeness of propositional logic

We shall work with Hilbert-style proof systems (also known as Frege sys-
tems): this means that a proof will be simply a sequence of formulas

consisting of axioms and of formulas inferred by specified rules of inference.

It is not convenient to express such proof systems in the De Morgan language
of connectives. Instead we will use tÑ,Ku (from which all the usual logical
operators may be readily expressed).

We will use the axiom schemata

(1) pϕÑ pψ Ñ χqq Ñ ppϕÑ ψq Ñ pϕÑ χqq

(2) ϕÑ pψ Ñ ϕq

(3) ppϕÑ Kq Ñ Kq Ñ ϕ

and the schematic rule modus ponens (MP): from ϕ and ϕÑ ψ, infer ψ.

Definition 1.26 (Proofs). Let ϕ P PropA and Γ Ď PropA. A proof (or deriva-
tion) of ϕ from Γ is a sequence of formulas ϕ0, ϕ1, . . . , ϕs such that ϕs “ ϕ and
for every i “ 0, . . . , s one of the following holds:

Mathematical Logic 6

• ϕi P Γ.

• ϕi is a logical axiom (i.e., it is an instance of one of the axiom schemata).

• There are some j, k ă i such that ϕi is derived from ϕj , ϕk using modus
ponens.

The formula ϕ is said to be provable from Γ, written Γ $ ϕ, if there exists a
proof of ϕ from Γ.

A proof of ϕ from the empty set H is simply called a proof of ϕ, and ϕ is called
provable, written $ ϕ.

Our present goal is to prove the following theorem:

Theorem 1.27 (Soundness and completeness). For all ϕ P PropA, Γ Ď PropA:

Γ $ ϕ ðñ Γ |ù ϕ.

The soundness theorem is the left-to-right implication, and the completeness
theorem proper is the right-to-left implication. We note that soundness is proved
easily and will be left as an exercise.

Lemma 1.28 (Deduction).

Γ, ϕ $ ψ ðñ Γ $ ϕÑ ψ.

Proof. The right-to-left implication is trivial (it follows by a single application
of modus ponens). We shall now prove the left-to-right implication. By assump-
tion, there is a proof π of ψ from ΓYtϕu. We will show Γ $ ϕÑ ψ by induction
on the length of π. We distinguish the ways how ψ could have been derived:

(1) Suppose ψ is either a logical axiom or ψ P Γ; then Γ $ ψ, and since
ψ Ñ pϕÑ ψq is a propositional axiom, MP yields Γ $ ϕÑ ψ.

(2) Suppose ψ “ ϕ (i.e., ψ P tϕu). The following proof shows Γ $ ϕÑ ϕ:

pϕÑ ppϕÑ ϕq Ñ ϕqq Ñ ppϕÑ pϕÑ ϕqq Ñ pϕÑ ϕqq ax. (1)

ϕÑ ppϕÑ ϕq Ñ ϕq ax. (2)

pϕÑ pϕÑ ϕqq Ñ pϕÑ ϕq (MP)

ϕÑ pϕÑ ϕq ax. (2)

ϕÑ ϕ (MP)

(3) Suppose ψ has been derived by MP from some ω and ω Ñ ψ. By the
induction hypothesis, Γ $ ϕ Ñ ω and Γ $ ϕ Ñ pω Ñ ψq. We obtain
Γ $ ϕÑ ψ using the propositional axiom

pϕÑ pω Ñ ψqq Ñ ppϕÑ ωq Ñ pϕÑ ψqq

and two applications of MP. QED

Mathematical Logic 7

17 October 2023

Corollary 1.28.1. Γ $ ϕ ðñ Γ, pϕÑ Kq $ K.

Proof.

ñ A simple application of modus ponens.

ð Using the deduction lemma,

Γ, ϕÑ K $ K ùñ Γ $ pϕÑ Kq Ñ K

ùñ Γ $ ϕ,

where the last line is obtained via MP from ppϕ Ñ Kq Ñ Kq Ñ ϕ, which
is an axiom. QED

Definition 1.29 (Maximal consistent set). Γ Ď PropA is maximal consistent
if Γ is consistent but all Γ Ĺ ∆ Ď PropA are inconsistent.

Lemma 1.30. Let Γ be a maximal consistent set and ϕ P PropA.

(1) Γ $ ϕ ùñ ϕ P Γ.

(2) ϕ R Γ ðñ ϕÑ K P Γ.

Proof.

(1) If Γ $ ϕ, then ΓYtϕu is still consistent. Then the maximality of Γ requires
that ϕ be an element of Γ.

(2) ð tϕ, ϕÑ Ku $ K and so ϕ R Γ by consistency of Γ.

ñ ϕ R Γ implies by maximality of Γ that Γ, ϕ $ K, which implies
Γ $ ϕ Ñ K by the deduction lemma. It follows that ϕ Ñ K P Γ
by (1). QED

Lemma 1.31. Every maximal consistent set Γ is satisfiable.

Proof. Let Γ be maximal consistent and define an assignment α : AÑ t0, 1u by

αppq “ 1 ðñ p P Γ for all p P A.

We will show that this equivalence holds for all formulas ϕ, not just for atoms:

α̂pϕq “ 1 ðñ ϕ P Γ.

It will follow that α |ù Γ. We prove this by induction on the complexity of ϕ:

• Suppose ϕ is an atom. Then α̂pϕq “ 1 ðñ ϕ P Γ by definition.

• Suppose ϕ “ K. Then α̂pKq “ 0, and K R Γ because Γ is consistent.

• Suppose ϕ “ pψ Ñ χq. We distinguish three cases:

Mathematical Logic 8

(1) α̂pχq “ 1, thus α̂pψ Ñ χq “ 1.

By the induction hypothesis, χ P Γ, whence Γ $ ψ Ñ χ using the
axiom χÑ pψ Ñ χq. Finally then ψ Ñ χ P Γ by Lemma 1.30.

(2) α̂pψq “ 0, thus α̂pψ Ñ χq “ 1.

By the induction hypothesis, ψ R Γ, which implies Γ, ψ $ K by the
maximality of Γ. We derive Γ, ψ $ pχ Ñ Kq Ñ K using the axiom
K Ñ ppχÑ Kq Ñ Kq, and Γ, ψ $ χ using ppχÑ Kq Ñ Kq Ñ χ.

This gives us Γ $ ψ Ñ χ using the deduction lemma and, therefore,
ψ Ñ χ P Γ by Lemma 1.30.

(3) α̂pψq “ 1 and α̂pχq “ 0, thus α̂pψ Ñ χq “ 0.

By the induction hypothesis, it follows that ψ P Γ, χ R Γ, whence
ψ Ñ χ R Γ (otherwise Γ Ě tψ,ψ Ñ χu $ χ by MP, which implies
χ P Γ, quod non). QED

Lemma 1.32. Every consistent set Γ Ď PropA can be extended to a maximal
consistent Γ̃ Ď PropA.

Proof. We will use Zorn’s Lemma. For the partial order, take all consistent
extensions ∆ Ě Γ ordered by inclusion. The union of any, possibly infinite, chain
(= linearly ordered set) C of consistent extensions is a consistent extension. This
is due to the fact that a proof contains only finitely many formulas: if

Ť

C were
not consistent, contradiction could be obtained from a finite subset of

Ť

C; since
C is linearly ordered, such a finite set would be included in some ∆ P C, which
would contradict the consistency of ∆. Thus every chain has an upper bound.
Consequently, there exists a maximal element, which is a maximal consistent
extension of Γ. QED

Theorem 1.33 (Propositional completeness theorem). Let Γ Ď PropA and
ϕ P PropA. Then

Γ $ ϕ ðñ Γ |ù ϕ.

Proof. Showing Γ $ ϕ implies Γ |ù ϕ is left as an exercise to the reader. For the
converse implication, assume Γ & ϕ. Then Γ Y tϕÑ Ku is a consistent theory
by Corollary 1.28.1, and we may extend it to a maximal consistent theory Γ̃
by Lemma 1.32. There exists an assignment α satisfying Γ̃ by Lemma 1.31.
Then, in particular, α |ù Γ, and α̂pϕ Ñ Kq “ 1 implies α |ù ϕ. Consequently,
Γ |ù ϕ. QED

Theorem 1.34 (Propositional compactness theorem). Let Γ Ď PropA and
ϕ P PropA.

(1) Γ |ù ϕ iff there exists a finite subset Γ0 Ď Γ such that Γ0 |ù ϕ.

(2) If all finite Γ0 Ď Γ are satisfiable, then Γ is satisfiable.

Mathematical Logic 9

Proof.

(1) ð If there exists a (finite or otherwise) subset Γ0 |ù ϕ, then Γ |ù ϕ
trivially.

ñ Γ |ù ϕ implies Γ $ ϕ by Theorem 1.33, whence there exists a finite
subset Γ0 Ď Γ such that Γ0 $ ϕ, as a proof of ϕ is a finite sequence
of formulas. Then Γ0 |ù ϕ again by Theorem 1.33.

(2) Take ϕ “ K. QED

Note that the compactness theorem is a purely semantic statement and inher-
ently does not need any underlying proof system; it may be proved by topological
means only (using the topological compactness of a suitable space).

1.3 First-order logic

Definition 1.35 (Language). A language or signature is a collection of relation
and function symbols, each of a given arity. Formally, L “

@

Lr, Lf , ar
D

where
Lr X Lf “ H and ar : Lr Y Lf Ñ N.

For any R P Lr, arpRq “ n signifies that R is an n-ary relation symbol. Similarly,
F P Lf with arpF q “ n is an n-ary function symbol. Nullary function symbols
are called constant symbols. Nullary relation symbols are rarely used, but they
behave essentially as propositional atoms.

Definition 1.36. An L-structure is A “
@

A,
␣

RA : R P Lr
(

,
␣

FA : F P Lf
(D

where

• A ‰ H is the domain1 (underlying set) of A;

• for any R P Lr with arpRq “ n, RA Ď An;

• for any F P Lf with arpF q “ n, FA : An Ñ A.

If s P Lr Y Lf , sA is also called the interpretation of s in A.

Definition 1.37.

(1) The set of variables is Var “ tvn : n P Nu. We will denote variables with
lowercase letters x, y, z,

(2) The set TermL of L-terms is the least set such that every variable is a
term and for every n-ary function symbol F and any terms t0, . . . , tn´1,
we have F pt0, . . . , tn´1q P TermL.

(3) For every n-ary relation symbol and all terms t0, . . . , tn´1, the expression
Rpt0, . . . , tn´1q is an atomic formula. For all terms t and s, t “ s is an
atomic formula.

1Sometimes, especially in model theory, A “ H is admitted as well.

Mathematical Logic 10

(4) Now we may define the set FormL of formulas as the least set such that
every atomic formula is a formula, and if ϕ and ψ are formulas, and x is
a variable, then pϕ^ ψq, pϕ_ ψq, ␣ϕ, J, K, Dxϕ, and @xϕ are formulas.

Convention 1.38. In practice, we will not follow the above formalities when
specifying languages, structures, terms, and formulas. We will typically write
a language as a set of symbols, such as L “ t`,´, ¨,ău, where the nature of
the symbols (relation/function, arity) either follows their conventional use, or
is understood from the context. Likewise, we will write structures as tuples
listing the domain and interpretations of the symbols, such as xZ,`,´, ¨,ăy;
as also seen here, standard operations on common mathematical structures will
be identified just by their symbol (we do not need to write `Z instead of ` if
no confusion arises). Finally, common binary symbols such as ` and ă will be
written in the usual infix notation, e.g., x ` y and x ă y rather than `px, yq
and ăpx, yq.

An interpretation of a constant c in a structure A is formally supposed to be a
function cA : A0 Ñ A. Since |A0| “ 1, such a function is uniquely specified by
just giving its single value; thus, we will identify cA with an element of A.

Definition 1.39. An occurrence of a variable x in a formula ϕ is bound if it
occurs inside a subformula that starts with Dx or @x. Such an occurrence is
said to be within the scope of the latter bounding quantifier. Conversely, a
non-bound occurrence is said to be free.

Variables of ϕ are said to be free if they have free occurrences in ϕ. 24 October 2023

Definition 1.40 (Closed, open formula). A term or a formula is closed if it has
no free variables; a closed formula is called a sentence. Conversely, a formula is
called open (or quantifier-free) if it has no bound variables.

Definition 1.41 (Theory). A theory is a set of sentences.

Definition 1.42 (Substitution). Let s be a term and x a variable. Given a
term t, we define tps{xq as the result of replacing every occurrence of x in t
with s.

For a formula ϕ, by ϕps{xq we understand the result of replacing every free
occurrence of x in ϕ with s.

More generally, if s0, s1, . . . , sn´1 are terms and x0, x1, . . . , xn´1 are distinct
variables, then tps0{x0, . . . , sn´1{xn´1q is the result of simultaneously replacing
every occurrence of each xi with si.

The expression ϕps0{x0, . . . , sn´1{xn´1q is defined similarly.

Definition 1.43 (Term free for substitution). A term s is free for x in ϕ (or
more explicitly, free for substitution for x in ϕ) if no free occurrence of x in ϕ
is in the scope of a quantifier of the form Dy or @y where y occurs in s.

Notation 1.44. We write tpx0, . . . , xn´1q or ϕpx0, . . . , xn´1q to indicate that
all variables that occur free in ϕ or t are among x0, x1, . . . , xn´1. Then we will

Mathematical Logic 11

write ϕps0, . . . , sn´1q for ϕps0{x0, . . . , sn´1{xn´1q and likewise for terms.

Lemma 1.45 (Successive substitution). If tpx0, . . . , xn´1q is free for y in the
formula ϕpx0, . . . , xn´1, yq then pϕpt{yqqps0{x0, . . . , sn´1{xn´1q, denoting suc-
cessive substitution, is the same formula as (i.e., syntactically identical to) the
formula ϕps0, . . . , sn´1, tps0, . . . , sn´1qq.

The proof is left as an exercise.

Definition 1.46 (Constant-symbol language extension). For any L-structure
A and X Ď A, let LX “ LYta : a P Xu, where each a is a new constant symbol
distinct from all others and from all symbols of L.

Then AX is an LX -structure with domain A, sAX “ sA for all s P L, and
aAX “ a for all a P X.

Definition 1.47 (Evaluation). If A is an L-structure, and t is a closed term,
then we define tA P A by induction on the complexity of t:

• If t “ F pt0, . . . , tn´1q then t
A “ FA `

tA0 , . . . , t
A
n´1

˘

.

For any term tpx0, . . . , xn´1q, we define tA : An Ñ A as tApa0, . . . , an´1q “

ptpa0, . . . , an´1qq
AA .

Definition 1.48 (Satisfaction, model, logical consequence). Let A be an L-
structure. Given an LA-sentence ϕ, we define A |ù ϕ by induction on the
complexity of ϕ:

• If ϕ is Rpt0, . . . , tn´1q for some n-ary relation R and closed LA-terms ti,
then we put A |ù ϕ iff

@

tA0 , . . . , t
A
n´1

D

P RA.

• If ϕ is t “ s, A |ù ϕ ðñ tA “ sA.

• We shall now define behaviour of |ù on logical operators and quantifiers:

A |ù ϕ0 ^ ϕ1 ðñ A |ù ϕ0 and A |ù ϕ1,

A |ù ϕ0 _ ϕ1 ðñ A |ù ϕ0 or A |ù ϕ1,

A |ù ␣ϕ ðñ A |ù ϕ,

A |ù Dxϕ ðñ there exists a P A such that A |ù ϕpa{xq,

A |ù @xϕ ðñ for all a P A, A |ù ϕpa{xq.

Observe that in the last two clauses, ϕpa{xq is again an LA-sentence.

For a not necessarily closed formula ϕpx0, . . . , xn´1q, we write A |ù ϕ if A |ù

ϕpa0, . . . , an´1q for all a0, . . . , an´1 P A; we say that ϕ holds in A, or A is a
model of ϕ.

More generally, if Γ Ď FormL, we write A |ù Γ if for all ϕ P Γ we have A |ù ϕ;
we say that A is a model of Γ.

A formula ϕ is a logical consequence of Γ, or Γ entails ϕ, or ϕ follows from Γ,
written Γ |ù ϕ, if every model A of Γ is also a model of ϕ.

Mathematical Logic 12

Finally, ϕ is said to be logically valid (or a first-order tautology), written |ù ϕ,
if H |ù ϕ (i.e., ϕ is entailed by Γ “ H); in other words, if A |ù ϕ for all
structures A.

Notation 1.49. We will henceforth cease underlining constant symbols unless
needed for clarity.

Definition 1.50 (Formula equivalence). L-formulas ϕ and ψ are equivalent,
written ϕ ” ψ, if for every L-structure A and every tuple a0, . . . , an´1 P A, we
have

A |ù ϕpa1, . . . , an´1q ðñ A |ù ψpa0, . . . , an´1q.

In other words, ϕ ” ψ iff |ù pϕØ ψq.

Lemma 1.51. Let Q be either the existential or the universal quantifier. Then

␣Dxϕ ” @x␣ϕ,

␣@xϕ ” Dx␣ϕ,

Qxϕ ” Qy ϕpy{xq if y does not occur in ϕ,

pϕ^Qxψq ” Qx pϕ^ ψq

pϕ_Qxψq ” Qx pϕ_ ψq

+

if x is not free in ϕ.

Definition 1.52. A formula ϕpx0, . . . , xn´1q is in the prenex normal form if it
has the form

Q0y0 ¨ ¨ ¨Qm´1ym´1 θpx0, . . . , xn´1, y0, . . . , ym´1q

where Qi P tD,@u, the formula θ is open, and the yi are pairwise distinct vari-
ables, distinct from the xjs.

Lemma 1.53. Every formula is equivalent to a formula in prenex normal form.

Lemma 1.54. If ϕ ” ϕ1 and ψ1 results from a formula ψ by replacing some
occurrences of ϕ as subformulas with ϕ1, then ψ ” ψ1.

1.4 First-order proof system

For the purposes of these notes, we shall consider the following list of axiom
schemata and rules:

Propositional axioms and rules of inference

pϕÑ pψ Ñ χqq Ñ ppϕÑ ψq Ñ pϕÑ χqq

ϕÑ pψ Ñ ϕq

ppϕÑ Kq Ñ Kq Ñ ϕ

From ϕ and ϕÑ ψ infer ψ (modus ponens, MP)

Mathematical Logic 13

Axioms of equality

x “ x

x “ y ^ x “ z Ñ y “ z

x0 “ y0 ^ ¨ ¨ ¨ ^ xn´1 “ yn´1 Ñ pRpx⃗q Ñ Rpy⃗qq

x0 “ y0 ^ ¨ ¨ ¨ ^ xn´1 “ yn´1 Ñ F px⃗q “ F py⃗q

for each n-ary relation symbol R and n-ary function symbol F

Quantifier axioms and rules

Supposing t is free for x in ϕ:

@xϕÑ ϕpt{xq

ϕpt{xq Ñ Dxϕ

Supposing x is not free in ψ:

From ψ Ñ ϕ infer ψ Ñ @xϕ (universal generalization, @Gen)

From ϕÑ ψ infer DxϕÑ ψ (existential generalization, DGen)

Definition 1.55 (Provability). Let Γ Ď FormL and ϕ P FormL. Then ϕ is
provable from Γ, written Γ $ ϕ, if there exists a sequence of formulas ϕ0, . . . , ϕn
(called a proof or derivation of ϕ from Γ) such that ϕn “ ϕ, and for each i ď n,
one of the following holds:

• ϕi P Γ.

• ϕi is a logical axiom.

• ϕi is derived by a rule of inference from some of the ϕj , j ă i.

If Γ “ H, we just say that ϕ is provable, and write $ ϕ. 31 October 2023

Exercise 1.56. If ϕpp0, . . . , pn´1q is a propositional tautology, then

$ ϕpψ0, . . . , ψn´1q

for any first-order formulas ψ0, . . . , ψn´1. More generally, if

ϕ0pp0, . . . , pn´1q, . . . , ϕm´1pp0, . . . , pn´1q |ù ϕpp0, . . . q

for propositional formulas ϕ0, . . . , ϕm´1, ϕ, then

ϕ0pψ0, . . . , ψn´1q, . . . , ϕm´1pψ0, . . . , ψn´1q $ ϕpψ0, . . . , ψn´1q.

We will say that ϕpψ0, . . . q follows from ϕ0pψ0, . . . q, . . . , ϕm´1pψ0, . . . q by pro-
positional reasoning.

Remark 1.57. Using @Gen and propositional reasoning, it is easy to derive a
simpler version of the @Gen rule: ϕ $ @xϕ.

Mathematical Logic 14

Definition 1.58 (Universal closure). For any formula ϕpx0, . . . , xn´1q, its uni-
versal closure ϕ@ is

@x0 . . .@xn´1 ϕpx0, . . . , xn´1q.

In other words, all freely occurring variables of ϕ are made bound using the
universal quantifier.

Notation 1.59 (ϕpxq). Sometimes, we shall also use the notation ϕpxq to stand
for some ϕpx0, . . . , xn´1q.

Exercise 1.60. Given an L-formula ϕ, the following hold:

ϕ $ ϕ@ $ ϕ ϕ |ù ϕ@ |ù ϕ.

Lemma 1.61 (Deduction). If Γ is a set of L-formulas, ψ is an L-formula, and
ϕ is an L-sentence, then

Γ, ϕ $ ψ ðñ Γ $ ϕÑ ψ.

Proof. The right-to-left implication is a trivial application of MP. For the left-
to-right implication, let ϕ0, . . . , ϕn “ ψ be a proof of ψ from ΓY tϕu. We show
Γ $ ϕÑ ϕi by induction on i:

(1) Suppose that ϕi P ΓYtϕu, or ϕi is an axiom, or ϕi is derived by MP. Then
the proof is identical to that of Lemma 1.28.

(2) Suppose ϕi is derived by the existential generalization rule; i.e., ϕi “
DxαÑ β is derived from ϕj “ αÑ β, j ă i, where x is not free in β. By
the induction hypothesis, Γ $ ϕÑ pαÑ βq, and thus

Γ $ ϕÑ pαÑ βq induction hypothesis

$ αÑ pϕÑ βq propositional reasoning

$ DxαÑ pϕÑ βq DGen

$ ϕÑ pDxαÑ βq propositional reasoning.

We can use DGen because ϕ is a sentence, thus x is not free in ϕÑ β.

(3) Finally, suppose ϕi is derived by universal generalization; i.e., that ϕi “
β Ñ @xα is derived from ϕj “ β Ñ α. Similarly to the existential case,
we can derive

Γ $ ϕÑ pβ Ñ αq induction hypothesis

$ ϕ^ β Ñ α propositional reasoning

$ ϕ^ β Ñ @xα @Gen

$ ϕÑ pβ Ñ @xαq propositional reasoning. QED

Our main goal in Section 1 is to prove that the first-order proof system we have
defined adequately captures logical consequence. Let us start with the easy
part:

Mathematical Logic 15

Theorem 1.62 (Soundness theorem). Let Γ Ď FormL and ϕ P FormL. Then

Γ $ ϕ ùñ Γ |ù ϕ.

Proof. We fix a proof, say ϕ0, . . . , ϕn, of ϕ from Γ, and let A be an L-structure
such that A |ù Γ. We will show A |ù ϕi by induction on i, and hence A |ù ϕ. In
essence, we are proving that satisfaction is preserved under the rules of inference.
As before, we consider the various ways ϕi could have been derived from some
ϕj , j ă i, and we analyse each case individually:

Derived propositionally. This case includes ϕi P Γ, ϕi being a logical ax-
iom, and being derived by MP. We have already proven these cases in
Theorem 1.33.

Derived by universal generalization. By the definition of @Gen, we need
to verify that

A |ù βpxq Ñ αpx, yq
loooooooomoooooooon

ϕj

implies A |ù βpxq Ñ @y αpx, yq
loooooooooomoooooooooon

ϕi

,

indicating explicitly the free variables. Note that y does not occur free
in β by assumptions of the @Gen rule. Assuming

A |ù βpxq Ñ αpx, yq,

we will show
A |ù βpxq Ñ @y αpx, yq

using the definition of satisfaction: let a P A be such that A |ù βpaq; then
we need to check A |ù @y αpa, yq.

Let b P A: we have A |ù βpaq Ñ αpa, bq, thus A |ù αpa, bq. This means
A |ù @y αpa, yq as b was arbitrary.

Derived by existential generalization. Suppose A |ù αpx, yq Ñ βpxq, we
need to show A |ù Dy αpx, yq Ñ βpxq. This can be shown by a similar
argument as for @Gen.

Axiom of equality. This follows easily. For example, assume ϕi is the axiom

x0 “ y0 ^ ¨ ¨ ¨ ^ xn´1 “ yn´1 Ñ F px0, . . . , xn´1q “ F py0, . . . , yn´1q.

For every a, b P A, if A |ù
Ź

iăn ai “ bi, then a0 “ b0 and . . . and
an´1 “ bn´1, thus F

Apaq “ FApbq, i.e., A |ù F paq “ F pbq.

Quantifier axiom. Consider an axiom ϕi “ αpt{yq Ñ Dy αpx, yq. Recall that
to postulate this axiom, we must assume that t is free for y in α. Indicating
explicitly the free variables, ϕ is

αpx, tpx, yq{yq Ñ Dy αpx, yq.

Mathematical Logic 16

We need to show that this holds in any structure A. Let a, b P A be such
that

A |ù αpx, tpx, yq{yqpa{x, b{yq.

By Lemma 1.45, this means

A |ù αpa, tpa, bqq.

Putting c “ tApa, bq, we obtain A |ù αpa, cq (Exercise 1.63 below). It
follows that A |ù Dy αpa, yq by the definition of satisfaction.

The argument for axioms of the form @y αÑ αpt{yq is similar. QED

Exercise 1.63. If t is a closed LA-term, and a “ tA, then A |ù ϕpaq iff A |ù ϕptq
for any LA-formula ϕpxq.

1.5 Completeness of first-order logic

We aim to prove the completeness theorem:

Theorem 1.64. If Γ is a set of L-formulas and ϕ is an L-formula, then

Γ |ù ϕ ùñ Γ $ ϕ.

Definition 1.65. Let T be an L-theory. Then T is said to be

• consistent if T & K;

• complete if for all L-sentences ϕ, we have T $ ϕ or T $ ␣ϕ;

• Henkin if every existential statement has a witness: i.e., for every L-
formula ϕpxq, there is a constant c (called the Henkin constant for ϕ) such
that

T $ Dxϕpxq Ñ ϕpcq.

An outline of the proof of Theorem 1.64 is as follows:

• Reduce it to showing that if T is a consistent theory, then T has a model.

• If T & K, there is a complete theory T̃ Ě T , T̃ & K, in the same language.

• If T & K, there is a Henkin theory TH Ě T , TH & K.

• If T & K is complete and Henkin, there is a structure A such that A |ù T .

We shall proceed with the details. We start with the last point, which explains
the motivation for defining Henkin theories.

Lemma 1.66. If T is a complete and consistent Henkin theory, then T has a
model.

Mathematical Logic 17

Proof. Let CT stand for the collection of all closed L-terms. We define an
equivalence relation on CT by t „ s iff T $ t “ s. The axioms of equality
ensure that „ is an equivalence relation, hence we may define the quotient set
A “ CT {„. If t is a closed term, let rts denote the equivalence class of t.

We define an L-structure A with underlying set A by

FAprt0s, . . . , rtn´1sq “ rF pt0, . . . , tn´1qs,

xrt0s, . . . , rtn´1sy P R
A ðñ T $ Rpt0 . . . tn´1q

for each n-ary function symbol F , and n-ary relation symbol R. In order to make
sure that FA and RA are well-defined, we need to check that the definitions are
independent of the choice of representatives of the equivalence classes: i.e., if
rt0s “ rs0s, . . . , rtn´1s “ rsn´1s, then rF ptqs “ rF psqs, and T $ Rptq ðñ

T $ Rpsq. This follows from the equality axioms.

We can show tA “ rts for each t P CT by induction on the complexity of t.

We claim that
A |ù ϕ ðñ T $ ϕ

for all sentences ϕ, which implies A |ù T . We proceed by induction on the
complexity of ϕ:

Atomic formula. Suppose ϕ is Rpt0, . . . , tn´1q. Then

A |ù Rpt0 ¨ ¨ ¨ tn´1q ðñ
@

tA0 , . . . , t
A
n´1

D

P RA

ðñ xrt0s, . . . , rtn´1sy P R
A

ðñ T $ Rpt0, . . . , tn´1q.

The same argument also applies with “ in place of R.

Negation. Suppose ϕ is ␣ψ. Then

A |ù ␣ψ ðñ A |ù ψ

ðñ T & ψ induction hypothesis

ðñ T $ ␣ψ completeness and consistency.

Conjunction. Suppose ϕ is ϕ0 ^ ϕ1. Then

A |ù ϕ0 ^ ϕ1 ðñ A |ù ϕ0 and A |ù ϕ1

ðñ T $ ϕ0 and T $ ϕ1 induction hypothesis

ðñ T $ ϕ0 ^ ϕ1 propositional reasoning.

Disjunction. Suppose ϕ is ϕ0 _ ϕ1. Then

A |ù ϕ0 _ ϕ1 ðñ T $ ϕ0 or T $ ϕ1

ðñ T $ ϕ0 _ ϕ1.

Mathematical Logic 18

The last equivalence follows from the completeness of T : if T $ ϕ0_ϕ1 and
T & ϕ0, then T $ ␣ϕ0 by completeness, hence T $ ϕ1 by propositional
reasoning.

Existential quantification. Suppose ϕ is Dxψpxq. Then

A |ù Dxψpxq ðñ pDt P CT qA |ù ψprtsq

ðñ pDt P CT qA |ù ψptq using tA “ rts “ rts
A

ðñ pDt P CT qT $ ψptq induction hypothesis

ðñ T $ Dxψpxq.

A more thorough explanation of the last equivalence is in order. For ‘ñ’,
use the axiom ψptq Ñ Dxψpxq; for ‘ð’, T is Henkin whence there exists a
constant c such that T $ Dxψpxq Ñ ψpcq.

Universal quantification. Suppose ϕ is @xψpxq. We compute

A |ù @xψpxq ðñ p@t P CT qA |ù ψprtsq

ðñ p@t P CT qA |ù ψptq

ðñ p@t P CT qT $ ψptq

ðñ T $ @xψpxq

similarly to the existential case. For the last equivalence, we need that
even though the definition of Henkin theories only provides Henkin con-
stants for existential sentences, we also obtain suitable Henkin constants
for universal sentences: see Lemma 1.67 below. QED

Lemma 1.67. If T is a Henkin L-theory, then for every L-formula ϕpxq, there
is a constant c such that T $ ϕpcq Ñ @xϕpxq.

Proof. By assumption, there is a constant c such that T $ Dx␣ϕpxq Ñ ␣ϕpcq.
Then we have

T $ ␣ϕpxq Ñ Dx␣ϕpxq axiom

$ Dx␣ϕpxq Ñ ␣ϕpcq Henkin assumption

$ ␣ϕpxq Ñ ␣ϕpcq propositional reasoning

$ ϕpcq Ñ ϕpxq more propositional reasoning

$ ϕpcq Ñ @xϕpxq @Gen. QED
7 November 2023

Lemma 1.68. If T is a consistent L-theory, then there exists a complete con-
sistent L-theory T̃ extending it; i.e., T̃ Ě T .

Proof. As in the propositional case, we use Zorn’s lemma to show that there
exists a maximal consistent L-theory T̃ such that T̃ Ě T (recall that the union
of a chain of consistent theories is consistent).

Mathematical Logic 19

To see T̃ is complete, let ϕ be a sentence and suppose T̃ does not prove ϕ. We
will show it proves ␣ϕ.

By maximality of T̃ , the theory T̃ Y tϕu is inconsistent. Then

T̃ , ϕ $ K ùñ T̃ $ ϕÑ K deduction theorem

ùñ T̃ $ ␣ϕ propositional reasoning. QED

Lemma 1.69 (Constants). Let T be an L-theory, ϕpxq an L-formula, and c a
constant symbol such that c R L. Then

T $ ϕpcq implies T $ ϕpxq.

Proof. Let ϕ0, . . . , ϕn be a proof of ϕpcq in T , and y be a variable that does
not occur in the proof. Then ϕ0py{cq, . . . , ϕnpy{cq is still a valid proof of
pϕpc{xqqpy{cq “ ϕpy{xq from T . (The meaning of ‘py{cq’ is that we replace each
occurrence of c with y; this is not formally a substitution according to Defini-
tion 1.42 as c is not a variable.) Thus, T proves ϕpy{xq; we may infer @y ϕpy{xq
using @Gen, and then ϕpxq using the axiom @y ϕpy{xq Ñ pϕpy{xqqpx{yq

looooooomooooooon

ϕpxq

. QED

Lemma 1.70. If T is a consistent L-theory, c R L a constant symbol, and ϕpxq
an L-formula, then the following theory is consistent:

T Y tDxϕpxq Ñ ϕpcqu .

Proof. If T, Dxϕpxq Ñ ϕpcq $ K, let y be a variable not occurring in ϕpxq. Then

T $ pDxϕpxq Ñ ϕpcqq Ñ K deduction theorem

T $ pDxϕpxq Ñ ϕpyqq Ñ K lemma on constants

T $ Dy pDxϕpxq Ñ ϕpyqq Ñ K DGen.

But $ Dy pDxϕpxq Ñ ϕpyqq (exercise), hence T $ K, which is a contradiction.
QED

Lemma 1.71. Let T be a consistent L-theory; then there exists a language
LH Ě L and a consistent Henkin LH-theory TH Ě T .

Proof. We construct the language LH and the theory TH inductively as follows:

L0 “ L Ln`1 “ Ln Y tcϕ : ϕpxq is an Ln-formulau

T0 “ T Tn`1 “ Tn Y tDxϕpxq Ñ ϕpcϕq : ϕpxq is an Ln-formulau

LH “
ď

nPN
Ln TH “

ď

nPN
Tn

Mathematical Logic 20

Note that, despite not writing it out, we introduce (wastefully) a new constant
for every Ln-formula for every n, meaning there are formally distinct constants
for the same formula considered in the increasingly extended languages.

Clearly, TH Ě T . It is, moreover, an LH -theory. If ϕpxq is an LH -formula,
then ϕpxq is an Ln-formula for some n P N, hence TH Ě Tn includes the Henkin
axiom Dxϕpxq Ñ ϕpcϕq. Thus, TH is a Henkin theory.

It remains to show that TH is consistent. It suffices to show that Tn & K for all
n P N. We do this by induction on n. For the base case, T0 “ T is consistent
by assumption.

Let us show the induction step for n ` 1. Assume that Tn & K, and suppose
Tn`1 $ K towards a contradiction. Then

Tn Y tDxϕipxq Ñ ϕipcϕi
q : i ă mu $ K

for somem P N and some Ln-formulas ϕi, i ă m. But this theory is consistent by
m applications of Lemma 1.70 (more formally, we should prove this by induction
on m). This is a contradiction. QED

Theorem 1.72 (Completeness). Let Γ be a set of L-formulas and ϕ an L-
formula. Then

Γ |ù ϕ implies Γ $ ϕ.

Proof. Assume Γ & ϕ. Then Γ@ & ϕ@ by Exercise 1.60, thus the theory T “
Γ@ Y

␣

␣ϕ@
(

is consistent. By Lemma 1.71, T may be extended to a consistent
Henkin LH -theory TH , which in turn may be extended to a consistent complete
LH -theory T̃ by Lemma 1.68. T̃ remains a Henkin theory.

Since T̃ is a consistent complete Henkin theory, it has a model AH |ù T̃ by
Lemma 1.66. Observe AH is, in particular, an LH -structure.

Let A be the L-reduct of AH ; i.e., we forget about the interpretations of symbols
outside of L.

Then A |ù T , whence A |ù Γ@ and A |ù ϕ@. It follows that A |ù Γ and A |ù ϕ,
which proves Γ |ù ϕ. QED

The cardinality of an L-structure is understood to be the cardinality of its
underlying set.

Theorem 1.73 (Downward Löwenheim–Skolem theorem). Let T be an L-theory
and κ ě |L| an infinite cardinal. If T has a model, then it has a model A |ù T
such that |A| ď κ.

Proof. Let us estimate the size of the model of T constructed in the proof of
Theorem 1.72. Since L-formulas in a language L of cardinality |L| ď κ are finite
strings made of ď κ many possible symbols, there are at most κăω “ κ many

Mathematical Logic 21

L-formulas. It follows by induction on n that the languages Ln from the proof
of Lemma 1.71 satisfy |Ln| ď κ: for the induction step, we have

|Ln`1| ď |Ln|
loomoon

ďκ

` | tcϕ : ϕpxq is an Ln-formulau |
looooooooooooooooooomooooooooooooooooooon

ďκ

ď κ.

This implies |LH | ď κ, and in particular, there are ď κ closed LH -terms. Thus,
the model of the Henkin completion of T in language LH defined in the proof
of Lemma 1.66 has cardinality at most κ. QED

21 November 2023

1.6 Consequences of the completeness theorem

Theorem 1.74 (Compactness). Let Γ be a set of L-formulas.

(1) If Γ |ù ϕ, then there is a finite subset Γ0 Ď Γ such that Γ0 |ù ϕ.

(2) Γ has a model iff every finite Γ0 Ď Γ has a model.

Proof.

(1) Γ |ù ϕ implies Γ $ ϕ by the Completeness Theorem. By definition, there
is a proof ϕ0, . . . , ϕn of ϕ from Γ. Let Γ0 “ ΓXtϕ0, . . . , ϕnu. Then Γ0 Ď Γ
is finite and Γ0 $ ϕ, thus Γ0 |ù ϕ.

(2) ‘ñ’ is trivial; for ‘ð’, we apply (1) with ϕ “ K. QED

Definition 1.75. If A is an L-structure, the (complete) theory of A is ThpAq “
tϕ : A |ù ϕu.

The standard model of arithmetic is N “ xN, 0, 1,`, ¨,ăy; its theory ThpNq is
called the true arithmetic.

Example 1.76. We extend the language of arithmetic L to L1 “ L Y tcu and
put

T “ ThpNq Y
␣

c ą 1` ¨ ¨ ¨ ` 1
looooomooooon

n

: n P N
(

.

Every finite T0 Ď T has a model: if n is the largest such that c ą

n
hkkkkkikkkkkj

1` ¨ ¨ ¨ ` 1
occurs in T0, then xN, n` 1y |ù T0. The compactness theorem then implies T
has a model M.

M is a model of ThpNq, not isomorphic to N. It is clear from the definition that
cM is infinitely large. Note that N is embedded in M as an initial segment via
the inclusion n P N ÞÑ p1` ¨ ¨ ¨ ` 1

looooomooooon

n

qM.

Theorem 1.77 (Löwenheim–Skolem theorem). Let T be an L-theory and κ ě
|L| an infinite cardinal. Let us assume that T either has an infinite model, or
it has arbitrarily large2 finite models. Then T has a model of cardinality κ.

2I.e., for every n P N, T has a model of cardinality at least n.

Mathematical Logic 22

Proof. The basic idea is to employ κ many constants to ensure that any model
has size ě κ, and apply the downward LS theorem.

Let L1 “ LYtcα : α ă κu be new constants and T 1 “ TYtcα ‰ cβ : α ă β ă κu.
Let us check that every finite T0 Ď T 1 has a model. T0 includes axioms cα ‰ cβ
for α, β P I for some finite I. Let A |ù T be such that |A| ě |I|; pick distinct
cAα P A for α P I, and pick arbitrary cAα P A for α R I. Then

@

A, cAα : α ă κ
D

|ù T0.

By compactness, T 1 has a model A. Since |L1| “ κ, we may assume |A| ď κ by
the downward Löwenheim–Skolem theorem. Because A |ù T 1, the interpreta-
tions

␣

cAα : α ă κ
(

are pairwise distinct. Thus, |A| ě κ, whence |A| “ κ. QED

In the previous exercise, we constructed a nonstandard model of arithmetic.
The Löwenheim–Skolem theorem tells us that there are such models of arbitrary
cardinality.

Definition 1.78. Suppose A and B are L-structures for some language L. An
isomorphism of A to B is a bijection f : AÑ B such that

(1) RApa0, . . . , an´1q ðñ RBpfpa0q, . . . , fpan´1qq for all n-ary relations
R P L and a0, . . . an´1 P A,

(2) FBpfpa0q, . . . , fpan´1qq “ fpFApa0, . . . , an´1qq for n-ary functions F P L
and a0, . . . , an´1 P A.

Definition 1.79. Let T be an L-theory and κ ě ℵ0 a cardinal. Then T is
κ-categorical if all A |ù T of cardinality κ are isomorphic.

Theorem 1.80 (Vaught’s test). If T is a κ-categorical L-theory without finite
models, where κ ě |L|, then T is complete.

Proof. If T is not complete, there is a sentence ϕ such that TYtϕu and TYt␣ϕu
are consistent. Then there exist models A |ù T Y tϕu, B |ù T Y t␣ϕu, |A| “
|B| “ κ by the Löwenheim–Skolem theorem. We have A |ù ϕ and B |ù ϕ, thus
A and B are not isomorphic. QED

Example 1.81. The theory DLO of dense linear orders without endpoints has
language L “ tău and the following axioms:

(1) x ă x.

(2) x ă y ^ y ă z Ñ x ă z.

(3) x ă y _ x “ y _ y ă x.

(4) @x, y px ă y Ñ Dz px ă z ^ z ă yqq.

(5) @x Dy x ă y.

(6) @x Dy y ă x.

Mathematical Logic 23

This theory is ℵ0-categorical, hence complete. This follows by a back-and-forth
argument.

Example 1.82. Let L “ tP pxqu. There is no L-sentence ϕ such that for every
finite L-structure M,

M |ù ϕ ðñ |PM| ą |M∖ PM|.

Assume for contradiction that ϕ is such a sentence, and define

T “
!

Dx
´

ľ

iăjăn

xi ‰ xj ^
ľ

iăn

P pxiq
¯

, Dx
´

ľ

iăjăn

xi ‰ xj ^
ľ

iăn

␣P pxiq
¯)

nPN
.

Every finite T0 Ď T is consistent with ϕ and with ␣ϕ. By compactness, both
T Y tϕu and T Y t␣ϕu have models: A |ù T Y tϕu and B |ù T Y t␣ϕu. We may
assume both A and B to be countable by the downward Löwenheim–Skolem
theorem.

Then writing A “
@

A,PAD, we have that A,PA, A∖PA are countably infinite
and the same for B. Thus, A is isomorphic to B, but A |ù ϕ, B |ù ϕ. This is a
contradiction.

Example 1.83. No sentence can define the class of connected graphs.

Theorem 1.84 (De Bruijn–Erdős theorem). For any k P N, a graph G “ xV,Ey
is k-colourable iff all finite subgraphs G0 of G are k-colourable.

Proof. Define

LG “ tEpx, yqu Y tPipxq : i ă ku Y tu : u P V u ,

TG “
!

@x
ł

iăk

Pipxq,
ľ

iăk

@x@y␣pEpx, yq ^ Pipxq ^ Pipyqq
)

Y tEpu, vq : xu, vy P Eu .

Then T has a model iff G is k-colourable:

ð Let c : V Ñ t0, . . . , k ´ 1u be a k-colouring of G. Then

M “
@

V,E, PM
0 , . . . , PM

k´1

D

V
|ù TG,

where PM
i “ c´1ptiuq.

ñ Suppose M |ù TG. We define a k-colouring c : V Ñ t0, . . . , k ´ 1u as
follows. If u P V , then there is i ă k s.t. M |ù Pipuq; let cpuq be one
such i. Then if xu, vy P E, then M |ù Epu, vq, thus cpuq ‰ cpvq.

If all finite subgraphs of G are k-colourable, then every finite T0 Ď TG has
a model, as T0 Ď TG0

for some finite G0 Ď G. Thus TG has a model by
compactness, whence G is k-colourable. QED

Mathematical Logic 24

2 Computability
5 December 2023

2.1 Turing machines

We wish to formalize the notion of an effective algorithm. There are
several motivations for this.

First, it is intrinsically interesting as effective computability seems to be a fun-
damental concept for which we would like to have a formal counterpart.

Second, it allows us to mathematically formulate and answer questions about
computability of particular problems. If a problem is computable, we can show
this just by exhibiting an algorithm, for which an intuitive understanding of
the concept suffices. However, if we want to prove that some problem is not
computable, we need a precise definition.

A specific problem suggested by Section 1 is the so-called Entscheidungsprob-
lem3:

Is there an algorithm that would decide whether a given first-order
sentence ϕ is logically valid?

Note that validity of propositional formulas is algorithmically decidable by just
trying all assignments (see also Remark 1.24). For first-order sentences, we
have a ‘one-sided’ algorithm: we may systematically enumerate all possible
proofs. The completeness theorem ensures that if a sentence is valid, we will
(in principle) find its proof sooner or later; however, if a sentence is not valid,
this algorithm will run forever and never halt.

Third, effective algorithms and related concepts are an important tool for in-
vestigation of first-order theories of arithmetic, as we will see in Section 3.

Many different formal models for computation have been proposed:

• Turing machines

• General recursive functions

• λ-calculus

• Random-access machines

• . . .

However, all of these turned out to be equivalent. This leads to the so-called
Church–Turing thesis, which posits that a problem is effectively computable in
the informal sense iff it is computable by a Turing machine. This is what we
will use as our formal model as well.

Intuitively speaking, we mean to formalize the notion of a simple physical device
consisting of an internal logic circuitry that can be in finitely many states, with

3Which literally means ‘decision problem’ in German, but that term has a much broader
meaning in English; see below.

Mathematical Logic 25

access to a tape divided into discrete cells, each of which can hold one symbol.
The tape provides the machine with input, and it is subsequently used as a
working memory. The machine can scan the tape using a reading-writing head
that can move over the tape. We assume the tape has a beginning, but it is
infinite in the other direction, and the machine, therefore, may not run out of
memory to write into. The formal definition follows:

Definition 2.1. A Turing machine is a septuple M “ xQ,Σ,Γ, δ, q0, qacc, qrejy
comprising:

Set of states Q. This is a finite set containing the set of all ‘states’ the ma-
chine could be in. What the machine does at any given moment is de-
termined by its current ‘state’ and the input symbol it is reading at that
moment (see below for an example).

It also contains three special states denoted q0, qacc, qrej; here q0 denotes
the initial state (i.e., the state the machine is in when it is first switched
on and a fresh input tape is provided to it—it begins every computation
switched into the state q0), and qacc and qrej stand for the accepting and
rejecting states respectively, which, once the machine switches into either
of them, terminate the computation. We assume qacc ‰ qrej.

Input alphabet Σ. This is a finite, nonempty set of symbols the machine
recognizes as a valid input. We could consider a finite set of integers,
letters, or arbitrary symbols.

Tape alphabet Γ. This is a finite set of symbols that are allowed to be written
in cells of the tape. We assume Γ Ě Σ Y t u, where R Σ is a special
symbol called the blank symbol. It is the only symbol that may occur
infinitely many times on the tape. When the computation begins, all cells
save the finitely many containing the actual input string contain the blank
symbol.

Transition function δ. The transition function is a function

δ : Qˆ ΓÑ Qˆ Γˆ tL,Ru .

For any given state q and current tape symbol a, it outputs a new (not
necessarily distinct) state q1 the machine switches itself into, a new (not
necessarily distinct) tape symbol a1 which the machine writes in the cur-
rent cell, and one of special commands L or R which tell the machine

Mathematical Logic 26

whether to move the head one position to the left or to the right (the
head is not allowed to stay put in place after the foregoing actions are
complete, but this is not an essential restriction).

Definition 2.2. A configuration of a Turing machineM is xq, h, uy where q P Q
is the current state, h P ω is the head position, and u P Γω is the tape content.
We denote the ith cell of u as ui. A configuration xq, h, uy is said to be accepting
if q “ qacc; rejecting if q “ qrej; and halting if it is accepting or rejecting.

It is clear that the transition function uniquely assigns a new configuration to
any given non-halting configuration and thus propels the computation. Form-
ally, we say that a configuration xq, h, uy such that q R tqacc, qreju yields the
configuration xq1, h1, u1y defined as follows. Let a “ uh be the current symbol,
and δpq, aq “ xq1, a1, ty. Then h1 “ h ` 1 if t “ R and h1 “ maxph ´ 1, 0q if
t “ L; u1 P Γω is defined by u1

h “ a1 and u1
i “ ui for all i ‰ h.

The initial configuration corresponding to input x P Σ˚ is xq0, 0, x⌣
ωy. Simply

put, the machine is in the initial state, and the head is at the beginning of the
tape, whose content is the input string followed by infinitely many blanks.

Definition 2.3 (Run of a Turing machine, acceptance and rejection). A run of
a Turing machine M on input x P Σ˚ is a sequence of configurations C0, . . . , Ct

where C0 is the initial configuration on input x, and Ci yields Ci`1 for each
i ă t.

M is said to accept, resp. reject, x, if there is a run C0, . . . , Ct of M on x where
Ct is an accepting, resp. rejecting, configuration.

Remark 2.4. As can be seen from the definitions above, the values of the
transition function δpq, aq for q P tqacc, qreju are irrelevant, as the machine always
halts in such states anyway. Thus, we could have defined δ as only a function
pQ∖ tqacc, qrejuq ˆΣÑ QˆΣˆ tL,Ru. We keep the domain to be all of Q for
consistency with Sipser’s book.

Definition 2.5. A decision problem (or language; not to be confused with
first-order languages) is any subset L Ď Σ˚. That is to say, it is a collection of
possible inputs for (some) Turing machine.

Definition 2.6 (Decidability). A Turing machine M is said to decide, or com-
pute, a decision problem L if for every input x P Σ˚:

x P L ùñ M accepts x, x R L ùñ M rejects x.

A decision problem L is decidable (or computable, or recursive) if there exists a
Turing machine M that decides L.

Definition 2.7 (Semidecidability). A Turing machine M is said to recognize
(or semidecide) a decision problem L if for every input x P Σ˚ we have

x P L ðñ M accepts x.

Mathematical Logic 27

Similarly, L is said to be recognizable (or semidecidable, computably enumerable,
recursively enumerable) if L is recognized by some Turing machine M . The
language recognized by M is

LpMq “ tx P Σ˚ :M accepts xu .

Remark 2.8.

• Every Turing machine recognizes exactly one language, viz. LpMq. That
is, a language L is recognized by a Turing machine M iff L “ LpMq.

• Perhaps the difference between language recognition and decision ought
to be highlighted. A language is recognizable iff there is a Turing machine
that will halt and accept only the strings in that language; for strings not
in the language, the Turing machine either rejects, or does not halt at all.
In contrast, a machine that decides a language must always halt.

A Turing machine decides a language iff it recognizes it and it halts on
every input.

Observation 2.8.1. Every decidable language is semidecidable.

Decision problems formalize the notion of computational tasks that admit a
YES/NO answer. However, not all problems we might consider computing by an
algorithm are of this kind. We will also work with more general problems where
the solution can be an arbitrary string; these are called function problems4:

Definition 2.9 (Partial function). A partial function f : X á Y is a function
f : dompfq Ñ Y such that dompfq Ď X; i.e., f is possibly defined only on a
portion of X and not necessarily everywhere. In this context, a function is said
to be total if dompfq “ X; i.e., the usual notion of a function.

Definition 2.10 (Function problem). A function problem is partial function
f : Σ˚ á Σ˚.

Definition 2.11 (Function-problem computation). A Turing machineM is said
to output y P Σ˚ on input x P Σ˚ if there is an accepting run C0, . . . , Ct of M
on input x such that Ct “ xqacc, h, y⌣

ωy.

M is then said to compute a function problem f : Σ˚ á Σ˚ if LpMq is the
domain of f and for each x P dompfq, M outputs fpxq on input x.

f : Σ˚ á Σ˚ is a partial computable function (or partial recursive function) if
there is a Turing machineM that computes it. A partial computable function f
that is defined everywhere on Σ˚ (i.e., it is total) is said to be simply computable
(or recursive).

4Even more generally, we could consider problems that admit more than one valid solution;
these are called search problems, and are important in computational complexity, but we will
not see them in this course.

Mathematical Logic 28

Remark 2.12. We note there are many variants on the definitions of a Turing
machine in the literature. Some of the common modifications include:

• A two-sided infinite tape.

• Considering partial transition functions with no rejecting state.

• Multi-tape Turing machines (so-called k-tape machines): the machine has
k tapes (where k is a fixed number that’s part of the specification of the
machine) including an input tape (usually read-only), several work tapes,
and if we are interested in function problems, an output tape (usually
write-only); each tape has its own head that can move (or stay put) inde-
pendently.

Exercise 2.13. A k-tape Turing machine is equivalent to a single-tape Turing
machine.

Hint: The idea is to represent the content of all k tapes on one tape using a
new tape alphabet

pΓˆ t0, 1uqk Y t u .

Remark 2.14. Another variation of the definition of Turing machines is to
require that Γ “ Σ Y t u . If |Σ| ě 2, this can be shown equivalent to the
original definition as follows. Given a machine

M “ xΣ,Γ, Q, δ, q0, qacc, qrejy ,

we fix k such that |Γ| ď p|Σ|`1qk, and an injective encoding e : ΓÑ pΣYt uqk.
We may assume ep q “ k. We simulate M using k-tuples of symbols from
ΣY t u to represent each symbol on the tape using e.

We need to expand the input to the tape encoding before the simulation. This
may be done symbol-wise: take a symbol a that had not been encoded yet, shift
the content of the tape to the right of the symbol by k ´ 1 positions to make
room, go back to write the encoding epaq, and repeat until we get to the end of
the original input.

Example 2.15. We consider the language

Palindromes “
␣

w P ta, bu
˚
: w “ wR

(

,

where the string reversal operator R is defined by pw0 . . . wn´1q
R “ wn´1 . . . w0.

In other words, the language consists of words over a 2-letter alphabet ta, bu that
are written the same way forwards and backwards; e.g., bab or abba. We will
now design a Turing machine that decides whether a given word is a palindrome.

A simple algorithm is to repeatedly check that both symbols at the ends of the
string are the same and cross them out, until we either detect an inconsistency
or end up with a string of length ď 1. A Turing machine cannot operate at both
ends simultaneously, but we can achieve something similar by moving the head
back and forth: the machine removes the left-most symbol and ‘remembers’ it

Mathematical Logic 29

in its internal state, moves to the right end, checks that the last symbol agrees
with the remembered one and removes it, and rewinds back to the left.

Formally, we define the machine as

M “ xQ, ta, bu , ta, b, u , δ, q0, qacc, qrejy ,

Q “ xq0, qacc, qrej, q1,a, q1,b, q2,a, q2,b, q3y ,

where the transition function δ is given by the following diagram:

q1,a q2,a

q0 qacc qrej q3

q1,b q2,b

aÑ ,R

Ñ ,L

bÑ ,R

Ñ ,L

b

a

aÑ ,L

bÑ ,L

Ñ ,R
aÑa,L

bÑb,L

aÑa,R bÑb,R

aÑa,R bÑb,R

Palindromes can be recognized more easily on a two-tape Turing machine: we
can copy the string to a work tape and then traverse the two copies in opposite
directions.

Remark 2.16. Programming Turing machines down to an explicit listing of
the transition function table can be a tedious endeavour that requires a lot
of determination and patience, while the result is not very illuminating and
obscures the ideas behind the algorithm. The purpose of Example 2.15 is to
present during the lecture at least once a complete Turing machine with all
the bells and whistles that computes something sensible to show that it can be
done indeed, but from now on we will rather describe Turing machines using an
informal pseudo-code, assuming that the reader can imagine how to translate it
to a formal presentation if required.

If desired—to get a better feeling for what can be implemented on Turing ma-
chines and how, or just for fun—there are a number of online Turing machines
simulators one can play with, e.g., https://turingmachinesimulator.com.
The palindrome machine from Example 2.15 can be found at
https://turingmachinesimulator.com/shared/slylqbjruc.

12 December 2023

Lemma 2.17. A language L Ď Σ˚ is decidable iff L and Σ˚ ∖ L are semide-
cidable.

https://turingmachinesimulator.com
https://turingmachinesimulator.com/shared/slylqbjruc

Mathematical Logic 30

Proof.

ñ Suppose L is decidable; then so is Σ˚ ∖L (we may take a Turing machine
deciding L and swap the accepting and rejecting states). It follows Σ˚ ∖L
is semidecidable, while L itself is semidecidable trivially.

ð Let M0 recognize (semidecide) L, and M1 recognize Σ˚ ∖ L. A 2-tape
Turing machine M described by the following pseudo-code decides L:

(1) Copy input onto the second tape.

(2) Run M0 and M1 in parallel on the two tapes.

(3) If M0 accepts, ACCEPT.

(4) If M1 accepts, REJECT.

Observe that M has to eventually halt by definition of language recogni-
tion: clearly, the input x belongs to either Σ˚ or its complement Σ˚ ∖ L.
In case of the former, M0 accepts x by definition; and in case of the latter,
M1 does. Hence x is accepted by precisely one machine and the algorithm
halts in finite time. QED

Definition 2.18 (Numbering of strings). Let k ě 2, and assume Σ is the finite
alphabet t1, 2, 3, . . . , ku. Then we may define the following encoding (so-called
bijective base-k numeration):

x´y : Σ˚ Ñ N, xa0 . . . an´1y “
ÿ

iăn

kiai.

Observe x´y is a bijection.

Definition 2.19. We say that L Ď N is (semi)decidable if its bijective base-2
encoding

␣

w P t1, 2u
˚
: xwy P L

(

is (semi)decidable.

We say F : N á N is computable if G : t1, 2u
˚
á t1, 2u

˚
is computable, where

G is uniquely determined by F pxwyq “ xGpwqy. In other words, G is given by
the following commutative diagram:

Σ˚ N

ö

Σ˚ N

F

x´y

x´y

G

Definition 2.20. We say R Ď pΣ˚qk is (semi)decidable if

tw0#w1# ¨ ¨ ¨#wk´1 : xw0, . . . , wk´1y P Ru Ď pΣY t#uq
˚

is semidecidable, where # R Σ is a new separator symbol.

Similarly, F : pΣ˚qk á Σ˚ is computable if the function G : pΣ Y t#uq˚ á Σ˚,
Gpw0#w1# ¨ ¨ ¨#wk´1q “ F pw0, . . . , wk´1q, is computable.

Mathematical Logic 31

2.2 Universal Turing machines and the halting problem

Warning. Angle brackets x´y are used for multiple purposes below, including
to denote ordered tuples.

Theorem 2.21. Let Σ be an alphabet with at least two symbols. Then there
exists a universal Turing machine UΣ with the following property:

For every Turing machine M on the same alphabet Σ, there is a code xMy P Σ˚

such that
UΣpxMyxq »Mpxq for each x P Σ˚.

Here, ‘»’ means that UΣ accepts xMyx iff M accepts x, and it rejects xMyx iff
M rejects x. Moreover, UΣ outputs y P Σ˚ on input xMyx iff M outputs y on
input x.

Proof. Let M “ xQ,Σ,Γ, δ, q0, qacc, qrejy be a Turing machine on the alphabet
Σ, where we assume Γ “ Σ Y t u (see Remark 2.14). We fix an enumeration
Q “ tqi : i ă su, where q0 the initial state as indicated above, q1 “ qacc, and
q2 “ qrej. We also fix an enumeration Γ “ taj : j ă ku.

The code xMy of M will describe the transition function δ : Q ˆ Γ Ñ Q ˆ
Γ ˆ tL,Ru. For convenience, we will use some auxiliary extra symbols (#, #,
0, 1, L, R) to define xMy and the operation of UΣ (also, xMy may include
blanks). Officially, UΣ is required to have input alphabet Σ, and in particular,
we should make xMy P Σ˚; we achieve this by encoding the expanded alphabet
Σ1 “ Σ Y t ,#,#, 0, 1, L,Ru by c-tuples of symbols from Σ for a suitable c,
similarly to Remark 2.14. (This is where we use the assumption |Σ| ě 2.)

We define

xMy “ ## xδpq0, a0qy# xδpq0, a1qy# ¨ ¨ ¨# xδpq0, ak´1qy

xδpq1, a0qy# xδpq1, a1qy# ¨ ¨ ¨# xδpq1, ak´1qy

...

xδpqs´1, a0qy# ¨ ¨ ¨# xδpqs´1, ak´1qy##

where if δpqi, ajq “ xqi1 , aj1 , ty P Q ˆ Σ ˆ tL,Ru, we define the encoding of
δpqi, ajq as

xδpqi, ajqy “ aj1t0i
1

.

Here, 0i
1

denotes a string of zeroes of length i1.

We shall now describe the operation of the universal Turing machine UΣ. It
maintains on its tape a representation of the current configuration of M ; it
works in an endless loop where on each iteration, it simulates the effects of one
step of M . It will be convenient for this purpose to represent a configuration of
M as

u0 . . . uh´1 xMyuhuh`1 . . .

Mathematical Logic 32

where u0 . . . uh´1 is the content of the simulated tape to the left of the head
position h, and uhuh`1 . . . the rest of the tape from the head position onward.
During the simulation, some parts of xMy will be modified a little; we will
still refer to it as xMy. In particular, we need to indicate the current state qi
of M : we do this by replacing the # in front of the entry xδpqi, a0qy of the
encoded transition function table (i.e., the beginning of the row of the table
corresponding to qi) with the symbol #.

Note that the encoding of Σ1 by Σc is applied only to the xMy part of the
configurations; the symbols ui of the simulated tape will be written literally.

During the simulation, the head will be kept inside xMy, except possibly ventur-
ing one step outside to read/write the current symbol of the simulated machine,
or to move the simulated head. We can rewind the tape to the left or right end
of xMy at any time, because these can be recognized by the substring ## (or
##); this works even after the encoding of Σ1 by Σc because we never go far
away from xMy, and therefore we cannot lose track of whether we are currently
seeing an encoded symbol of Σ1 or an unencoded symbol of Σ.

In the beginning of the simulation, UΣ starts with xMyx on the input tape,
which is almost a valid representation of the initial configuration of M on in-
put x—we only need to mark the row corresponding to the initial state q0:

(00) Move right and replace the second # with #.

Next comes the main loop of UΣ, simulating one step of the computation of M .
Suppose that the tape contains a representation of a configuration as above.
We first have to locate the entry of the transition table corresponding to the
current state qi and symbol under the head aj of the simulated machine:

(01) Move past the right end of xMy.
(02) Read and remember uh “ aj.
(03) Locate the # symbol, and replace it with #.

(04) Repeat j times: move right towards the next # symbol.

The head is now at the # symbol in front of the string xδpqi, ajqy “ aj1t0i
1

.

(05) Read and remember aj1 and t.

We now have to mark the table row corresponding to the new state qi1 with
#. Unlike aj1 or t, we cannot just read it and remember in the state of UΣ,
because the number of states of M may be arbitrarily large (it is not bounded
by a constant). We proceed as follows: we convert the 0i

1

in xδpqi, ajqy to 1i
1

,
mark the row corresponding to q0, and then use a loop that converts the 1’s
back to 0’s one by one, each time moving the marker to the next row.

However, we must take care to abort the simulation if the new state is halting.
Note that we can count up to 2 in the state of UΣ, thus we can check if i1 “ 1
or i1 “ 2, even if we cannot remember an arbitrarily large i1. (This is the reason
we fixed the accepting and rejecting states to be q1 and q2, resp.)

Mathematical Logic 33

(06) Move right to the next #, replacing 0 with 1 as we go.

(07) If the total number of 0s was 1, then ACCEPT.

(08) If the total number of 0s was 2, then REJECT.

(09) Locate the left end of xMy.
(10) Change the second # to #.

Now comes the loop for moving the marker. Note that each row of the table
has k “ |Γ| “ |Σ| ` 1 entries, which is a constant that we can count up to in
the state of UΣ.

(11) Move right to locate the first 1.
(12) If none is found before the end of xMy, go to (18).

(13) Change the 1 to 0.
(14) Locate the # symbol and change it to #.

(15) Move to the kth # to the right.

(16) Change it to #.

(17) Move to the beginning of xMy, and go to (11).

We have now placed # correctly to mark the new state. We have yet to update
the symbol under the simulated head, and move the head. Note that upon
exiting the loop above, the head of UΣ is past the right end of xMy, i.e., at the
position of uh.

(18) If t “ R:
(19) Shift xMy to the right (overwriting uh).
(20) Write aj1 in the free space to the left of it.

(21) If t “ L:
(22) Write aj1.

(23) Locate the left end of xMy.
(24) If it is at the beginning of the tape, go to (01).

(25) Remember the symbol uh´1 “ aj2 to the left of it.

(26) Shift xMy to the left (overwriting uh´1).

(27) Write aj2 in the free space to the right.

(28) Go to (01).

This finishes the simulation for decision problems. If we care about computation
of functions, UΣ cannot literally halt in step (07): it must first clean up the tape
(i.e., remove xMy and shift uhuh`1 . . . accordingly) so that its output is the same
as the output of M . QED

Definition 2.22. The halting problem for a given alphabet Σ is the language

AΣ “ txMyx :M accepts xu Ď Σ˚.

Theorem 2.23. The halting problem AΣ is semidecidable, but not decidable.

Proof. AΣ is recognized by the universal Turing machine UΣ. To see it is not
decidable, we assume towards a contradiction that AΣ is decided by some Turing

Mathematical Logic 34

machine H. This means that H accepts the pair xMyx if M accepts x, and
rejects it otherwise.

We define a new Turing machine D on the input alphabet Σ that works as
follows:

(1) Duplicate the input x to xx.
(2) Run H.

(3) If H accepts, reject; if H rejects, accept.

We run D on input xDy, and obtain a contradiction:

D accepts xDy ðñ H rejects xDy xDy definition of D

ðñ xDy xDy R AΣ H decides AΣ

ðñ D does not accept xDy definition of AΣ.

QED

Remark 2.24. D stands for ‘diagonal machine’, as the proof of Theorem 2.23
is a variant of Cantor’s diagonal argument. We imagine the infinite matrix in-
dexed by strings where rows enumerate codes xMy of Turing machines, columns
enumerate inputs x, and a 0{1 entry in the matrix indicates whether M accepts
x or not. The machine D computes the diagonal of the matrix with 0{1 flipped,
but this clearly cannot agree with any row of the matrix.

Once we identified one undecidable problem, we can prove the undecidability of
other problems by means of reductions:

Definition 2.25. Let A,B Ď Σ˚. We say A is many-one reducible (or mapping
reducible) to B, written A ďm B, if there is a computable f : Σ˚ Ñ Σ˚ such
that for all x P Σ˚ we have

x P A ðñ fpxq P B.

We say A and B are many-one equivalent, written A ”m B, if A ďm B and
B ďm A.

Lemma 2.26. If A ďm B and B is (semi)decidable, then A is (semi)decidable.

Proof. If M (semi)decides B, and M 1 computes f , then A is (semi)decided by
the Turing machine that simulates M 1 to compute fpxq and then simulates M .

QED

Exercise 2.27. We defined the ‘halting problem’ to be AΣ in accordance with
Sipser’s book, but it would be more logical to call AΣ the ‘acceptance problem’,
and reserve the name ‘halting problem’ for HΣ “ txMyx :M halts on input xu
(which is the traditional definition). Fortunately, this does not make a significant
difference: prove that HΣ ”m AΣ.

We will see some more serious applications of reductions to proving undecidab-
ility in Section 3.

Mathematical Logic 35

3 Arithmetic
19 December 2023

3.1 Robinson and Peano arithmetic

We wish to axiomatize the structure N “ xN, 0, S,`, ¨,ďy. One way of
defining N up to isomorphism are the Dedekind–Peano axioms. They

postulate:

(1) There is a natural number 0.

(2) There is a successor function S on N. The successor of any natural number
is a natural number.

(3) No two distinct natural numbers have a common successor.

(4) The number 0 is the successor of no natural number.

(5) A set of natural numbers containing 0 which is closed under S is the set
of all natural numbers.

Observe that these axioms do not form a first-order theory since the last axiom
quantifies over subsets. One might think we could amend this by considering
a structure with domain PpNq, but this does not really work either because
for any theory in such a language, there is no way of enforcing that its model
includes all subsets of N using first-order axioms.

After all, we know from Section 1 that any first-order theory of arithmetic will
have nonstandard models of arbitrarily large cardinality, hence there is no way it
could define N up to isomorphism; but we may still hope to capture all first-order
sentences valid in N by a nice explicit set of natural axioms. (This is possible for
some related structures, such as xN, 0, 1,`,ďy and xR, 0, 1,`, ¨,ďy.) A natural
attempt at such an axiomatization is Peano arithmetic.

Definition 3.1 (Robinson and Peano arithmetic). The language of arithmetic
is LPA “ t0, S,`, ¨,ďu. Robinson’s arithmetic Q is the LPA-theory with axioms

Q1 Spxq “ Spyq Ñ x “ y,

Q2 Spxq ‰ 0,

Q3 x ‰ 0Ñ Dy Spyq “ x,

Q4 x` 0 “ x,

Q5 x` Spyq “ Spx` yq,

Q6 x ¨ 0 “ 0,

Q7 x ¨ Spyq “ x ¨ y ` x,

Q8 x ď y Ø Dz z ` x “ y.

Peano arithmetic PA is Q extended with the schema of induction

ϕp0q ^ @x
`

ϕpxq Ñ ϕpSpxqq
˘

Ñ @xϕpxq for all formulas ϕ.

Mathematical Logic 36

PA is a first-order version of the Dedekind–Peano axioms, and may look as
a plausible candidate for a complete axiomatization of true arithmetic ThpNq.
However, we will prove that it is in fact incomplete, and it cannot be made
complete by adding any semidecidable set of axioms; furthermore, this holds
already for extensions of the rudimentary theory Q. This is the content of
Gödel’s first incompleteness theorem.

We will derive the incompleteness of extensions of Robinson’s arithmetic from
their undecidability. Towards that goal, we will show that we can ‘represent’
semidecidable sets X Ď N in the theory. We do this in two steps:

• Semidecidable sets are definable by so-called Σ1-formulas in N.

– The main technical ingredient here is that LPA is expressible enough
to define encoding of finite sequences.

• Σ1-sentences true in N are provable in Q.

We start with the second bullet point.

3.2 Σ1-completeness of Q

Definition 3.2. By bounded quantifiers we understand the abbreviations

Dx ď t ϕ ” Dx px ď t^ ϕq, @x ď t ϕ ” @x px ď tÑ ϕq,

where t is a term not containing x.

A formula is said to be bounded, or ∆0, if all its quantifiers are bounded.

A formula ϕpxq is Σ1 if it has the form Dy θpx, yq where θ is bounded.

Definition 3.3. A ∆0-function is a partial function f : Nk á N satisfying the
following two conditions:

(1) There is a term t (i.e., a polynomial with coefficients from N) such that

@x P Nk fpxq ď tpxq.

(2) There is a ∆0-formula θpx, yq such that

fpxq “ y ðñ N |ù θpx, yq.

Definition 3.4. The numeral representing n P N is the closed term

n “ SpSp¨ ¨ ¨ pS
looooomooooon

n times

p0qq ¨ ¨ ¨ qq.

Formally, we define n by induction (in the meta-theory) as 0 “ 0 and n` 1 “
Spnq. It follows from the definition that

nN “ n.

Mathematical Logic 37

Lemma 3.5. Let n,m P N. Then

(1) Q $ n`m “ n`m.

(2) Q $ n ¨m “ nm.

(3) Q $ n ‰ m if n ‰ m.

(4) Q $ @x px ď nØ x “ 0_ x “ 1_ ¨ ¨ ¨ _ x “ nq.

Proof.

(1) By induction (in the meta-theory) on m. The base case m “ 0 is clear:

Q $ n` 0
Q4
“ n “ n` 0.

For the induction step m ÞÑ m` 1:

Q $ n`m` 1
def
“ n` Spmq

Q5
“ Spn`mq

i.h.
“ Spn`mq

def
“ n`m` 1.

(2) Again, the proof is by meta-induction on m. The base case m “ 0 is Q6.
For the induction step, Q proves

n ¨m` 1
def
“ n ¨ Spmq

Q7
“ n ¨m` n

i.h.
“ nm` n

(1)
“ nm` n

looomooon

npm`1q

.

(3) By meta-induction on min tn,mu. First suppose m “ 0 ă n. Then

Q $ n
def
“ Spn´ 1q

Q2

‰ 0.

Similarly if m ą 0 “ n. Finally, if n,m ą 0, we have

Q $ n “ mÑ n´ 1 “ m´ 1 Q1,

Q $ n´ 1 ‰ m´ 1 induction hypothesis.

(4) (Ð) If m ď n, then

Q $ n “ n´m`m by (1),

$ m ď n by Q8.

(Ñ) By meta-induction on n:

Base case n “ 0. Let us reason in Q. If x ď 0, then z ` x “ 0
for some z by Q8. By Q3, either x “ 0 and we are done, or
x “ Spyq for some y. But then 0 “ z ` Spyq “ Spz ` yq by Q5,
contradicting Q2.

Mathematical Logic 38

Induction step n ÞÑ n` 1. Reason in Q, and assume x ď n` 1.
Again, we have n` 1 “ z`x for some z by Q8, and either x “ 0
(in which case we are done) or x “ Spyq for some y.

In the latter case, Spz ` yq “ n` 1 “ Spnq by Q5, thus Q1
implies z ` y “ n, i.e., y ď n by Q8.

Then y is 0 or 1 or . . . or n by the induction hypothesis, thus x
is 1 or 2 or . . . or n` 1. QED

Lemma 3.6. If t is a closed LPA-term, and tN “ n, then Q $ t “ n.

Proof. By induction on the complexity of t using (1) and (2) of Lemma 3.5.
QED

Lemma 3.7. Let θ be a ∆0 sentence. Then

N |ù θ ùñ Q $ θ,

N |ù θ ùñ Q $ ␣θ.

Proof. By induction on the complexity of θ:

Atomic formulas. Suppose θ is t “ s or t ď s for some closed terms t and
s (they have to be closed as θ is a sentence). Let n “ tN and m “ sN.
By the previous lemma, Q $ t “ n and Q $ s “ m. Moreover, using
Lemma 3.5,

N |ù t “ s ùñ n “ m ùñ Q $ n “ m,

N |ù t “ s ùñ n ‰ m ùñ Q $ n ‰ m by (3),

N |ù t ď s ùñ n ď m ùñ Q $ n ď m by (4),

N |ù t ď s ùñ n ď m ùñ Q $ n ď m by (4) and (3).

Conjunction, Disjunction, Negation. This case is left as an exercise.

Universal quantification. Suppose θ “ @x ď t θ0pxq for some closed term t.
As before, we have Q $ t “ n, where n “ tN.

• Suppose N |ù θ. It follows that for each m ď n, we have N |ù θ0pmq,
thus Q $ θ0pmq by the induction hypothesis. Moreover,

Q $ x ď tÑ x “ 0_ x “ 1_ ¨ ¨ ¨ _ x “ n

by (4), thus
Q $ x ď tÑ θ0pxq,

whence Q $ @x ď t θ0pxq by Remark 1.57.

Mathematical Logic 39

• Suppose N |ù θ. Then there is m ď n such that N |ù θ0pmq; whence
by the induction hypothesis, Q $ ␣θ0pmq. Moreover, Q $ m ď n “ t
by (4), hence Q $ ␣@x ď t θ0pxq.

Existential quantification. This case is left as an exercise. QED

Theorem 3.8 (Σ1-completeness). Every true5 Σ1-sentence ϕ is provable in
Robinson’s arithmetic Q.

Proof. Let ϕ “ Dx0, . . . , xk´1 θpx0, . . . q be a Σ1-sentence, where θ P ∆0. Then
N |ù ϕ implies there are some n0, . . . , nk´1 P N such that N |ù θpn0, . . . q, which
implies Q $ θpn0, . . . q by the previous lemma, whence Q $ Dx0, . . . θpx0, . . . q.

QED

3.3 Sequence encoding and definability of computation

Definition 3.9. In the context of arithmetic, we will use the pairing function
xx, yy “ px` yq2 ` x.

The next lemma states that it is indeed a pairing function:

Lemma 3.10. N |ù @x, y, u, v pxx, yy “ xu, vy Ñ x “ y ^ u “ vq.

Proof. We have px ` yq2 ď xx, yy ă px ` y ` 1q2. Thus, if xx, yy “ xu, vy, then
px` yq2 “ pu` vq2, which implies x` y “ u` v, which implies x “ u, whence
y “ v. QED

Theorem 3.11 (Sequence encoding). There exists a ∆0-function βpx,m, iq
such that for any k P N and x0, . . . , xk´1 P N, there are x,m P N that encode
this sequence via β:

βpx,m, iq “ xi for all i ă k.

Definition 3.12. Given x, y P N and y ą 0, rempx, yq is the unique r such that
0 ď r ă y and x ” r pmod yq. That is, rempx, yq “ x´ ytx{yu.

We define βpx,m, iq “ rempx, 1` pi` 1qmq. This is called Gödel’s β-function. 9 January 2023

Lemma 3.13. If 1, . . . , k | m, then t1` im : i ď ku are pairwise coprime.

Proof. If i ă j ď k and p | 1 ` im, 1 ` jm is prime, then p | pi ´ jqm implies
p | m2, whence p | m and thus p | 1. A contradiction. QED

Lemma 3.14 (Chinese remainder theorem). If m0,m1, . . . ,mk´1 are pairwise
coprime natural numbers, then for all x0, x1, . . . , xk´1 P N, there exists x P N
such that

x ” xi pmod miq for all i ă k.

5I.e., true in the standard model N.

Mathematical Logic 40

Proof of Theorem 3.11. We have βpx,m, iq ď x, and the graph of β is definable
by the ∆0-formula

βpx,m, iq “ y ðñ Dq ď x x “ y ` q ¨ p1` p1` iq ¨mq.

Thus, β is a ∆0-function.

Let k and x0, . . . , xk´1 be given. Fix some m such that 1, . . . , k | m and m ě xi
for all i ă k. Since 1`m, . . . , 1` km are coprime by Lemma 3.13, the Chinese
remainder theorem tells us there is some x such that

x ” xi pmod 1` p1` iqmq for all i ă k.

Also xi ă 1` p1` iqm, thus xi “ rempx, 1` p1` iqmq “ βpx,m, iq. QED

As defined, Gödel’s β-function needs a pair of numbers x,m to encode a sequence
x0, . . . , xk´1, and even so it does not determine the length of the sequence (k).
Thus, we introduce a variant of the function that is more convenient to use:

Definition 3.15.

seqpw, iq “ y ðñ Dx,m, k ď w pw “ xxx,my , ky ^ i ă k ^ βpx,m, iq “ yq,

lenpwq “ k ðñ Dx,m ď w w “ xxx,my , ky .

The meaning is that w encodes a sequence of length lenpwq whose ith entry is
seqpw, iq for i ă lenpwq. (The functions as defined are partial—w only codes
a sequence if it is of the form xxx,my , ky for some x,m, k. This will not be a
concern.)

Theorem 3.16. Every semidecidable set of natural numbers X Ď N is Σ1-
definable; i.e., there exists a Σ1-formula σpxq such that

n P X ðñ N |ù σpnq for all n P N.

Proof. Fix a Turing machine M “ xQ,Σ,Γ, q0, qacc, qrej, δy that semidecides X,
or more precisely, the set of strings tw P t1, 2u˚ : xwy P Xu (see Definition 2.19).
Thus, Σ “ t1, 2u; we assume w.l.o.g. that the elements of Q and Γ are natural
numbers as well (in particular, we identify with some natural number ‰ 1, 2).

We represent configurations of M by natural numbers using sequence encoding:
we cannot literally follow Definition 2.2 as we cannot encode infinite sequences,
thus we represent a configuration as (a code of) a sequence xq, h, w0, . . . , wsy

where q P Q is the current state, h is the head position, wi is the content of ith
cell of the tape, and s ě h is such that wi “ for all i ą s. Note that the
representation of a given configuration is non-unique, because the representation
may use arbitrarily large s, and regardless of that, a given finite sequence can
be coded by infinitely many different numbers.

Working with this representation, we will present formulas Initialpu, xq express-
ing ‘u is the initial configuration on input x’, Acceptingpuq expressing ‘u is an

Mathematical Logic 41

accepting configuration’, and Yieldspu, vq expressing ‘u yields v’. Then we can
define X by the formula

σpxq “ Dw
“

lenpwq ě 1^ Initial
`

seqpw, 0q, x
˘

^Accepting
`

seqpw, lenpwq ´ 1q
˘

^ @i ă lenpwq ´ 1 Yields
`

seqpw, iq, seqpw, i` 1q
˘‰

expressing Definition 2.3. Note that even though seq, len, and ´ 1 are not
LPA-terms, they are ∆0-functions, hence we can eliminate them from the for-
mula while using only bounded quantifiers: e.g., an atomic formula of the form
θpseqpw, iqq can be rewritten as Du ď w pθpuq ^ seqpx, iq “ uq, where we can
replace seqpx, iq “ u with its ∆0 definition. Thus, we can write σpxq as a
Σ1-formula as long as Initial and Accepting are Σ1-formulas (whose initial ex-
istential quantifiers can be prenexed out of the square bracket), and Yields is a
∆0-formula.

It remains to define the formulas Initial, Accepting, and Yields with the prop-
erties above. Again, we can use ∆0-functions such as seq and len freely.

We can define

Acceptingpuq ” seqpu, 0q “ qacc,

Yieldspu, vq ”
ł

xq,ayPQˆΓ

δpq,aq“xq1,a1,ty

Nextq,a,q1,a1,tpu, vq,

where Nextq,a,q1,a1,tpu, vq denotes

seqpu, 0q “ q

^ seqpu, seqpu, 1q ` 2q “ a

^ lenpvq ě maxtlenpuq, seqpv, 1q ` 3u

^ @i ă lenpvq seqpv, iq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

q1 i “ 0,

seqpu, 1q ` 1 i “ 1 & t “ R,

max tseqpu, 1q ´ 1, 0u i “ 1 & t “ L,

a1 i “ seqpu, 1q ` 2,

seqpu, iq 2 ď i ă lenpuq &
i ‰ seqpu, 1q ` 2,

i ě lenpuq

(the last expression can be written using disjunctions and conjunctions as there
are only a fixed number of cases).

The main problem with description of the initial configuration is to check that
the digits ai P t1, 2u on the tape form the bijective base-2 representation

x “
ÿ

jăk

2jaj

Mathematical Logic 42

of the given input x P N. In order to do this, we use an auxiliary sequence w
with values

seqpw, iq “
ÿ

jăk´i

2jai`j

for i ď k, which satisfies the backwards recurrence

seqpw, kq “ 0, seqpw, iq “ 2 seqpw, i` 1q ` ai,

and we check that seqpw, 0q “ x. Below, ai “ seqpu, i` 2q and k “ lenpuq´ 2 “
lenpwq ´ 1:

Initialpu, xq ” seqpu, 0q “ q0 ^ seqpu, 1q “ 0

^ Dw
´

lenpwq “ lenpuq ´ 1

^ seqpw, 0q “ x

^ seqpw, lenpwq ´ 1q “ 0

^ @i ă lenpwq ´ 1q

seqpw, iq “ 2 seqpw, i` 1q ` seqpu, i` 2q
¯

QED

3.4 Undecidability and incompleteness

Definition 3.17. If T is a theory in a finite language L, then T is said to be
decidable if ThmpT q “ tϕ : T $ ϕu is a decidable set.

A theory T in a finite language L is said to be recursively axiomatized, or
computably axiomatized, if T , considered as a set of axioms (i.e., without the
requirement of deductive closure), is decidable.

Definition 3.18. A theory T in the language of arithmetic is Σ1-sound if all
Σ1-sentences σ provable in the theory are true; i.e.,

T $ σ ùñ N |ù σ.

Observe that any Σ1-sound theory is consistent.

We come to our first version of Gödel’s first incompleteness theorem, though
this is more properly called the undecidability theorem:

Theorem 3.19 (Kleene’s undecidability theorem).
Every Σ1-sound theory T Ě Q is undecidable.

Proof. Let X Ď N be an undecidable but semidecidable set, which exists by
Theorem 2.23 and Definition 2.19, and σ be a Σ1-definition of X, which exists
by Theorem 3.16. Then n ÞÑ σpnq is a computable function that provides a
many-one reduction of X to ThmpT q, as

n P X ðñ N |ù σpnq ðñ T $ σpnq.

Mathematical Logic 43

In the second equivalence, ‘ñ’ follows from the Σ1-completeness of Q Ď T , and
‘ð’ from the Σ1-soundness of T . Thus, ThmpT q is undecidable. QED

Exercise 3.20. The following sets and functions are computable for a fixed
finite language L:

(1) The set of L-terms.

(2) The set of L-formulas.

(3) tpϕ, xq : x is a free variable of a formula ϕu .

(4) The substitution function: given a formula ϕ, a variable x and a term t,
compute ϕpt{xq.

(5) tpΓ, ϕ, πq : π is a proof of ϕ P FormL from a finite set Γ Ď FormLu.

Lemma 3.21.

(1) Every recursively axiomatized theory is semidecidable.

(2) Every complete, recursively axiomatized theory is decidable.

Proof.

(1) Given ϕ, we exhaustively enumerate all pairs Γ, π. We accept if π is a
proof of ϕ from Γ and all ψ P Γ are in T .

(2) ThmpT q is semidecidable by (1). Then

Σ˚ ∖ ThmpT q “ tϕ : ϕ is not an L-sentenceu Y tϕ : T $ ␣ϕu

is also semidecidable and, therefore, ThmpT q is decidable. QED

Remark 3.22. Conversely, every semidecidable theory is recursively axiomat-
izable (i.e., equivalent to a recursively axiomatized theory). It might be also
useful to mention that every consistent decidable theory has a complete consist-
ent decidable extension.

We infer the proper statement of Gödel’s first incompleteness theorem:

Theorem 3.23 (Gödel). If T is Σ1-sound, recursively axiomatized extension
of Q, then T is incomplete.

Proof. If T were complete, then T would be decidable, contradicting The-
orem 3.19. QED

Definition 3.24. The Entscheidungsproblem for a given finite language L is

tϕ : ϕ is an L-sentence, |ù ϕu “ ThmpHq

(where H is the L-theory with an empty set of non-logical axioms).

Mathematical Logic 44

Theorem 3.25 (Church). The Entscheidungsproblem for LPA is undecidable.

Proof. Let α be the conjunction of axioms of Q. Then using the deduction
lemma, ThmpQq ďm ThmpHq via the reduction ϕ ÞÑ pαÑ ϕq:

Q $ ϕ ðñ $ αÑ ϕ.

Thus, the undecidability of Q implies the undecidability of ThmpHq. QED

A few closing remarks:

(1) The assumption of Σ1-soundness in Theorems 3.19 and 3.23 may be re-
duced to plain consistency; this is the Gödel–Rosser theorem. More expli-
citly, consistent extensions of Q are undecidable, and therefore incomplete
if recursively axiomatized.

(2) The undecidability and incompleteness theorems hold for theories T that
merely interpret Q rather than outright include it. Roughly speaking,
this means that in the language of T , there are formulas defining a class
of ‘natural numbers’ and the arithmetic operations from LPA on this class
in such a way that T proves the corresponding translations of all axioms
of Q.

For example, ZFC interprets Q (and even PA) by defining the standard
model of arithmetic on ω. But much weaker theories of sets suffice (albeit
the interpretation becomes more complicated):

(3) (Szmielew, Tarski) The adjunctive set theory (AST) with axioms

Dz @t t R z,

@x @y Dz @t pt P z Ø t P x_ t “ yq

interprets Q, thus consistent extensions of AST are undecidable, and in-
complete if recursively axiomatized.

(4) The Entscheidungsproblem for L is undecidable iff L contains at least one
at least binary symbol, or at least two unary functions.

	Syntax and semantics of logic
	Propositional logic
	Completeness of propositional logic
	First-order logic
	First-order proof system
	Completeness of first-order logic
	Consequences of the completeness theorem

	Computability
	Turing machines
	Universal Turing machines and the halting problem

	Arithmetic
	Robinson and Peano arithmetic
	1-completeness of Q
	Sequence encoding and definability of computation
	Undecidability and incompleteness

