
.

Twin-Width and Contraction Sequences

Édouard Bonnet

Table of Contents

Chapter 1. Introduction . 1
1. The origin of twin-width . 1
2. The Guillemot–Marx permutation width on graphs 2
3. Overview of the document . 6

Chapter 2. Background and Twin-Width 10
1. Sets, partitions, functions . 10
2. Graphs . 10
3. First-order and monadic second-order logic 15
4. Model checking . 16
5. Interpretations, transductions, and dependence 17
6. Contraction or partition sequences, and twin-width 19

Chapter 3. First Properties . 22
1. Operations preserving bounded twin-width 22
2. Split sequences and proper colorings 23
3. Twin-decompositions . 26
4. Technical lemmas . 27

Chapter 4. Characterization via Adjacency Matrices 29
1. Grid minors and the Marcus–Tardos theorem 29
2. Mixed minors and characterization via mixed number . . . 32
3. Applications of the characterization 34
4. Versatile twin-width and balanced sequences 36
5. Oriented twin-width . 37

Chapter 5. Which Classes Have Bounded Twin-Width? 39
1. Classical graph widths . 39
2. Subdivisions, grids, and expanders 41
3. Intersection graphs . 44
4. Sparse classes . 47

i

ii TABLE OF CONTENTS

Chapter 6. Other Parameters based on Contraction Sequences 50
1. Characterization of classical width parameters 51
2. New parameters between clique-width and twin-width . . . 53
3. Separation of the reduced parameters 55

Chapter 7. Algorithmic Applications 57
1. Parameterized algorithms . 58
2. Approximation algorithms . 65
3. Shortest paths . 69

Chapter 8. First-Order Logic and Twin-Width 73
1. First-order transductions preserve bounded twin-width . . . 74
2. Permutations strike back . 76
3. Delineation . 78

Chapter 9. Growth of Classes and Labeling Schemes 82
1. Small and tiny classes . 83
2. Labeling schemes and universal graphs 84
3. Complex tiny classes . 86

Chapter 10. Ordered Graphs and Matrices 89
1. Rank minors, rank number, and rich divisions 89
2. Equivalences . 92
3. Unconditional algorithms . 95

Bibliography . 100

Nota Bene

Thomas Colcombet’s knowledge package was used to handle intra-
document links. If you encounter a notion you do not know or forgot
the definition of, try clicking the corresponding word or symbol. A link
should exist and bring you to the line its definition starts. A notable
exception is for twin-width with its very many occurrences, and which
the reader is less likely to forget. After reading the definition, you will
want to quickly go back to where you were in the text. There should
be a suitable shortcut in your PDF viewer. For instance with Okular,
by default, Alt+Shift+Left does the job. Without further ado, I wish
you a pleasant reading!

CHAPTER 1

Introduction

1. The origin of twin-width

A little bit over a decade ago, Sylvain Guillemot and Dániel Marx,
in a technical and conceptual breakthrough [49], answered by the
positive the following question: Is there an efficient algorithm to detect,
given a small permutation σ and a large permutation τ , whether the
permutation matrix of τ contains that of σ as a submatrix? A com-
mon name for this problem is Permutation Pattern as we look
for pattern σ in the host permutation τ . Figure 1.1 illustrates this
problem with the practical convention, often used in the context of
permutation patterns, that the first row of a matrix is displayed as the
bottommost. This way, the 1-entry corresponding to i and its image
by σ is represented by a black square at position (σ(i), i).

σ

τ τ

?

Figure 1.1. Is pattern 3124 in 57362841? Yes, 57362841.

Sure there is an algorithm that solves Permutation Pattern in
time O`(n

`) when σ has size `, and τ has size n, by simply going through
the

(
n
`

)
choices of ` 1-entries in the permutation matrix of τ , in search

for σ. But this is not exactly efficient. Guillemot and Marx designed
an algorithm running in time O`(n). This required the introduction of
a new kind of permutation decomposition, and its associated width;
analogous to, yet different from tree-decompositions and the treewidth
of graphs. In a nutshell, Guillemot and Marx’s algorithm works as
follows. If τ has large width, then it is shown that every permutation

1

2 1. INTRODUCTION

of size ` (in particular σ) appears in τ . The algorithm can then answer
positively. Otherwise, a decomposition of τ with small width allows
for a fast search of σ. If this step is somewhat different from efficient
algorithms leveraging tree-decompositions of low width, a parallel can
legitimately be drawn.

Guillemot and Marx concludes their introduction observing that
“It would be interesting to see if there is a corresponding graph-theoretic
analog for this scheme, which might be useful for solving some graph-
theoretical problem.” With my colleagues Eunjung Kim, Stéphan
Thomassé, and Rémi Watrigant, we indeed extended this width from
permutations to graphs [25], which we dubbed twin-width, and together
with several collaborators, have been exploring the applications of this
new graph invariant; topic of the present document.

2. The Guillemot–Marx permutation width on graphs

This section is not necessary to understand the rest of the document.
I chose to include it to substantiate the fact that the twin-width of
graphs organically comes from the permutation width of Guillemot
and Marx, and to serve as a teaser to their beautiful paper [49].
Contraction sequences and twin-width will be defined formally and
directly on graphs in Section 6 of Chapter 2.

2.1. The permutation width. The definition Guillemot and
Marx give of their permutation width is surprisingly geometric. They
first introduce merge sequences of permutations, as follows. Like
in Figure 1.1, they see the permutation τ of size n as n axis-parallel
filled squares at the positions of the 1-entries in its permutation matrix.
For what follows, it is important that pairs of squares project along
the axes to disjoint sets. These squares will evolve, more generally,
into axis-parallel filled rectangles, in the following way.

A merge operation takes an unordered pair of rectangles and fuse
them in the minimal axis-parallel rectangle containing their union. Let
us fix some labeling of the rectangles. Initially the rectangle (square)
at position (τ(i), i) gets label i for every i ∈ [n]. Every new rectangle
gets a fresh label, say, the smallest positive integer that was not a label
so far. The merge of rectangles i and j forming rectangle k can be
written as ({i, j}, k).

As each merge operation decreases the number of rectangles by 1,
after n − 1 merges, a single rectangle is left. A merge sequence of
a permutation of size n is thus a sequence of n rectangle sets, one
before the first merge, and one after each of the n− 1 successive merge

2. THE GUILLEMOT–MARX PERMUTATION WIDTH ON GRAPHS 3

operations. See Figure 1.2 for an illustration of a merge sequence of
the permutation τ of Figure 1.1.

3
4
2

6
8

5
7

1

9 4
2

6
8

7

1

9
10

6
8

7

1

11

6
8

7

1

11

6
8

1211 11

8

1311
14

13 15

Figure 1.2. A merge sequence ({3, 5}, 9), ({2, 4}, 10), ({9, 10}, 11),
({1, 7}, 12), ({6, 12}, 13), ({8, 11}, 14), ({13, 14}, 15) of τ .

Given a set R of axis-parallel rectangles, the error degree of a rec-
tangle R ∈ R is the number of rectangles in R \ {R} whose projection
on the x- or y-axis (or both) intersects that of R. For instance, the error
degree of rectangle 12 in the bottom-left rectangle set of Figure 1.2 is
equal to 2 since the projections on the y-axis of rectangles 6 and 12
intersect, while rectangles 11 and 12 intersect (meaning that both their
projections on the x- and y-axis intersect).

The width of a merge sequence is then the maximum, taken over
every rectangle set R of the sequence and every rectangle R ∈ R, of
the error degree of R. Finally the width1 of a permutation τ is the
minimum, taken over every merge sequence S of τ , of the width of S.
For example, the width of the merge sequence of Figure 1.2 is equal
to 2, as the reader may check that every rectangle of every rectangle
set has error degree at most 2. This implies that the width of τ is
at most 2. The width of τ is in fact equal to 1, as witnessed by the merge
sequence ({3, 5}, 9), ({2, 4}, 10), ({1, 10}, 11), ({9, 11}, 12), ({6, 12}, 13),
({7, 13}, 14), ({8, 14}, 15), itself of minimum width.

2.2. Permutation graphs. As we want to extend the permuta-
tion width to graphs, it is natural to consider the so-called permutation

1A reader familiar with [49] may notice that the definition given here is slightly
different from the original one.

4 1. INTRODUCTION

graphs and revisit on them the definition presented in Section 2.1.2
Every n-element permutation τ generates the following n-vertex per-
mutation graph. For every i ∈ [n], draw the straight-line segment
with endpoints (i, 0) and (τ(i), 1) in the real plane. We identify this
segment to the 1-entry (τ(i), i) of the permutation matrix of τ . The
permutation graph of τ is then the intersection graph of this collection
of n segments, with one vertex per segment, and one edge between
every pair of intersecting segments.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

1 3 2 4

5

7 6

8

3
4

2

6

8

5

7

1

Figure 1.3. The graph of the permutation τ of Figure 1.1 (center),
the same graph embedded in the matrix of τ (right), and its geometric
representation (left).

Note that there is an edge between two 1-entries if and only if they
form a decreasing sequence; see right of Figure 1.3. In particular, given
two axis-parallel rectangles R and R′ whose projections on the axes do
not intersect, the adjacency of a pair x ⊆ R, y ⊆ R′ of initial 1-entries
can be unambiguously reconstructed and only depends on R and R′.
On the contrary, if R and R′ instead have some intersecting projection
along an axis, then the adjacencies between pairs x ⊆ R, y ⊆ R′ now
depend on the particular choice of x, y and are irremediably lost at
this coarser level of representation of the permutation; see Figure 1.4.
Note that if, contrary to the drawn configuration, the projection of R
on the y-axis would be included in that of R′, then the pair of edges
and non-edges between R and R′ would simply be found by swapping
the role of R and R′.

Therefore, the width of Guillemot and Marx extends to graphs
as follows. A contraction sequence of an n-vertex graph iteratively
contracts (merges, or identifies) pairs of vertices until, after n− 1 con-
tractions, a single vertex remains. Along the way, vertices correspond
to subsets of initial vertices. Two subsets X, Y are linked by a regular
edge (represented in black) if every vertex in X is linked to every vertex

2An n-vertex permutation graph need not fully determine a permutation on n
elements, but this is inconsequential to our purpose.

2. THE GUILLEMOT–MARX PERMUTATION WIDTH ON GRAPHS 5

R

R′′

R′

z

x

y

Figure 1.4. Rectangles without an intersecting projection with R,
i.e., avoiding R and the red regions, have their enclosed 1-entries
either fully adjacent or fully non-adjacent to those of R. On the
contrary x ∈ R, y ∈ R′ form an edge, while z ∈ R, y ∈ R′ do not.
The same happens in columns with R and R′′.

in Y , or by an error edge (represented in red) if this does not hold
but yet there is a vertex in X adjacent to a vertex in Y . The red
degree of a vertex/subset is the number of error edges (or red edges)
incident to it. The twin-width is then the minimum taken over every
contraction sequence of the maximum red degree of a vertex/subset
appearing in the contraction sequence. A formal definition is given
in Section 6 of Chapter 2. Figure 1.5 depicts the contraction sequence
corresponding to the merge sequence of Figure 1.2.

1 3 2 4

5

7 6

8

1 2 4

9

7 6

8

1 10

9

7 6

8

1

11

7 6

8

11

12 6

8
11

13

8
14

13

15

Figure 1.5. The merge sequence of Figure 1.2 as the contraction
sequence of a graph.

6 1. INTRODUCTION

3. Overview of the document

Let us take a brief tour of the forthcoming chapters.

3.1. Theoretical base and first properties. The reader will
find in Chapter 2 all the basic, relevant definitions and notations. In
Chapter 3 we familiarize ourselves with twin-width by stating and
proving useful simple facts on this new notion.

Chapter 4 contains the crux of twin-width theory: a characteriza-
tion of low twin-width in the simplicity of judiciously-chosen adjacency
matrices. This characterization crucially relies on a celebrated the-
orem in combinatorics, the Marcus–Tardos theorem [66], which was
also essential to Guillemot and Marx’s work [49]. We then explore
in Chapter 5 how widespread classes of bounded twin-width are. We
draw a relatively fine line between graph classes of bounded twin-
width and graph classes of unbounded twin-width. In this endeavor,
the characterization via adjacency matrices proves particularly use-
ful. Classes of bounded twin-width are surprisingly general, which
makes our applications—algorithmic, structural, model-theoretic, and
enumerative properties of these classes—satisfying unifications and
extensions of facts previously proven in some particular classes of
bounded twin-width.

3.2. Other graph parameters via contraction sequences.
Before moving on to applications, we take a step back and realize
in Chapter 6 that contraction sequences may define other interesting
graph parameters. We will see that, incidentally, some of these parame-
ters are functionally equivalent (i.e., bounded on the same graph classes)
to well-established graph invariants such as clique-width and linear
clique-width. This will allow us in Chapter 7 to present algorithms for
graphs of bounded clique-width and for graphs of bounded twin-width
in a unified way. On the other hand, many derived parameters are
new, and we give a motivation for their study.

3.3. Algorithmic applications. Chapter 7 presents various al-
gorithms. In large part, this chapter can be thought as addressing the
question: Which problems can be solved faster or approximated better
on graphs of low twin-width than on general graphs, and how? Likely,
its acme is a theoretically efficient algorithm for any graph problem ex-
pressible in first-order logic, when given, in addition to the input graph,
a contraction sequence witnessing low twin-width. This has the merit
of unifying a lot of the knowledge on this very question. Indeed several

3. OVERVIEW OF THE DOCUMENT 7

classes, individually known to admit such algorithms, have bounded
twin-width, and on them good3 contraction sequences can be efficiently
computed. We will also see that several optimization problems can be
approximated in graphs of bounded twin-width within better factors
than in general graphs. The same caveat that a contraction sequence
is required by the approximation algorithms applies.

This caveat may be disappointing since we currently do not know
how (if at all possible) to efficiently find good contraction sequences.
The tools later developed in Chapter 10 make this achievable for
matrices (on which we will also have a twin-width notion), when their
row sets and column sets are thought as ordered. We will thus see that
we can multiply two n × n matrices of low twin-width over a finite
field in O(n2 log n) time. Furthermore if the matrices are given in some
compact form occupying only O(n) space (as matrices of bounded
twin-width can be), then they can be multiplied in O(n) time; hence
with sublinear complexity in their number of entries.

We will finally present some algorithms that leverage twin-width
but work outside the classes of bounded twin-width, while also not
requiring an oracle to good contraction sequences.

3.4. First-order logic and twin-width. Chapter 8 explores the
connection between twin-width and first-order logic. It features two
main results. The first says that every class built from a class of
bounded twin-width by means of a first-order “logical reinterpretation,”
called transduction, itself has bounded twin-width. This showcases
that, as far as first-order logic is concerned, twin-width is a robust
notion. It also makes, like the characterization of Chapter 4, for
a powerful tool to show that a class indeed has bounded twin-width.

The second result is a counterpart to theorems of Colcombet assert-
ing that classes of bounded linear clique-width coincide with first-order
transductions of a linear order, and classes of bounded clique-width,
with first-order transductions of a tree order [34], i.e., the ancestor–
descendant partial order of some tree. We indeed establish that classes
of bounded twin-width are precisely the first-order transductions of
proper permutation classes. A permutation class is a set of permu-
tations whose matrices are closed under taking submatrices that are
permutation matrices, and a proper permutation class is one that is
not the class of all permutations. This result can in fact be strength-
ened: There is a single and fixed proper permutation class P such that

3This is how we informally refer to contraction sequences whose width is within
a fixed function of the actual twin-width.

8 1. INTRODUCTION

every (graph) class of bounded twin-width is a first-order transduction
of P . This also nicely echoes that, as we detailed in Sections 1 and 2,
twin-width originates in permutations.

3.5. Growth of classes and labeling schemes. In Chapter 9
we show that every class of bounded twin-width has, up to isomorphism,
at most single-exponentially in n many n-vertex graphs; property
later referred to as single-exponential unlabeled growth or tinyness.
This unifies the same fact, proven for particular classes of bounded
twin-width, such as graph classes excluding a fixed minor [12] or
proper permutation classes [66]. The latter is a consequence of the
abovementioned Marcus–Tardos theorem, known until 2004 as the
Stanley–Wilf conjecture.

Bounded twin-width and tinyness are very close notions. It is
indeed quite difficult to find a hereditary graph class with single-
exponential unlabeled growth but unbounded twin-width. We will
see that, for this purpose, one can use a counting argument on the
number of monotone classes built by carefully selecting random graphs
in a specific edge-density regime [19], or an elaborate construction of
random groups [70]. Intriguingly, no separation of bounded twin-width
and tinyness is known that does not involve a counting argument, but
rather exhibits an explicit (deterministic) separating class.

The number of n-vertex graphs in a class is often compared to how
compactly its graphs can be encoded. One can further require that the
encoding is equitable in storing a small number of bits for each vertex.
This is formalized in terms of adjacency labeling schemes or universal
graphs. Up to algorithmic considerations, these two frameworks are
equivalent. In a nutshell, labeling schemes consist of attributing to each
vertex a bit string (or label) of minimum size so that the presence of an
edge can be reconstructed solely based on the labels of its endpoints.
Universal graphs for a class C are an infinite family of graphs U1, U2, . . .
such that Un contains every n-vertex member of C as an induced
subgraph. It can be observed that a class admits labeling schemes of
size f(n) if and only if it has universal graphs on 2f(n) vertices. We
will see that classes of twin-width at most d admit labeling schemes of
logarithmic size Od(log n), and hence, universal graphs of polynomial
size. It is an open question whether the multiplicative factor of log n
can be independent of d, or even equal to 1 + od(1). But we do rule
out this possibility for monotone tiny classes.

3. OVERVIEW OF THE DOCUMENT 9

3.6. Ordered graphs and matrices. Chapter 10 is devoted to
ordered graphs, or more generally, ordered binary structures. This
is a perfect setting for twin-width, as we are then able to show the
following facts. Good contraction sequences can be found efficiently.
Thus on ordered graphs and matrices, algorithms based on twin-width
do not require that a contraction sequence is given with the input
graph, as discussed when introducing Chapter 7. Furthermore the fron-
tier bounded twin-width/unbounded twin-width coincides on hereditary
classes of ordered graphs with several notable dividing lines, between:
• classes with an efficient algorithm for any problem defined in first-
order logic, and those likely without,
• monadically dependent and monadically independent classes,
• classes whose unlabeled growth is at most single-exponential, and
those whose unlabeled growth is at least factorial.

The first item parallels the situation with treewidth and monadic second-
order logic (since Courcelle’s theorem [36] has a similar converse [76]),
here with twin-width on ordered graphs and first-order logic. The third
item shows a “jump” in the growth of hereditary classes of ordered
graphs. This jump was conjectured with a sharp bound by Balogh,
Bollobás, and Morris [6], conjecture that our results settle.

CHAPTER 2

Background and Twin-Width

1. Sets, partitions, functions

We denote by [i, j] the set of integers {i, i + 1, . . . , j − 1, j}, and
by [i] the set of integers [1, i]. If X is a set of sets, we denote by ∪X
their union. If S is a set, we may denote the power set of S by 2S, and
if further k is a natural number, the set of subsets of S of cardinality k
by
(
S
k

)
. We denote by N the set of non-negative integers.

The finest partition of a set X is {{x} : x ∈ X}, whereas the
coarsest partition of X is {X}. We say that a partition P ′ refines P
(or is a refinement of P) if every part of P ′ is contained in a part
of P. In other words, P ′ can be obtained by partitioning the parts
of P further. Reciprocally P coarsens P ′ (or is a coarsening of P ′).
Partition P ′ s-refines P if P ′ refines P and every part of P contains
at most s parts of P ′.

We may sometimes denote by dom(f) the domain of a function f .
If f, g are two functions with disjoint domains, let f] g be the joint
function with domain dom(f) ∪ dom(g), defined as (f] g)(x) = f(x)
for every x ∈ dom(f), and (f] g)(x) = g(x) for every x ∈ dom(g). We
say that a function f : Nk → N is tetrational if f is upper bounded by
a tower of exponentials of polynomial height in its arguments.

2. Graphs

Except if stated otherwise, we consider graphs that are finite,
undirected, and simple, i.e., without multiple edges or self-loops. If G
is a graph, we denote by V (G), respectively E(G), its set of vertices,
respectively of edges. The incidence graph of G is the graph with
bipartition V (G)]E(G) and an edge between v ∈ V (G) and e ∈ E(G)
whenever v and e are incident, i.e., v is an endpoint of e. In all the
below notations with a graph subscript, we may omit this subscript
whenever the graph is clear from the context.

10

2. GRAPHS 11

2.1. Neighborhood. For S ⊆ V (G), we denote the open neigh-
borhood (or simply neighborhood) of S by NG(S), i.e., the set of neigh-
bors of S deprived of S, and the closed neighborhood of S by NG[S],
i.e., the set NG(S)∪S. We simply write NG(v) for NG({v}), and NG[v]
for NG[{v}]. Two distinct vertices u, v such that N(u) = N(v) are
called false twins, and true twins if instead N [u] = N [v]. In particular,
true twins are adjacent. Two vertices are twins if they are false twins
or true twins.

An independent set is a subset of vertices that are pairwise non-
adjacent. A clique is a subset of pairwise-adjacent vertices. The com-
plement of a graph G, denoted by G, is the graph (V (G),

(
V (G)

2

)
\E(G)).

The degree dG(v) of a vertex v ∈ V (G) is the size of NG(v), and the
maximum degree of G, denoted by ∆(G), is defined as maxv∈V (G) dG(v).
A graph is said subcubic if its maximum degree is at most 3, and cubic
if all its vertices have degree 3.

2.2. Adjacency matrix. If G is an n-vertex graph and ≺ is
a linear order over V (G), say, v1 ≺ . . . ≺ vn, then A≺(G) denotes the
adjacency matrix of G in the order ≺. Thus the entry in the i-th row
and j-th column is a 1 if vivj ∈ E(G), and a 0 otherwise. Two graphs
G,G′ are isomorphic if there are ≺,≺′ linear orders over V (G), V (G′),
respectively, such that A≺(G) = A≺′(G

′).
For A,B ⊆ V (G), EG(A,B) denotes the set of edges in E(G) with

one endpoint in A and the other one in B. The associated biadjacency
matrix has one row per vertex of A, one column per vertex of B, and
a 1-entry at row i column j if and only if the corresponding vertices
are adjacent.

2.3. Containment. A graph H is a subgraph of a graph G if H
can be obtained from G by deleting vertices and edges. Then G is called
a supergraph of H. A spanning subgraph and a spanning supergraph
are such that V (G) = V (H). A graph H is an induced subgraph of
a graph G if H can be obtained from G by deleting vertices (but
preserving all the edges whose both endpoints are among the kept
vertices). We denote by G[S] the subgraph of G induced by S, that is,
the graph obtained from G by removing all the vertices outside S. We
set G− S := G[V (G) \ S], and may simply write G− v when S = {v}.

An edge contraction of two adjacent vertices u, v consists of merging
u and v into a single vertex adjacent toN({u, v}) (and deleting u and v).
A graph H is a minor of a graph G if H can be obtained from G after

12 2. BACKGROUND AND TWIN-WIDTH

vertex and edge deletions, and edge contractions. A graph G is said
H-minor-free if H is not a minor of G.

2.4. Paths and connectedness. A path in a graph G is a se-
quence of distinct vertices v1v2 . . . vh such that for every i ∈ [h − 1],
vivi+1 ∈ E(G). The length of a path in an unweighted graph is simply
the number of edges of the path. A Hamiltonian path in a graph G
is a path of length |V (G)| − 1, i.e., visiting every vertex exactly once.
A graph is traceable if it admits a Hamiltonian path. Given two vertices
u, v ∈ V (G), we denote by distG(u, v), the distance between u and v in
G, that is, the length of a shortest path between u and v. The diameter
of a graph is the longest distance between a pair of its vertices.

The connected components of a graph G are the inclusion-wise
maximal induced subgraphs of G such that every pair of vertices within
an induced subgraph are linked by a path. A graph is connected if it has
a single connected component (itself). By extension, a set X ⊆ V (G)
is connected (in G) if G[X] is connected.

We sometimes refer to two dense parameterized graphs: the com-
plete graph on t vertices, denoted by Kt, obtained by making adjacent
every pair of distinct vertices on t vertices, and the complete bipartite
graph or biclique Kt,t, with bipartition (A,B) such that |A| = |B| = t
obtained by making every vertex of A adjacent to every vertex of B.

2.5. Graph classes. A graph class is a collection of graphs closed
under isomorphism. A graph class is said hereditary if it is closed
under taking induced subgraphs, that is, every induced subgraph of
a member of the class is itself in the class. Similarly, a graph class
is monotone or subgraph-closed if it is closed under taking subgraphs.
Note that a monotone class is hereditary, but not all hereditary classes
are monotone. Finally, a graph class is minor-closed if it is closed under
taking minors. A proper minor-closed class is one that is minor-closed
and not equal to the class of all graphs. Thus a proper minor-closed
class is H-minor-free for at least some graph H, in the sense that all
its graphs are H-minor-free.

More generally, we naturally extend graph properties to class prop-
erties: a class is X if all its graphs are X. A graph class is said weakly
sparse if there is some finite integer t such that no graph in the class
admits Kt,t as a subgraph. The hereditary closure of a graph class C,
denoted by Her(C), is the class of all graphs that are induced subgraphs
of members of C. The subgraph closure of a graph class C, denoted by
Sub(C), is the class of all graphs that are subgraphs of members of C.

2. GRAPHS 13

2.6. Grids and subdivisions. For k, ` two positive integers, the
k× ` grid is the graph on k` vertices, say, vi,j with i ∈ [k], j ∈ [`], such
that vi,j and vi′,j′ are adjacent whenever either i = i′ and |j − j′| = 1
or j = j′ and |i− i′| = 1; see Figure 2.1.

Figure 2.1. The 5× 5 grid.

A subdivision of a graph H is a graph G obtained by replacing each
edge of H by a path on at least one edge. If ` is a positive integer, the
`-subdivision of H is obtained by replacing each edge of H by a path
on exactly ` + 1 edges. Similarly, a (> `)-subdivision (resp. (6 `)-
subdivision) is obtained by replacing each edge of H by a path on
at least `+ 1 edges (resp. at least one and at most `+ 1 edges). The
vertices of H in the subdivision are called branching vertices, whereas
the new vertices are called subdivision vertices.

2.7. Other width parameters. A tree-decomposition of a graph
G is a pair (T, β) where T is a tree and β is a map from V (T) to 2V (G)

satisfying the following properties:
• for every uv ∈ E(G), there is an x ∈ V (T) such that {u, v} ⊆ β(x),
• and, for every v ∈ V (G), the set of nodes x ∈ V (T) such that
v ∈ β(x) induces a non-empty subtree of T .

The width of (T, β) is defined as maxx∈V (T) |β(x)|−1, and the treewidth
of G, denoted by tw(G), is the minimum width of (T, β) taken among
every tree-decomposition (T, β) of G. The path-decomposition and
pathwidth, pw(G), of a graph G are defined analogously, by further
imposing that T is a path.

Most of the graph widths are defined within the same framework
of tree layouts. Denoting by L(T) the set of leaves of a rooted tree T ,
a tree layout of a graph G is a pair (T, γ) where T is a rooted binary
tree, and γ is a bijective mapping from L(T) to V (G). Every edge
e ∈ E(T) corresponds to the bipartition (Xe, Ye) of V (G) defined by the
two subsets of L(T) within the connected components of T deprived
of e. For any function f from graphs G vertex bipartitioned by (X, Y)
to the natural or real numbers, satisfying f(G,X, Y) = f(G, Y,X), one

14 2. BACKGROUND AND TWIN-WIDTH

can define the graph invariant f -width(G) as the minimum over every
tree layout of G of the maximum of f(G,Xe, Ye) over every e ∈ E(T).

For example, if f(G,X, Y) is the rank of the biadjacency matrix
of EG(X, Y) over the binary field F2, then f -width(G) is called the
rank-width of G, and denoted by rw(G). If f(G,X, Y) is the base-2
logarithm of the number of distinct neighborhoods in Y (resp. in X)
of subsets of vertices in X (resp. in Y), then f -width(G) is called the
boolean-width of G, denoted by boolw(G). The linear f-width(G) is
defined similarly to f -width(G) except the rooted tree T is required to
be a comb, i.e., a binary tree whose internal nodes form a path.

We recall the definition of clique-width for the curious reader,
although it will not really be needed. This notion introduces (non-
necessarily proper) colorings of a graph, i.e., maps from its vertex
set to the natural numbers. A graph and its coloring may be called
colored graph. The clique-width of a graph G, denoted by cw(G), is
the least number of colors needed to form a coloring of G from colored
single-vertex graphs, with the following operations:
• making the disjoint union of two colored graphs,
• recoloring every vertex colored i with color j, for some i, j, and
• making adjacent every vertex colored i with every vertex colored j,
for some i 6= j.

The operations form a tree structure called clique-width expression.
The linear clique-width is defined similarly but restricts the disjoint
union operation to be between two graphs one of which has a single
vertex.

2.8. Partial order on parameters. A graph parameter p is
functionally bounded by a graph parameter q (on a class C), denoted by
p v q (resp. p vC q), if there is a function f such that for every graph G
(resp. for every graph G ∈ C), p(G) 6 f(q(G)). Parameters p, q are
functionally equivalent or tied (on C) if p v q and q v p (resp. p vC q
and q vC p), denoted by p ≡ q (resp. p ≡C q). We finally denote by
p @ q the fact that p v q holds, but q v p does not.

The parameters rank-width, boolean-width, and clique-width are
all functionally equivalent,1 whereas treewidth is functionally bounded
by rank-width. Similarly, linear rank-width, linear boolean-width, and
linear clique-width are functionally equivalent, whereas pathwidth is
functionally bounded by linear rank-width. Furthermore, a class has

1Hence, for our intents and purposes, the reader is welcome to pick among
these three the width they are most comfortable with.

3. FIRST-ORDER AND MONADIC SECOND-ORDER LOGIC 15

bounded treewidth (resp. bounded pathwidth) if and only if it weakly
sparse and has bounded rank-width, or boolean-width, or clique-width
(resp. bounded linear rank-width, or linear boolean-width, or linear
clique-width) [50]. Thus rw @ tw but rw ≡C tw for any weakly sparse
class C.

3. First-order and monadic second-order logic

A finite relational signature or vocabulary is a set Σ = {R1, . . . , Rh}
of relation symbols given with their arity, with ar(Ri) ∈ N denoting
the arity of Ri. A first-order formula ϕ over Σ, also called Σ-formula,
is any string generated from letter ψ by the grammar:
ψ → (ψ), ¬ψ, ψ ∨ ψ, ψ ∧ ψ, ∃xψ, ∀xψ, Ri(x, . . . , x), x = x, and

x→ x1, x2, . . . an infinite set of fresh variable labels.
We denote by FO(Σ) the set of first-order Σ-formulas.

Variables under the scope of a quantifier are called quantified. Vari-
ables that are not quantified are called free. We usually denote by
ϕ(xf1 , . . . , xfh) a formula whose free variables are precisely xf1 , . . . , xfh .
A formula without quantified variables is said quantifier-free. A sen-
tence is a formula without free variables.

A relational structure M (Σ-structure, or structure for short) over
vocabulary Σ specifies a domain of discourse D for the variables, and
a relation RMi ⊆ Dar(Ri) for each symbol Ri. It is a binary structure if
all the relation symbols of Σ have arity at most 2. It is said finite if the
domain D is finite. A sentence ϕ interpreted byM is true, denoted
by M |= ϕ, if it evaluates to true with the usual semantics for =,
quantified Boolean logic, and Ri(d1, . . . , dar(Ri)) being true whenever
(d1, . . . , dar(Ri)) ∈ RMi . A model M of a sentence ϕ is a structure such
that ϕ is true inM.

A monadic second-order formula (or MSO formula for short) over Σ
is a generalization of a first-order formula, where one can additionally
quantify over unary relations, that is, over subsets of the domain.
Second-order variables are written in capital letters to distinguish them
from first-order variables. We denote by MSO(Σ) the set of monadic
second-order Σ-formulas.

The quantifier rank of a formula ϕ is its maximum number of nested
quantifiers. We denote it by qr(ϕ).

For example,
∀x∀y (¬E(x, y) ∨ ∃z(E(z, x) ∧ E(z, y)))

16 2. BACKGROUND AND TWIN-WIDTH

is a first-order sentence over Σ = {E} with ar(E) = 2, which has
quantifier rank equal to 3. Among simple undirected graphs, it says
that every edge (xy) is part of a triangle (formed together with z).
A possible model of this sentence is the diamond, i.e., K4 minus an
edge.

Let us also give an example of an MSO formula:
ϕ(S, x) := ∃T (∀y(T (y)→ S(y)) ∧ (E(x, y)↔ T (y))).

Formula ϕ ∈ MSO(Σ) has two free variables, one set variable S and
one vertex variable x, and qr(ϕ) = 2. The formula is satisfied by pairs
S, x such that the neighborhood of x is included in S. Indeed, ϕ asks
for a subset T of S that is the set of neighbors of x.

4. Model checking

In the first-order model checking problem over signature Σ, given
a first-order sentence ϕ ∈ FO(Σ) and a finite Σ-structureM, one has to
decide whetherM |= ϕ holds. The input size is |ϕ|+ |M|, the number
of bits necessary to encode the sentence ϕ and the model M. The
brute-force algorithm decidesM |= ϕ in time |M|O(|ϕ|), by building
the tree of all possible variable assignments.

As |ϕ| is often small compared to |M|, we wish to find an algorithm
with running time f(|ϕ|)|M|O(1), for some computable function f ,
where the exponent of |M| (ideally equal to 1) does not depend on
the sentence ϕ. In the language of parameterized complexity, such an
algorithm is called fixed-parameter tractable (for parameter |ϕ|).
FO(Σ) Model Checking Parameter: |ϕ|
Input: A Σ-structureM and a sentence ϕ of FO(Σ).
Question: DoesM |= ϕ hold?

We will mostly consider first-order model checking on binary struc-
tures over a finite domain, for which twin-width will be defined. Let
us give a simple example with Σ = {E} and ar(E) = 2. If ϕ is the
sentence

∃x1∃x2 · · · ∃xk
∧
i<j

¬(xi = xj) ∧
∧
i 6=j

¬E(xi, xj),

and G is a Σ-structure, then G |= ϕ holds if and if (the underlying
undirected graph) G has an independent set of size k. Parameterized
complexity theory asserts that this particular problem is highly unlikely
to admit an algorithm with running time f(k)nO(1) on n-vertex graphs,

5. INTERPRETATIONS, TRANSDUCTIONS, AND DEPENDENCE 17

for any function f . However, it does admit such algorithms on restricted
inputs, such as planar graphs or bounded-degree graphs.

The monadic second-order model checking problem is defined anal-
ogously to first-order model checking with monadic second-order sen-
tences instead.

5. Interpretations, transductions, and dependence

We survey here the relevant notions from model theory.

5.1. Interpretations. Let Σ and Γ be two relational signatures.
A simple interpretation I (or interpretation for short) from Σ to Γ
consists of the following Σ-formulas: a domain formula ν(x), and for
each relation symbol R ∈ Γ, a formula ϕR(x1, . . . , xar(R)). If M is
a Σ-structure with domain D, the Γ-structure I(M) has domain

ν(M) = {a ∈ D : M |= ν(a)}
and for every symbol R ∈ Γ, relation

RI(M) = {(a1, . . . , aar(R)) ∈ ν(M)ar(R) :M |= ϕR(a1, . . . , aar(R))}.
If C is a class of Σ-structures, we denote {I(M) : M∈ C} by I(C). If
all the formulas ν and ϕR are in FO(Σ) (resp. MSO(Σ)), we say that I
is a first-order (resp. monadic second-order) interpretation. A class C
interprets a class D if there is an interpretation I such that I(C) ⊇ D.

Let us see some example on graphs since it is our main focus; hence
with Σ = Γ = {E} and ar(E) = 2. If ν(x) is the formula

∃y∃z ¬(y = z) ∧ E(x, y) ∧ E(x, z)

and ϕ(x, y) is the formula
∀z∃t (z = t ∨ E(z, t)) ∧ ((E(x, t) ∧ ¬E(y, t)) ∨ (¬E(x, t) ∧ E(y, t))) ,

then on every finite, simple, undirected graph G, the interpretation I
redefines the edge set as the pairs x, y whose private neighbors (i.e.,
adjacent to exactly one of x, y) form a dominating set (i.e., a set whose
closed neighborhood is the whole domain), and then delete all the
vertices with degree at most 1 in G.

5.2. Transductions. Let Σ ⊆ Σ+ be relational signatures. The
Σ-reduct of a Σ+-structureM is the structure obtained fromM by
deleting all the relations not in Σ. We denote this interpretation as
ReductΣ. A monadic lift of a class C of Σ-structures is a class C+ of
Σ+-structures, where Σ+ is the union of Σ and a set of unary relation

18 2. BACKGROUND AND TWIN-WIDTH

symbols, and C = {ReductΣ(M) :M∈ C+}. A class C of Σ-structures
transduces a class D if a monadic lift of C interprets D.

We may also call transduction the corresponding monadic lift and
interpretation. If not specified, a transduction or interpretation uses
first-order logic. It can be noted that transductions and interpretations
can be composed. Thus, if C interprets (resp. transduces) D, and D
interprets (resp. transduces) E , then C interprets (resp. transduces) E .

As an example, let us see that the class S of the 1-subdivisions of
all complete graphs first-order transduces the class of all graphs. Let
S+ be the monadic lift of S with two extra unary relations U1, U2 such
that in every {E,U1, U2}-structureM of S+,M |= U1(v) if and only
if v is a branching vertex in Reduct{E}(M), and for every G ∈ S and
every subset X of its subdivision vertices, there isM∈ S+ such that
Reduct{E}(M) = G and M |= U2(v) if and only if v ∈ X. We then
choose the following interpretation I. The domain formula is simply
U1(x), and ϕE(x, y) is ¬(x = y) ∧ ∃z U2(z) ∧ E(x, z) ∧ E(y, z). One
can observe that Reduct{E}(I(S+)) is the class of all graphs.

Another good exercise is to show that the class of all grids MSO
transduces the class of all bipartite graphs, thus the class of all graphs,
and then deduce that the class of planar graphs MSO interprets the
class of all graphs.

5.3. Dependence and monadic dependence. Let ϕ(x, y) be
a Σ-formula and let C be a class of Σ-structures. Note that the overline
indicates that x and y are tuples of variables, whose length is denoted
by |x| and |y|. The formula ϕ is independent over C if for every binary
relation R ⊆ A × B between two finite sets A and B there exists
a Σ-structureM∈ C on domain D, some tuples (ua)a∈A in D|x|, and
(vb)b∈B in D|y| such that

M |= ϕ(ua, vb)⇔ R(a, b) for all a ∈ A and b ∈ B.
By extension, the class C is independent if there is a Σ-formula ϕ(x, y)
that is independent over C. Otherwise, the class C is said dependent.
A class C of Σ-structures is monadically dependent if every monadic lift
of C is dependent, and monadically independent otherwise. Dependent
classes are also called NIP (for Not the Independence Property).

As a result of a theorem by Baldwin and Shelah [5], a class is
monadically independent if and only if it transduces the class of all
graphs. Besides, it was proven by Braunfeld and Laskowski that among
hereditary classes, dependence and monadic dependence coincide [30].

6. CONTRACTION OR PARTITION SEQUENCES, AND TWIN-WIDTH 19

6. Contraction or partition sequences, and twin-width

One can equivalently define twin-width via sequences of trigraphs
or of partitioned graphs. We give both definitions as they provide
complementary viewpoints.

6.1. Trigraphs and contraction sequences. A trigraph G has
vertex set V (G) and two disjoint edge sets: E(G), its set of black edges,
and R(G), its set of red edges. The red graph R(G) of a trigraph G is the
graph (V (G), R(G)) obtained by removing its black edges. Similarly the
black graph B(G) of a trigraph G is the graph (V (G), E(G)) obtained
by removing its red edges. The total graph T (G) of G is the graph
(V (G), E(G) ∪R(G)).

A red neighbor (black neighbor, neighbor, respectively) of v ∈ V (G)
in a trigraph G is any neighbor of v in R(G) (in B(G), in T (G),
respectively). Similarly to graphs, the subtrigraph of G induced by
S ⊆ V (G) is denoted by G[S], with

V (G[S]) = S, E(G[S]) = E(G)∩
(
S

2

)
, and R(G[S]) = R(G)∩

(
S

2

)
.

An induced subtrigraph of G is any trigraph obtained from G by
removing vertices. We also write G−S as a short-hand for G[V (G)\S].

A (vertex) contraction in a trigraph G consists of merging two
(non-necessarily adjacent) vertices, say, u, v ∈ V (G) into a single vertex
with a new label, say w, and updating the trigraph in the following way.
The trigraph G−{u, v} does not change, and the neighborhood of w is
the union X of the neighborhoods of u and v, deprived of {u, v}. For
every z ∈ X, vertex z is a black neighbor of w if and only if uz ∈ E(G)
and vz ∈ E(G), and it is a red neighbor of w, otherwise.

A contraction sequence of an n-vertex graph G is a sequence of
trigraphs G = Gn, . . . , G1 such that Gi is obtained from Gi+1 by
performing one contraction. In particular, G1 is the 1-vertex trigraph.
We number the sequence from n down to 1, for Gi to have exactly i
vertices, for each i ∈ [n]. A d-sequence is a contraction sequence in
which every vertex of every trigraph has at most d red neighbors. In
other words, every red graph of the sequence has maximum degree
at most d. The twin-width of G, denoted by tww(G), is then the
minimum integer d such that G admits a d-sequence. Figure 2.2 gives
an example of a graph with a 2-sequence, i.e., having twin-width
at most 2.

20 2. BACKGROUND AND TWIN-WIDTH

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 2.2. A 2-sequence witnessing that the initial graph has
twin-width at most 2.

We may say that a vertex u ∈ V (Gi) is contracted in a vertex
v ∈ V (Gj) with j < i, if the contraction of u with one or several
other vertices results in v. The partition viewpoint makes this more
transparent.

6.2. Partition sequences. Partition sequences yield an equiva-
lent viewpoint to contraction sequences. A partition sequence Pn, . . . ,
P1, of an n-vertex graph is such that Pi is a partition of V (G) for
every i ∈ [n], Pn = {{v} | v ∈ V (G)}, and for every i ∈ [n− 1], Pi is
obtained from Pi+1 by merging two parts X, Y ∈ Pi+1 into one, X ∪Y .
In particular P1 = {V (G)}.

The red graph R(Gi) of Gi, which we may also denote by R(Pi),
can be redefined as the graph whose vertices are the parts of Pi, and
whose edges link two parts X 6= Y ∈ Pi whenever there is u, u′ ∈ X
and v, v′ ∈ Y such that uv ∈ E(G) and u′v′ /∈ E(G). We may call two
such parts X, Y inhomogeneous. On the contrary, two parts X, Y are
homogeneous in G when every vertex of X is adjacent to every vertex
of Y (corresponding to the black edges), or no vertex of X is adjacent
to a vertex of Y . Finally, the twin-width of G is the least integer d
such that G admits a partition sequence Pn, . . . ,P1 with the property
that for every i ∈ [n], R(Pi) has maximum degree at most d.

We denote by G/P the trigraph defined by the partition P on G.

6.3. Partial sequences and extension to binary structures.
A partial d-sequence, be it in the contraction or partition viewpoint, is
the same as a d-sequence except its last trigraph has not necessarily
a single vertex (resp. its last partition has not necessarily a single part).
We also observe that the definition of twin-width readily generalizes to
trigraphs (resp. partitioned graphs). We may then say that there is
a partial d-sequence from its first (tri)graph (resp. partitioned graph)
to its last trigraph (resp. partitioned graph).

We now extend twin-width to binary structures over finite relational
signatures. For that, the partition viewpoint may be a bit more

6. CONTRACTION OR PARTITION SEQUENCES, AND TWIN-WIDTH 21

convenient. Let U1, . . . , Up be the unary relations, and E1, . . . , Eq, the
binary relations of such a binary structure G (where we omit the G
superscript). We see G as a vertex- and edge-colored graph, and still
denote by V (G) its domain. Let Pu be the partition of V (G) into the
equivalence classes of the relation ∼ defined by v ∼ v′ whenever for
every i ∈ [p], Ui(v)⇔ Ui(v

′). That is, Pu is the coarsest partition each
part of which has vertices of the same unary atomic type, i.e., satisfying
the same unary relations.

The twin-width of G is defined as the least integer d such that there
is a partial d-sequence from the finest partition of Reduct{E1,...,Eq}(G)
to Pu. We finally need to define the red edges for a structure made
of several binary relations, instead of a single one, as the rest of the
definition remains the same. Two parts X 6= Y of a partition P of
V (G) are inhomogeneous, and linked by a red edge, whenever there is
x, x′ ∈ X, y, y′ ∈ Y and i ∈ [q] such that Ri(x, y) holds but Ri(x

′, y′)
does not; in other words, if not all the pairs of X × Y have the same
binary atomic type.

It is convenient that the contraction/partition sequences of graphs
and binary structures end on a singleton. Thus a d-sequence for the
binary structure G, appends any finishing sequence to the partial
d-sequence from the finest partition of Reduct{E1,...,Eq}(G) to Pu. We
are not concerned with the exact twin-width of binary structures
beyond graphs. We will only care if classes of binary structures have
bounded or unbounded twin-width. Therefore, we will not discuss if
the twin-width of G should rather be d, d + p, d + 2p, or any other
value in Op,q(d).

We may refer to the width of a partition (resp. partition/contraction
sequence) on the domain of a binary structure as the maximum degree
of its red graph (resp. as the overall maximum degree of its red graphs).
Given a vertex of a trigraph or a part of a partitioned graph, we also
call red degree its degree in the corresponding red graph.

CHAPTER 3

First Properties

The goal of this chapter is threefold. Section 1 is here to familiarize
the reader with contraction sequences and twin-width through simple
facts. In Sections 2 and 3, we instill two useful alternative viewpoints
to contraction sequences: split sequences and twin-decompositions. We
conclude the chapter with the technical lemmas of Section 4, which
will prove useful in the subsequent chapters.

1. Operations preserving bounded twin-width

The following fact holds since the presence of at least one edge and
at least one non-edge between two disjoint subsets X, Y , corresponding
to the red edges, is preserved under complementation.

Observation 3.1. The twin-width of a graph is equal to the twin-width
of its complement.

The next observation holds since for every pairX, Y of homogeneous
subsets, and for every X ′ ⊆ X, Y ′ ⊆ Y , the pair X ′, Y ′ is homogeneous.

Observation 3.2. Let G be a graph (resp. trigraph), and H, an induced
subgraph (resp. induced subtrigraph) of G. Then tww(H) 6 tww(G).

Thus the hereditary closure of a class of bounded twin-width has
itself bounded twin-width. This is not true for the subgraph closure.
For instance, one can remark that every complete graph has twin-
width 0, while the subgraph closure of the class of all complete graphs
is the class of all graphs. Indeed we will see that the class of all graphs
have unbounded twin-width.

The next statement formalizes that turning some red edges of
a trigraph into black edges or non-edges also can only decrease its
twin-width.

Observation 3.3. Let G,H be two trigraphs such that V (G) = V (H),
R(H) ⊆ R(G), and E(G) ⊆ E(H) ⊆ E(G) ∪ R(G). Then tww(H) 6
tww(G).

22

2. SPLIT SEQUENCES AND PROPER COLORINGS 23

The disjoint union G]H of two graphs G,H simply puts them side
by side, while the complete sum G+H further adds an edge between
every pair u ∈ V (G), v ∈ V (H). One can note that tww(G] H) =
tww(G + H) = max(tww(G), tww(H)). Thus cographs, which are
the graphs constructible from 1-vertex graphs via disjoint unions and
complete sums, have twin-width 0. Actually the class of graphs with
twin-width 0 is exactly the class of cographs. Here it is convenient to
know another characterization of cographs as the graphs excluding P4,
the 4-vertex path, as an induced subgraph. Thus graphs that are not
cographs have, by Observation 3.2, at least the twin-width of P4, which
they contain as induced subgraph. Finally as P4 has no pair of twins,
its twin-width is at least 1, and in this case, exactly 1.

Let us now see a wide generalization of the preservation of twin-
width by disjoint unions and complete sums. Given two graphs G,H
and a vertex v ∈ V (G), the substitution in G of H at v, which we
denote by G[v ← H], is the graph with vertex set (V (G) \ {v})∪V (H)
and edge set

E(G− v) ∪ E(H) ∪ {xy : x ∈ NG(v), y ∈ V (H)},
formalizing the idea of replacing v by the graph H.

Lemma 3.4. Let G,H be two non-empty graphs, and v ∈ V (G). Then,
tww(G[v ← H]) = max(tww(G), tww(H)).

Proof. First, tww(G[v ← H]) > max(tww(G), tww(H)), by Ob-
servation 3.2, since G and H are induced subgraphs of G[v ← H];
here it matters that H has at least one vertex. On the other hand,
tww(G[v ← H]) 6 max(tww(G), tww(H)) by concatenating a par-
tial tww(H)-sequence from G[v ← H] to G, with a tww(G)-sequence
of G. �

Readers familiar with modular decompositions (see for instance [51])
will notice that repeated applications of Lemma 3.4 show that the twin-
width of a graph is the maximum twin-width of the modules and
quotients occurring in its modular decomposition.

2. Split sequences and proper colorings

In most of the algorithmic applications presented in Chapter 7, one
exploits the contraction sequences going forward. However, it may
sometimes be helpful to consider the contraction process backward.
One starts at a single vertex, and progressively undoes the contractions

24 3. FIRST PROPERTIES

until the initial graph is “created.” We call this a split sequence, and
a contraction seen backward, a split.

Let us present an example where this seemingly minor perspective
shift proves useful. A graph is said triangle-free if it does not contain
K3 as a subgraph, or equivalently, as an induced subgraph. A graph is
k-colorable if each of its vertices can be given one of k colors in such
a way that no edge has two endpoints of the same color. The map
from the vertex set to the color set is called a proper k-coloring. The
chromatic number of a graph G, denoted by χ(G), is the least integer k
such that G is k-colorable.

There are triangle-free graphs of arbitrarily large chromatic number.
Actually many constructions of infinite families of triangle-free graphs
with increasing chromatic number have been found, and perhaps the
most classic one is the Mycielskian [67]. No such construction can
however be of bounded twin-width.

Theorem 3.1 ([20]). Every triangle-free graph of twin-width d
is d+ 2-colorable.

Proof. Let G be an n-vertex triangle-free graph of twin-width d.
The idea is to follow a split sequence G1, . . . , Gn = G of width d, and
to iteratively find a proper d + 2-coloring of the total graph T (Gi)
for i going from 1 to n. The total graph T (G1) has only one vertex,
so admits a proper coloring with one color. The total graph T (Gn) is
equal to G, thus a proper d+ 2-coloring for it would prove the theorem.

We are then left with the task of turning a proper d+ 2-coloring of
T (Gi) into one for T (Gi+1), for every i ∈ [n− 1]. Let us distinguish
two cases.

First case: the vertex z ∈ V (Gi) that is split into u, v ∈ V (Gi+1)
has at least one black neighbor, say w, in Gi; see Figure 3.1.

NGi [z] NGi+1
[u, v]

Figure 3.1. Split, when z has a black neighbor.

2. SPLIT SEQUENCES AND PROPER COLORINGS 25

In this case, the new coloring of T (Gi+1) gives the color of z to
both u and v, while leaving unchanged the color of the other vertices.
Why is this coloring proper? For that we only need to justify that u
and v cannot be linked by a red edge or a black edge in Gi+1. If the
latter edge would exist, then one could find two vertices u′ ∈ V (G)
contracted in u, and v′ ∈ V (G) contracted in v, such that u′v′ ∈ E(G).
Besides, by definition of contractions in trigraphs, uw and vw are
black edges in Gi+1. Thus any w′ ∈ V (G) contracted in w is such that
u′w′, v′w′ ∈ E(G), thus u′v′w′ contradicts that G is triangle-free.

Second case: z has no black neighbor. Then z has at most d
neighbors in T (Gi). In that case, u can retain the color of z, and v be
given a different color not appearing among the neighbors of z, while
the other vertices again keep their color; see Figure 3.2. This is always

NGi [z] NGi+1
[u, v]

Figure 3.2. Split, when z has no black neighbor.

possible with d+ 2 colors. �

Surprisingly, this simple coloring scheme is almost tight, as there
are triangle-free graphs of twin-width d that cannot be properly colored
with fewer than d + 1 colors [13]. It can also be extended to show
that graphs G of twin-width d can be properly colored with at most
(d + 2)ω(G)−1 colors, where ω(G) is the clique number of G, i.e., the
maximum cardinality of a clique of G. A class for which χ v ω is
said χ-bounded.

Theorem 3.2 ([20]). Graph classes of bounded twin-width are
χ-bounded.

As we will see in Chapter 5 that classes of bounded clique-width have
bounded twin-width, this extends and simplifies the χ-boundedness
of the former classes [41]. The function in ω bounding the chro-
matic number of graphs of bounded twin-width has been improved to
quasipolynomial [72], and then to polynomial [29].

26 3. FIRST PROPERTIES

3. Twin-decompositions

There is a vertex-labeled rooted binary tree T that is naturally
related to a d-sequence S. It has one leaf per vertex of G, the initial
n-vertex graph or binary structure, and one internal node per newly
created vertex, having as children the two vertices that were contracted
into it. From the mere tree T two elements are missing: one to fully
describe S, and one to fully describe G.

The order in which the contractions are done is important, as two
distinct orders could very well result in a different value of the overall
maximum degree in the corresponding red graphs. We thus augment T
with a linear order < on its internal nodes, specifying the order of the
contractions. Note that for < to indeed correspond to a contraction
sequence, we expect it to be compatible with the tree, in the following
sense: if y is a strict ancestor of x then x < y.

Now (T,<) completely identifies S, but the edges of G are missing.
Instead of adding them at the leaves of T , we can condense the infor-
mation of E(G) into at most (d+ 1)(n− 1) edges added to T . This is
better seen with the split sequences of the previous section.

After the split of a vertex z into two vertices u, v, at most d + 1
black edges may appear : one between u and v, and at most one of
uw, vw for every red neighbor w of z. Note that if both uw and vw are
black edges, we do not count them as appearing, since zw was already
a black edge. Every time a black edge appears in the split sequence,
we link its endpoints in V (T), which can be leaves or internal nodes,
by a special edge, represented in blue in Fig. 3.3. We denote this set of
edges added to T by B (for Biclique or Blue). One can observe that B
partitions E(G) into at most (d+ 1)(n− 1) bicliques of G, since there
are n − 1 splits. Note that if G was a binary structure with several
binary relations, we would have one set Bj for each binary relation Ej .

A twin-decomposition is such a triple (T,<,B); see Figure 3.3.
Interestingly, a twin-decomposition (T,<,B) of an n-vertex graph G
of twin-width d can be a much sparser object than G itself. The graph
(V (T), E(T)∪B) has 2n− 1 vertices and at most (d+ 2)(n− 1) edges,
while G can have up to

(
n
2

)
edges. This may allow for algorithms with

sublinear complexity in the number of edges of the input, directly
operating on twin-decompositions. In Chapters 7 and 10 we will see
such examples for finding shortest paths and multiplying matrices.
Notably, the sparsity of twin-decompositions will also prove useful
in Chapter 8 to the characterization of classes of bounded twin-width
as transductions of proper permutation classes.

4. TECHNICAL LEMMAS 27

a d g c b e f

12
3

4
5

6

a

b

c

d

e

f

g

Figure 3.3. The twin-decomposition for the contraction sequence
of Figure 2.2, next to the initial graph.

4. Technical lemmas

We use the twin-decomposition viewpoint to remark that the vertex
set of a graph or binary structure can be ordered in such a way that
all the contractions of some contraction sequence of minimum width
are performed on “consecutive vertices.”

Lemma 3.5. For every binary structure G, there is a linear order ≺
on V (G) such that G has a partition sequence S of width tww(G) such
that every part of every partition of S is on consecutive vertices along ≺.

Proof. Choose for ≺ the left-to-right order on the leaves of the
tree of the twin-decomposition corresponding to S; see Figure 3.3. �

The linear order ≺ is itself a binary relation. Note that the in-
tended contraction sequence has the same width on G as it has on the
augmented binary structure (G,≺), as by design no red edge would
come from ≺. Thus Lemma 3.5 has the following consequence.

Lemma 3.6. For every binary structure G, there is a linear order ≺
on V (G) such that tww(G) = tww(G,≺).

The next lemma bounds the width of partitions interpolating be-
tween an s-refinement of a partition P and P itself. It is more of an
observation as any partial partition sequence between the latter two
partitions works.

Lemma 3.7. Let G be a binary structure and P ,P ′ be two partitions of
V (G), with width d and d′, respectively, such that P ′ s-refines P. There
is a partial d′′-sequence from P ′ to P with d′′ 6 max(s(d+ 1)− 2, d′).

28 3. FIRST PROPERTIES

A typical use of Lemma 3.7 is when s = 2, and d = d′. It can
then be informally phrased as follows. If, before and after contract-
ing an arbitrary number of disjoint pairs of vertices, the width is
at most d, then it does not get worse than 2d in between, regardless of
the order in which the pairs are contracted. Successive applications
of Lemma 3.7 can “piece together” point-wise refinements of bounded
width of a partition sequence of unknown width.

Lemma 3.8. Let Pn, . . . ,P1 be a partition sequence of a binary struc-
ture G. Let P ′n, . . . ,P ′1 = {V (G)} be possibly-equal partitions of V (G)
of width at most d such that for every i ∈ [n]: P ′i s-refines Pi, and
i = 1 or P ′i refines P ′i−1. Then G admits a partition sequence of width
at most s(d+ 1) going through every partition of P ′n, . . . ,P ′1.

Lemma 3.8 is an essential element of the proof, given in Chapter 8,
that first-order transductions preserve bounded twin-width. We also
use it, in Chapter 4, for the characterization of bounded twin-width via
adjacency matrices. We now consider how the twin-width may evolve
when an apex is added, i.e., a new vertex linked arbitrarily to the rest
of the graph.

Lemma 3.9. Let G,H be two graphs such that G is isomorphic to
H − v for some v ∈ V (H). Then tww(H) 6 2tww(G) + 1.

sketch. Let A ⊆ V (H) be the set of neighbors of v in H, and set
B := V (H) \ (A ∪ {v}). For the partition sequence of H, we follow
that of G but refuse to mix vertices in A with vertices in B: When the
partition in G is P, that in H is {{v}} ∪ {P ∩ A,P ∩ B : P ∈ P}
deprived of the possible empty sets. This way {v} has no red neighbor,
and every other part has at most 2tww(G) + 1 red neighbors, by the
same argument as in Lemma 3.7. �

A similar proof to that of Lemma 3.9 shows that after adding
a unary relation the twin-width at most essentially doubles.

Lemma 3.10. Let G be a binary structure, and H be a binary structure
obtained by adding a unary relation to G. Then tww(H) 6 2tww(G)+1.

Lemma 3.10 is why we will not worry too much about the unary
relations of our binary structures. Repeated applications of Lemma 3.10
show that finite monadic lifts of classes of bounded twin-width have
bounded twin-width.

CHAPTER 4

Characterization via Adjacency Matrices

We often refer to the adjacency matrix of a graph as if this matrix
were unique. Figure 4.1 should remind us that a same graph may have
very different adjacency matrices. In some way, this chapter quantifies

Figure 4.1. Not all biadjacency matrices are equal.

how much more structured the matrix on the left is than the one on
the right.

1. Grid minors and the Marcus–Tardos theorem

We see the row set rows(M) and the column set columns(M) of
a matrix M as naturally ordered. A division of a totally ordered set X
is a partition of X into intervals, i.e., into parts made of consecutive
elements. For two positive integers s and t, an (s, t)-division (or simply
division) of a matrix M is a pair (R, C) such that R is a division
of rows(M) into s intervals, and C is a division of columns(M) into
t intervals. A t-division is short for (t, t)-division. We define matrix
partitions similarly but without the requirement that the parts must
be intervals.

For X ⊆ rows(M) and Y ⊆ columns(M), M [X, Y] denotes the
submatrix of M obtained by removing the rows that are not in X, and
the columns that are not in Y . A zone of a partition (R, C) of M is
a submatrix M [R,C], with R ∈ R and C ∈ C. We may alternatively
use the word cell if the matrix partition is a matrix division. Note

29

30 4. CHARACTERIZATION VIA ADJACENCY MATRICES

that a t-division defines t2 cells. Given a 0–1 matrix M and a division
D = (R, C) of M , we define M/D as the 0–1 matrix with one row per
R ∈ R, one column per C ∈ C, and a 0-entry at row R, column C if
M [R,C] is full 0, and a 1-entry otherwise.

A t-grid minor of a matrix M is a t-division (R, C) of M , every
cell of which contains at least one nonzero entry; see left of Figure 4.2.
We say that a matrix is t-grid free if it does not have a t-grid minor.
The celebrated Marcus–Tardos theorem asserts that every 0–1 matrix

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

0
1

0

1

1
0

0

1

1
1

0

1

0
0

1

0

1
1

1

1

Figure 4.2. A 4-grid minor, and how to find in it any 4-element
permutation as a pattern, here 2143.

with a large enough constant number of 1-entries in average per row
and per column has a t-grid minor. Precisely:

Theorem 4.1 ([66]). For every integer t, there is some number ct
such that every n × m 0–1 matrix M with at least ct max(n,m)
1-entries has a t-grid minor.

Marcus and Tardos established this theorem with ct = 2t4
(
t2

t

)
.

Fox [44] subsequently improved the bound to 3t28t. He also showed that
ct must be exponential in t (at least 2Ω(t1/4)). Cibulka and Kynčl [33]
decreased ct further down to 8/3(t+ 1)224t. We will simply remember
that ct is single-exponential in t.

Theorem 4.1 originated as a question posed by Füredi and Hajnal in
1992 [45], later promoted to the Füredi–Hajnal conjecture. Klazar [60]
showed in 2000 that a positive solution to the Füredi–Hajnal conjecture
would imply that of another somewhat older conjecture, independently
made by Stanley and Wilf, that every proper permutation class has
single-exponential growth, i.e., for some number c, at most cn permuta-
tions of size n for every integer n.

Klazar’s proof is by induction on n, and shows more generally that
the Marcus–Tardos theorem implies that the set of square matrices of

1. GRID MINORS AND THE MARCUS–TARDOS THEOREM 31

any 0–1 matrix class avoiding a fixed permutation matrix as a pattern
has single-exponential growth. By matrix class we mean a set of matri-
ces closed under taking submatrices. And we say, for two 0–1 matrices
M and N , that M contains the pattern N if N can be obtained by
possibly turning some 1-entries into 0-entries in a submatrix of M ; and
avoids it, otherwise.

Let S be the set of every square 0–1 matrix avoiding a fixed t× t
permutation matrix, and n > 1 be the smallest integer for which the
single-exponential growth of S with basis c := 152ct has yet to be
established (where ct is as in Theorem 4.1). Set the dn/2e-division D
with every part of size 2 (but possibly the last one in row and column)
on any n×n matrix M of S. The matrix M/D (which is also in S) has
at most ctdn/2e 1-entries since otherwise it would admit a t-grid minor,
and thus would not avoid any t×t permutation matrix as a pattern; see
right of Figure 4.3. Forgetting M , every 1-entry in M/D can be lifted
to 15 distinct 0–1 matrices of size 2 × 2 that are not full 0, whereas
every 0-entry in M/D corresponds to a full-0 matrix. Thus there are
at most

15ctdn/2ecdn/2e 6 cbn/2c+dn/2e = cn

n× n matrices in S.
Despite being open for over a decade, the Füredi–Hajnal conjecture

was proven by Marcus and Tardos with a short1 and beautiful proof.
We encourage the interested reader to enjoy it in the original paper [66].
We nevertheless list some hints that should progressively lead them to
the solution:
(1) observe that the question reduces to dealing with square matrices;
(2) try and prove the converse by induction on the matrix size;
(3) divide again the matrix, this time in cells of size t2 × t2;
(4) classify the cells into four categories: full-0 cells, wide cells with at

least t nonzero columns, tall cells with at least t nonzero rows, and
light cells, which are not full 0, nor wide, nor tall;

(5) how many wide (resp. tall) cells can a single column (resp. row)
part at most contain without creating a t-grid minor?

(6) using the induction hypothesis, how many cells can be nonzero?
(7) how many 1-entries can at most be in a light cell?
(8) use all the above to bound the total number of 1-entries.

1It can be made to fit half a page.

32 4. CHARACTERIZATION VIA ADJACENCY MATRICES

2. Mixed minors and characterization via mixed number

A matrix M is said vertical (resp. horizontal) if all its rows (resp.
columns) are equal. Observe that a 0–1 matrix which is both vertical
and horizontal is full 0 or full 1. We say that M is mixed if it is not
vertical nor horizontal. A t-mixed minor in M is a t-division, every
cell of which is mixed; see Figure 4.3. A matrix without t-mixed minor
is said t-mixed free. For instance, the n× n full-1 matrix is 1-mixed
free but admits an n-grid minor.

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Figure 4.3. A 3-mixed minor.

The mixed number, mn(M), of a matrix M is the largest integer t
such that M admits a t-mixed minor. And the mixed number, mn(G),
of a graph G is the minimum mixed number among adjacency matrices
of G. We define the grid number, gn, of matrices and graphs analogously
with t-grid minor replacing t-mixed minor. These numbers readily
extend to binary structures over finite relational signatures. For that,
we shall just define the adjacency matrix A≺(G) of a binary structure G
along the order ≺, as having in row u ∈ V (G), column v ∈ V (G) the
binary atomic type of the ordered pair (u, v), i.e., any bijective encoding
of the set of binary relations R of G such that (u, v) ∈ R.

The following theorem is the cornerstone of twin-width theory.

Theorem 4.2 ([25]). A class of binary structures has bounded
twin-width if and only if it has bounded mixed number.

With our notations of Chapter 2, it says that tww ≡ mn, and has
two directions. The easy one:

Lemma 4.1. mn v tww.

Proof. Let G be any binary structure, and ≺ be a vertex ordering
of V (G) such that G has a division sequence, i.e., a partition sequence
each partition of which is a division of (V (G),≺), S of width tww(G).

2. MIXED MINORS AND CHARACTERIZATION VIA MIXED NUMBER 33

We saw in Chapter 3 (see Lemma 3.5) that this was always possible.
We claim that mn(A≺(G)) 6 2tww(G) + 2. Indeed, let D = (R, C) be
a mixed minor of A≺(G), and D′ be the first division of S such that
a part P ∈ D′ contains a row part or a column part of D. Say, without
loss of generality, that P contains a part of C.

A cell of D necessarily contains a non-constant row. For each
i ∈ [h] with h = d|D|/2e, let Pi ∈ D′ contains a non-constant row in
the 2i−1-st row part of D. By definition of P , all parts Pi are pairwise
distinct but possibly one pair Pj, Pj+1 both equal to P . Hence the red
degree of P , thus the twin-width of G, is at least 1

2
(mn(A≺(G))− 2) >

1
2
(mn(G)− 2). �

And the harder and more useful one:

Lemma 4.2. tww v mn.

We prefer to give a more quantitative and unpacked statement.

Theorem 4.3 ([25]). There is a function f : N→ N with f(t) =

22O(t) such that every binary structure with a t-mixed free adjacency
matrix has twin-width at most f(t).

sketch. Let G be any binary structure with an adjacency matrix
A≺(G) that is t-mixed free. Starting from the finest partition of V (G),
we build a division sequence S ′ (relative to ≺) by greedily merging
pairs of consecutive parts along ≺, while no column (or row) part
of the corresponding matrix division contains more than 10ct mixed
cells, with ct as in Theorem 4.1. Here the Marcus–Tardos theorem
is crucially used to show that this greedy process cannot be stopped
(before reaching the coarsest partition) without implying the existence
of a t-mixed minor. This is done via the auxiliary 0–1 matrix with
1-entries at positions of mixed cells, and 0-entries elsewhere.

The division sequence S ′, say Dn, . . . ,D1 may have large width,
but allows to build a list of coarser and coarser partitions Pn, . . . ,P1

on V (G), each of width 2O(ct), such that Pi 2O(ct)-refines Di for every
i ∈ [n]. By Lemma 3.8, we thus get a partition sequence S of G with
width 2O(ct) · 2O(ct) = 22O(t) . �

A contraction sequence is a fairly complicated object, and it may
be challenging to directly find contraction sequences of low width.
Theorem 4.3 simplifies the task of bounding the twin-width of binary
structures: One only needs to order their vertex set such that the

34 4. CHARACTERIZATION VIA ADJACENCY MATRICES

corresponding adjacency matrix is t-mixed free, ideally for some small
value t.

A typical use to bound the twin-width of a class C:
(1) find a good vertex-ordering scheme based on the properties of C,
(2) assume that adjacency matrices in this order admit a t-mixed minor,
(3) use this t-mixed minor to contradict the membership to C, and
(4) conclude with Theorem 4.3.

One can observe that if a square matrix has a t-mixed minor, then
it also admits a b t

2
c-mixed minor completely above or completely below

its main diagonal. This turns out useful as the diagonal of adjacency
matrices sometimes behave differently than its surrounding entries;
think for instance the diagonal of 0-entries in the adjacency matrix of
a complete graph.

Observation 4.3. LetM be an adjacency matrix along an order ≺ that
admits a t-mixed minor. Then there are two intervals X, Y along ≺,
such that X ≺ Y , and M [X, Y] or M [Y,X] admits a b t

2
c-mixed minor.

By X ≺ Y we simply mean that x ≺ y for every x ∈ X and y ∈ Y .
We notice that for symmetric matrices, like adjacency matrices of
graphs, both M [X, Y] and M [Y,X] admit a b t

2
c-mixed minor.

3. Applications of the characterization

In this section, we show that three classes have bounded twin-width:
unit interval graphs, traceable graphs excluding Kt as a minor, and
posets of bounded antichain size. These examples are chosen so as to
yield simple uses of Theorem 4.3, of increasing difficulty. In Chapter 5,
we will see better bounds and more general results. Unit interval graphs
are the intersection graphs of intervals of length 1 on the real line.

Fact 4.4. The class of unit interval graphs has bounded twin-width.

Proof. Let G be a unit interval graph, and let ≺ totally order
V (G) following the left-to-right ordering of the interval left endpoints
in some fixed geometric representation of G. We claim that A≺(G)
is 4-mixed free. By Observation 4.3, we shall just argue that A≺(G)
cannot have a 2-mixed minor above its diagonal.

Indeed, let X1 ≺ X2 ≺ Y1 ≺ Y2 be such that A≺(G)[X1, Y2] has
a 1-entry (necessary condition for this cell to be mixed). Thus there
is x ∈ X1 and y ∈ Y2 whose intervals intersect at least at the right
endpoint, say p, of the interval of x. Then every vertex in X2 ∪ Y1 is

3. APPLICATIONS OF THE CHARACTERIZATION 35

represented by an interval containing p, so X2 ∪ Y1 is a clique. This
implies that A≺(G)[X2, Y1] is full 1, thus not mixed. �

As we will see in Section 5, Kt-minor-free graphs have bounded
twin-width. Further assuming the existence of a Hamiltonian path,
this is a direct consequence of Theorem 4.3.

Fact 4.5. Kt-minor-free traceable graphs have twin-width 22O(t).

Proof. We first observe that any spanning supergraph of the
biclique Kt,t contains the clique Kt as a minor, by performing the edge
contractions of any perfect matching of Kt,t. Let G be a traceable
graph. It has a Hamiltonian path v1v2 . . . vn, and we define the linear
order ≺ as v1 ≺ v2 ≺ . . . ≺ vn. We again use Observation 4.3 to simply
argue that there is no X ≺ Y such that A≺(G)[X, Y] has a t-mixed
minor. Indeed, let X1 ≺ X2 ≺ . . . Xt partition X, and Y1 ≺ Y2 ≺ . . . Yt
partition Y . Due to the Hamiltonian path, edge contractions can reduce
each Xi and each Yj to single vertices. At least one cell A≺(G)[Xi, Yj]
has to be full 0, as otherwise a spanning supergraph of Kt,t results
from these edge contractions. �

Posets stand for partially ordered sets. Two elements x, y are
comparable if x �P y or x �P y, where �P is the order of poset P .
A chain in a poset is a set of pairwise comparable elements, whereas
an antichain, is a set of pairwise incomparable elements. Our encoding
of the adjacency matrix A≺(P) of a poset P puts a 0-entry at row x,
column y if x = y, a 1-entry if x �P y, a −1-entry if y �P x, and
a 2-entry if x and y are incomparable, where ≺ is a linear order on
V (P) unrelated to �P .

Theorem 4.4 ([25]). Every class of finite posets with bounded
antichain size has bounded twin-width.

Proof. Let P be a poset with a maximum antichain of size t.
By Dilworth’s theorem (see Galvin’s short proof [48]), V (P) can be
partitioned into t chains P1, P2, . . . , Pt. We define the linear order ≺
on V (P) as P1 ≺ P2 ≺ . . . ≺ Pt, and for every x 6= y ∈ Pi, x ≺ y
whenever x �P y.

We show that A≺(P) is 6t-mixed free. By the pigeonhole principle
and Observation 4.3, a 6t-mixed minor would imply the existence of
a 3-mixed minor in some A≺(P)[Pi, Pj] with i < j. We now refute the
possibility of such a 3-mixed minor.

36 4. CHARACTERIZATION VIA ADJACENCY MATRICES

Let R1 ≺ R2 ≺ R3 be any partition of Pi, and C1 ≺ C2 ≺ C3 be
any partition of Pj . As Pi ≺ Pj , for the cell A≺(P)[R2, C2] to be mixed,
there should be a comparable pair x ∈ R2, y ∈ C2. If x �P y, then by
transitivity R1 �P C3, and the cell A≺(P)[R1, C3] is full 1, hence not
mixed. If instead y �P x, then by transitivity C1 �P R3, and the cell

Pi Pj

R1

R2

R3

C1

C2

C3

C1C2C3

Pj

R1

R2

R3

Pi 1

1

Pi Pj

R1

R2

R3

C1

C2

C3

C1C2C3

Pj

R1

R2

R3

Pi -1
-1

Figure 4.4. The two cases when A≺(P)[R2, C2] is not full 2.

A≺(P)[R1, C3] is full −1, hence not mixed; see Figure 4.4. �

This shows that posets with no antichain of size t+ 1 have twin-width
at most 22O(t) . An upper bound of 8t has been alternatively achieved [3].

4. Versatile twin-width and balanced sequences

We can extract more from the proof of Theorem 4.3. If the mixed
number is low, one can not only find one contraction sequence of low
width, but exponentially many, with a linear number of choices at each
step. We formalize this with the notions of tree of contractions (not to
be confused with a twin-decomposition) and versatile twin-width.

A tree of contractions T of a trigraph G is a rooted tree, whose
root is labeled by G, whose leaves are all labeled by the 1-vertex
trigraph, and such that one goes from a parent node to a child node by
performing a single contraction operation. In particular, T has depth
|V (G)| − 1, and a contraction sequence is the particular case when T
is a path.

The versatile twin-width of a (tri)graph G is the least integer d
such that G admits a tree of contractions in which every internal
node labeled, say, F has maximum red degree at most d, and at
least b|V (F)|/dc children, obtained by contracting one of b|V (F)|/dc
pairwise disjoint pairs of vertices in F . Such a tree is then called
a versatile tree of contractions of width d.

Theorem 4.5 ([21]). Twin-width and versatile twin-width are
functionally equivalent.

5. ORIENTED TWIN-WIDTH 37

In Chapter 9, we use Theorem 4.5 to design adjacency labeling
schemes and bound the growth of classes of bounded twin-width. The
latter is leveraged in Chapter 5 as a generic way to establish that some
classes have unbounded twin-width.

A d-sequence is said balanced if its partitions Pn, . . . ,P1 are such
that for every i ∈ [n] and P ∈ Pi, |P | 6 d · n

i
. Note that the partitions

are not balanced in the sense that all of their parts are of roughly the
same size: There might be small parts (even singletons) coexisting
with parts of size bd · n

i
c in Pi. Rather, no part of Pi should be larger

than the n
i
bound (of equitable partitions) by more than a d factor.

Another useful consequence of Theorem 4.5 is that classes of
bounded twin-width admit balanced contraction sequences of bounded
width. This will be used in Chapter 7 to approximate some combina-
torial optimization problems.

Theorem 4.6 ([20]). There is a function f and a polynomial-
time algorithm that inputs a d-sequence of a graph G and outputs
a balanced f(d)-sequence of G.

sketch. Follow a branch of a versatile tree of contractions that
always contracts parts of smallest combined size. �

5. Oriented twin-width

There are three ways vertex subsets X, Y can be inhomogeneous:
• with x ∈ X having a neighbor and a non-neighbor in Y ,
• with y ∈ Y having a neighbor and a non-neighbor in X,
• with both of the above.
We can distinguish these cases by directing the red graph accordingly.
Let us orient the red edge XY from X to Y in the first case, from Y
to X in the second, and direct it in both ways in the third. This yields
the directed red graph of a partition.

The outdegree (resp. indegree) of a vertex in a directed graph or
digraph is its number of incident outgoing (resp. ingoing) arcs. We
then define the oriented twin-width of a graph G, denoted by otww(G),
as the minimum, taken over every partition sequence S, of the overall
maximum outdegree of the directed red graphs of the partitions in S.
We may call oriented width the maximum outdegree of the directed
red graph of a partition, or overall maximum outdegree of the directed
red graphs of a partition sequence.

38 4. CHARACTERIZATION VIA ADJACENCY MATRICES

For every graph G, otww(G) 6 tww(G) as the outdegree of a part
in the directed red graph is at most its degree in the red graph. On
the other hand, keeping the oriented width low is simpler, as only the
just-contracted part can get new outgoing red arcs, possibly increasing
the current bound. Note indeed that the other parts can only see their
outdegree in the directed red graph decrease. It might even seem as
though the oriented twin-width could be bounded on some classes on
which the twin-width is not. Surprisingly this is not the case.

Theorem 4.7 ([24]). Twin-width and oriented twin-width are
functionally equivalent.

Proof. Another surprise perhaps is that we already proved The-
orem 4.7, that is, tww v otww (we observed that otww v tww). In
Lemma 4.1, when we proved mn v tww, the reader can check that we
actually showed that mn v otww. We conclude since by Lemma 4.2,
tww v mn. �

More quantitatively, we have established that for every graph G,
tww(G) 6 22O(otww(G)) . Let us use this fact to bound the twin-width of
Kt-minor-free graphs. In particular, this establishes that every proper
minor-closed class has bounded twin-width, as every such class excludes
a graph H, and hence the complete graph K|V (H)| as a minor. We
simply need the following lemma.

Lemma 4.6 ([69]). Every Kt-minor-free graph on at least two vertices
admits two distinct vertices u, v both of degree at most 2O(t log t) such
that u and v are either adjacent or false twins.

To bound the oriented twin-width, we can think the vertex contrac-
tions in terms of graphs rather than trigraphs, or equivalently work
with the total graphs rather than the red graphs. More specifically, to
argue that otww(G) 6 d, it is sufficient to find a contraction sequence
of G such that every newly contracted vertex has degree at most d in
the current total graph.

The proof of the next theorem iteratively contracts pairs u, v given
by Lemma 4.6. Importantly, either u and v are adjacent and this vertex
contraction is an edge contraction, or u and v are false twins and the
vertex contraction can be thought as the deletion of v. In both cases
then, the new total graph remains Kt-minor-free.

Theorem 4.8 ([24]). Kt-minor-free graphs have twin-width 222
Õ(t)

.

CHAPTER 5

Which Classes Have Bounded Twin-Width?

In the previous chapters, we have started to see examples of classes
with bounded twin-width, namely those of cographs, unit interval
graphs, graphs excluding a fixed minor, and posets with bounded
maximum antichain. In this chapter, we continue this exploration
more systematically. To bound the twin-width of a class, we have seen,
in addition to directly providing contraction sequences, two arguably
simpler alternatives: bounding the mixed number or the oriented twin-
width. Anticipating Theorem 8.1 in Chapter 8, another option is
to transduce the class from a class already known to have bounded
twin-width.

How to show, on the contrary, that a class has unbounded twin-
width? In some simple cases, a direct argument can be given. The
easiest is when for every integer n, the class contains a graphG such that
every pair u, v ∈ V (G) satisfies |(N(u)\N [v])∪(N(v)\N [u])| > n; as it
happens with rook graphs or Paley graphs. Then, any first contraction
in G creates a vertex with at least n red neighbors. A very effective
yet not completely satisfactory way of establishing that a class has
unbounded twin-width is to show that its growth (or more conveniently
the growth of its hereditary closure) is too fast. We will indeed see in
Chapter 9 that classes of bounded twin-width are small, and even tiny;
see Theorems 9.1 and 9.2. In Chapter 10 the converse is shown to hold
for hereditary classes of ordered graphs. This too can be used to show
that an unordered graph class has bounded twin-width [42].

1. Classical graph widths

In Chapter 2 the definition of several width measures was recalled:
treewidth, clique-width, rank-width, and boolean-width. We remind
the reader that boolw ≡ rw ≡ cw @ tw; see for instance [77, Chapter
4]. We now prove that tww @ boolw, making classes of bounded
twin-width more general than those for which any of the latter widths
(dubbed classical) is bounded.

39

40 5. WHICH CLASSES HAVE BOUNDED TWIN-WIDTH?

Theorem 5.1 ([25]). Every class of bounded boolean-width has
bounded twin-width.

Proof. Let G be a graph of boolean-width k, and (T, γ) be a wit-
nessing tree layout of G. We call partitioned tree layout on G a tree
layout (T ′, γ′) where the leaves are no longer in one-to-one correspon-
dence with V (G), but rather with the parts of a partition of it, i.e.,
{γ′(x) : x ∈ L(T ′)} is a partition of V (G).

We show that G has twin-width at most 2k+1− 1. For that, we con-
struct a partition sequence Pn, . . . ,P1 of G in parallel with a sequence
of partitioned tree layouts (Tn, γn), . . . , (T1, γ1), where (Tn, γn) is the
tree layout (T, γ) in which the label v of every leaf is turned to the
singleton {v}.

For i going from n down to 2k+1, let T ′i be a rooted subtree of Ti
with at least 2k + 1 and at most 2k+1 leaves. Finding T ′i can be done by
starting at the root of Ti, and iteratively moving to the child with larger
subtree (or either child, in case of a tie), until the condition is met. By
the pigeonhole principle and the definition of boolean-width, there are
two parts P, P ′ ∈ Pi labeling two leaves of T ′i such that all vertices in
P ∪ P ′ have, in G, the same neighborhood outside

⋃
x∈L(T ′i)

γi(x). We
then go from Pi to Pi−1 by contracting P with P ′.

This affects the partitioned tree layout in the following way. We
obtain (Ti−1, γi−1) from (Ti, γi) by replacing label P with label P ∪ P ′,
deleting the leaf ` labeled by P ′, and smoothing out the parent of `
(i.e., deleting it and linking the sibling of ` directly to its grandparent).
We may then arbitrarily finish the sequence P2k+1−1, . . . ,P1 (with the
corresponding partitioned tree layouts). For every i ∈ [n], every part
P = γi(`) ⊆ V (G) labeling a leaf ` of Ti, and the maximum rooted
subtree Ti,P of Ti that is of size at most 2k+1 and contains `, it holds
that the vertices of P have, in G, the same neighborhood outside⋃
x∈L(Ti,P) γi(x).
This implies that part P can have at most 2k+1−1 red neighbors. �

Therefore tww v boolw, but the converse does not hold as, for
example, the class of all grids has twin-width at most 4 (see the proof
by picture of Figure 5.1), but unbounded boolean-width. For every
graph G, boolw(G) 6 max(tw(G) + 1, cw(G), 1

4
rw(G)2 + γrw(G)) for

some constant γ; see [77, Chapter 4] and [31]. Thus we proved that
twin-width is at most single-exponential in tw, cw, boolw, and rw2; see
also [56] for a tighter upper bound of twin-width in terms of treewidth.

2. SUBDIVISIONS, GRIDS, AND EXPANDERS 41

It happens that this exponential blow-up is required for all these
parameters but clique-width [16], whereas tww(G) 6 2(cw(G)− 1) for
every graph G [7].

2. Subdivisions, grids, and expanders

In this section, we realize that classes of bounded twin-width extend
much further than classes with bounded boolean-width, which we recall
are the same as those with bounded clique-width or bounded rank-
width. We analyze the behavior of twin-width on graph subdivisions,
generalizations of grids, and expanders, all known to be of unbounded
boolean-width.

It happens that any graph, if “subdivided enough,” has low twin-
width. Thus, unlike classical width parameters, twin-width is not
a topological notion.

Theorem 5.2 ([9]). Any (> 2dlog ne)-subdivision of any n-vertex
graph has twin-width at most 4.

The Ω(log n) bound in the required length of the subdivision to
make the twin-width low is essentially tight. The o(log n)-subdivisions
of the complete graph Kn have, on the contrary, unbounded twin-width.
This can be shown by the counting argument (see Theorem 9.1), as
their hereditary closure does not form a small class. However, a direct
proof, with an explicit lower bound, is possible.

Theorem 5.3 ([25]). Let n, d be integers larger than 2. For any
positive integer ` < logd(n − 1) − 1, the `-subdivision of Kn has
twin-width at least d.

sketch. Consider the first time in an hypothesized contraction
sequence S of width d − 1 when a branching vertex v is contracted
with another part/vertex. As v has a set X of n neighbors such that
for every other vertex u, |N(u) ∩ X| 6 1, all but at most one edge
incident to v will turn red. This implies that at least n/d neighbors
of v are, at this point of S, in the same part. The same reasoning can
be applied to this part, and its at least n/d neighbors outside v: n/d2

of them shall be in the same part, and so on. This bottoms out when,
after ` steps, we reach the other branching vertices, n− 2 of which are,
by definition, in singleton parts. �

42 5. WHICH CLASSES HAVE BOUNDED TWIN-WIDTH?

A thorough analysis of the twin-width of subdivisions has been
carried out [1]. In particular, the existence of n-vertex graphs whose
(> 2dlog ne)-subdivisions have twin-width exactly 4 is shown.

That grids have bounded twin-width is, at this point, no surprise.
We have seen in Chapter 4 the much more general result that any class
excluding a minor has bounded twin-width; see Theorem 4.8. Indeed
grids are K5-minor-free. However, we now see that generalizations of
grids to higher fixed dimensions—which do not exclude any minor—
still have bounded twin-width, linear in the dimension. The class
of d-dimensional grid graphs comprises any finite induced subgraph
of the infinite d-dimensional lattice, with vertex set Zd and edges
linking every pair of vertices at Euclidean distance exactly 1. The
d-dimensional grid Γ(n1, n2, . . . , nd) is the subgraph of this lattice
induced by [n1]× [n2]× . . .× [nd].

Theorem 5.4 ([25]). The class of d-dimensional grid graphs has
twin-width at most 3d.

sketch. We give a short argument for the worse upper bound of 4d.
By Observation 3.2, it is enough to show the bound for Γ(n, n, . . . , n)
for every natural n (with d coordinates). By Observation 3.3, we can
further assume that all its edges are already red. We denote this graph
of maximum red degree 2d, by Γred(n, n, . . . , n).

We show our claim by induction on d. The base case holds since
the d-dimensional grid with d = 0 has a single vertex. If d > 0,
let M be the perfect matching between the first and second slices
of Γred(n, n, . . . , n) in the direction orthogonal to the first axis. By
Lemma 3.7, contracting the (disjoint) pairs of endpoints of M can be
done in a partial 4d-sequence, and results in Γred(n−1, n, . . . , n). After
n− 2 successive applications of Lemma 3.7, we obtain Γred(n, . . . , n)
with only d− 1 coordinates, and conclude. �

There is a 4-sequence for (2-dimensional) grids, as shown in Fig-
ure 5.1. This sequence is optimal for the 7× 7 grid (and above) [1].

While the known upper bounds for the twin-width of Kt-minor-free
graphs are quite loose, the twin-width of planar graphs, and more
generally of graphs of bounded genus (two families excluding some
fixed minors) is better understood. The class of planar graphs has
twin-width at most 8 [54] and at least 7 [61], and the class of graphs
with Euler genus g has twin-width Θ(

√
g) [62].

2. SUBDIVISIONS, GRIDS, AND EXPANDERS 43

Figure 5.1. A 4-sequence for planar grids.

Even some classes of expanders, which we will informally and
approximately define here as bounded-degree n-vertex graphs with
treewidth Θ(n), may have bounded twin-width. This is somewhat
surprising since these classes are thought as “maximally unstructured”
among sparse graphs.

A 2-lift of a graph G is a graph G′ on twice as many vertices, built
by duplicating every vertex v ∈ V (G) into two copies v1 and v2, and
for every edge vw ∈ E(G), adding to E(G′) either the parallel edges
v1w1 and v2w2 or the crossing edges v1w2 and v2w1. The choice, for
each edge e of G, of yielding parallel edges or crossing edges in G′ is
called the signing of e. See Figure 5.2 for an example of a 2-lift.

Figure 5.2. An example of a 2-lift of K4.

For n a power of 2, performing a sequence of log n− 2 randomly-
signed 2-lifts starting on K4 almost surely yields an n-vertex ex-
pander [11]. The next result shows that cubic expanders can have
bounded twin-width.

Fact 5.1. Every graph obtained from K4 by performing a sequence of
2-lifts has twin-width at most 6.

sketch. Simply rewind the sequence of 2-lifts (it can be seen as
a split sequence if all edges are turned red) and apply Lemma 3.7. �

The Margulis–Gabber–Galil expander family [46], in which the n-th
graph has vertex set Z/nZ× Z/nZ and every vertex (x, y) is linked to

(x± 2y, y), (x± (2y + 1), y), (x, y ± 2x), (x, y ± (2x+ 1)),

44 5. WHICH CLASSES HAVE BOUNDED TWIN-WIDTH?

also has bounded twin-width. This can be shown by repeatedly ap-
plying Lemma 3.7 to the partition of Z/niZ × Z/niZ into “squares”
{(x, y), (x+1, y), (x, y+1), (x+1, y+1)} with n1 = n, and ni+1 = dni/2e
for i going from 1 to blog nc − 1.

By Theorem 9.1, a graph family built by picking, for every positive
integer n, an n-vertex subcubic graph uniformly at random, has almost
surely unbounded twin-width. However, we do not know of an explicit
construction of bounded-degree expanders with unbounded twin-width;
see Section 4.2.

3. Intersection graphs

We recall that the intersection graph G of a collection O of sets
has vertex set O and an edge between two elements of O whenever
they intersect. The collections O is called the representation of G, or
geometric representation if the sets of O have some geometric nature.

We now need the notion of half-graphs. For us,1 a half-graph is
a graph on vertex set A]B with A = {a1, . . . , ah} and B = {b1, . . . , bh}
such that aibj is an edge whenever i 6 j, and each of A and B is a clique
or an independent set; see left of Figure 5.3.

A B 1 2 3 4 5 4 5

Figure 5.3. Half-graph and 2-sequence for a path of half-graphs.

A path of half-graphs of height h and length ` is a graph on vertex
set A1] . . .] A` with Ak = {ak1, . . . , akh} for every k ∈ [`], such that
for every k ∈ [`− 1], aki a

k+1
j is an edge whenever i 6 j. The path of

half-graphs has no other edge, except that possibly some of the sets Ak
are cliques. See middle of Figure 5.3 for an illustration, disregarding
the color of the bottom path of red edges. We can now refine the
implicit upper bound on the twin-width of unit interval graphs, seen
on Chapter 4, to the exact value.

1There are many variations on the definition of half-graphs.

3. INTERSECTION GRAPHS 45

Theorem 5.5 ([20]). The class of unit interval graphs has twin-
width 2.

sketch. It can be shown that every n-vertex unit interval graph
is an induced subgraph of the path of half-graphs Hn of height and
length n where A1, . . . , An all are cliques. Figure 5.3 is a proof by
picture that the latter graphs have twin-width at most 2. One can then
argue that Hn has twin-width exactly 2, and is itself an unit interval
graph. �

Similarly introducing cycles of half-graphs, one can prove that the class
of unit circular-arc graphs, i.e., intersection graphs of unit-length arcs
on a circle, has twin-width 3.

The symmetric difference of a graph G, denoted by sd(G), is the
maximum for every induced subgraph G′ of G, of the minimum for
every pair u 6= v ∈ V (G′) of
|{w ∈ V (G′) \ {u, v} : w is adjacent to exactly one of u, v}| .

We already noticed that the first contraction in a sequence (for the
induced subgraph G′) implies the following.

Observation 5.2. For every graph G, tww(G) > sd(G).

Like the rook graphs2 and Paley graphs3, permutation graphs can
be shown to have unbounded symmetric difference, hence unbounded
twin-width. The grid permutation on n2 elements is the permutation σ
such that σ((a− 1)n+ b) = (b− 1)n+ a, for every a, b ∈ [n].

Theorem 5.6 ([21]). The class of all permutation graphs has
unbounded twin-width.

Proof. For every positive integer n, consider the permutation
graph G for the grid permutation on n2 elements, deprived of the last
element n2. We conclude by Observation 5.2 since sd(G) = n− 1. �

A proper permutation graph class is any hereditary subclass of
permutation graphs that is not the class of all permutation graphs.
The following theorem is the graphic counterpart of the fact that any

2With vertex set E(Kt,t) and an edge between every pair of incident edges.
3With vertex set Fq for q a prime power with q ≡ 1 [4], and an edge between

every pair whose difference is a nonzero square of Fq.

46 5. WHICH CLASSES HAVE BOUNDED TWIN-WIDTH?

proper permutation class has a bounded width as defined by Guillemot
and Marx [49]; see Section 2 of Chapter 1.

Theorem 5.7 ([25]). Any proper permutation graph class has
bounded twin-width.

For every permutation σ on n-elements, let G(σ) be the 3n-vertex
graph with vertex set A]B] C, A = {a1, . . . , an}, B = {b1, . . . , bn},
C = {c1, . . . , cn}, and edge set

{aibj : j < i} ∪ {bicj : j < σ(i)}.
A representation of G(σ) by geometric objects O is such that the
intersection graph of O is isomorphic to any graph obtained from G(σ)
by possibly turning some of A,B,C into cliques.

Interval graphs are the intersection graphs of intervals on the
real line. Unit disk graphs (segment graphs, unit segment graphs,
respectively) are intersection graphs of disks of equal radius (segments,
segments of equal length, respectively) in the plane. We prepend the
adjective axis-parallel if all the segments can be drawn parallel to the
axes.

Theorem 5.8 ([21]). The classes of interval graphs, unit disk
graphs, and axis-parallel unit segment graphs all have unbounded
twin-width.

sketch. All these classes can represent G(σ) for any permuta-
tion σ, as shown in Figure 5.4. Then, one can finish the proof in two dif-

A B C

A

B
C

A

B

C

Figure 5.4. Representations of G(σ) for σ = 41532.

ferent ways. One can show that the class {G(σ) : σ is a permutation}
is not small, and invoke Theorem 9.1.

Alternatively, one can lower bound the twin-width of G(σ) for the
grid permutation on n2 elements. Considering the first moment in the

4. SPARSE CLASSES 47

contraction sequence where a vertex of B is contracted with another
vertex/part, one can see that tww(G(σ)) = Ω(n). �

The large cliques in the representation of G(σ) with unit disks, and
the large bicliques in the one with segments are both necessary. It
can indeed be established that unit disk graphs without Kt [25], and
segment graphs without Kt,t subgraph [15] have twin-width at most
some function of t. The former is shown by exhibiting a partial
contraction sequence to a red grid with diagonals, whose twin-width
can be bounded similarly to the grid. The latter has a more involved
proof whose base strategy is to transduce the class from the class of
planar graphs, and invoke Theorem 8.1.

A more detailed investigation of the twin-width of classes of intersec-
tion or visibility graphs can be found in the following papers [15, 4, 55].

4. Sparse classes

We use the adjective sparse to qualify a class as an informal umbrella
term encompassing classes of graphs with subquadratically many edges.
Mainly, sparse classes will refer to either of four families of increasing
sparsity: weakly sparse classes, classes of bounded degeneracy, classes
of bounded expansion, and classes of bounded degree.

4.1. Weakly sparse classes. Classes of bounded twin-width that
are additionally weakly sparse can still be “complex” and seemingly
“unstructured,” as long subdivisions of every graph, and some classes
of expanders fit in this category; recall Section 2. More generally4 than
the Ω(log n)-subdivisions of every n-vertex graph, classes of bounded
queue number and of bounded stack number both have bounded twin-
width. The queue and stack numbers of a graph G are defined as the
minimum number of parts to partition E(G) in, so that there is a linear
order ≺ on V (G) that makes each part be a queue (for queue number)
or a stack (for stack number). A queue (resp. stack) is such that there
is no uv, xy ∈ E(G) with u ≺ x ≺ y ≺ v (resp. u ≺ x ≺ v ≺ y).

Theorem 5.9 ([21]). Every class with bounded queue number or
with bounded stack number has bounded twin-width.

sketch. The definition of queue and stack numbers readily implies
that the corresponding classes have bounded mixed number (and even,
grid number). �

4Indeed, the queue and stack numbers of long subdivisions are also bounded.

48 5. WHICH CLASSES HAVE BOUNDED TWIN-WIDTH?

Notwithstanding the persistent complexity of weakly sparse classes
of bounded twin-width, we will now see an interesting collapse down to
classes of bounded degeneracy, and even of bounded expansion. This
is also the occasion for a resurgence of the grid number, introduced
in Chapter 4, as the sparse counterpart of the mixed number.

The degeneracy of a graph G is the maximum for every (induced)
subgraph G′ of G of the minimum degree among vertices in G′. A graph
class C has bounded expansion if for every natural `, the class of graphs
whose `-subdivision is a subgraph of a member of C has bounded
degeneracy [68].

Theorem 5.10 ([21]). Let C be a graph class of bounded twin-
width. The following are equivalent:
(1) C is weakly sparse;
(2) C has bounded grid number;
(3) C has bounded degeneracy;
(4) C has bounded expansion;
(5) The subgraph closure Sub(C) has bounded twin-width.

sketch. (1) ⇒ (2). By Theorem 4.2, every graph G ∈ C has an
adjacency matrix with low mixed number. If this matrix were of high
grid number, it would admit a large division with nonzero cells, most
of which not mixed, and hence horizontal or vertical. From them, one
could extract a large biclique, contradicting that C is weakly sparse.

(2)⇒ (3). This is a reformulation of the Marcus–Tardos theorem.
(3)⇒ (1). This holds since large bicliques have large degeneracy.
(2) ⇒ (5). Indeed, taking subgraphs can only decrease the grid

number, which eventually ensures bounded twin-width.
(5)⇒ (1). This is because the subgraph closure of a large biclique

contains all bipartite graphs of the same size, which is a family of large
twin-width.

(4)⇒ (3). By definition of bounded expansion for ` = 0.
At this point, we know that (1), (2), (3), (5) are all equivalent, and

implied by (4). We finally show that (3) ∧ (5)⇒ (4). For every `, the
class D of `-subdivisions of graphs in Sub(C) can be transduced from
Sub(C); of bounded twin-width by (5). Thus by Theorem 8.1, D has
bounded twin-width. Besides, D preserves the bounded degeneracy of
C. So C has bounded expansion. �

4. SPARSE CLASSES 49

4.2. Bounded-degree classes. One can go one step further up
the sparsity ladder, and exclude vertices of large degree. Still, bounded-
degree classes of bounded twin-width can be fairly complex, as some
expander classes and the long subdivisions of all subcubic graphs persist.
One notable feature of bounded-degree graphs, nonetheless, is that
a closely tied parameter to twin-width can be defined without the need
for trigraphs or red edges. It is based on the fact that, when performing
contractions, the number of black neighbors of a vertex never increases.

Observation 5.3. Every graph G of maximum degree ∆ and twin-
width d admits a contraction sequence all total graphs of which have
maximum degree at most ∆ + d.

Therefore, one can equivalently work with the variant of twin-width
based on vertex contractions in graphs. The new width is simply the
overall maximum degree in a sequence of (graphic) vertex contractions.

While we know that there are classes of bounded-degree graphs
with unbounded twin-width by a counting argument (see Theorem 9.1),
no explicit such family has been found so far. By explicit, we mean to
ask for an infinite family of graphs H1, H2, . . . of bounded-degree, and
a proof that for every i ∈ N, tww(Hi) > i not resorting to Theorem 9.1.

CHAPTER 6

Other Parameters based on Contraction Sequences

What if we imposed different conditions on the red graphs of a con-
traction sequence other than bounding their maximum degree? One
could be tempted,1 for instance, to instead impose that all the red
graphs have, say, bounded treewidth. This is unpromising as every
graph admits a contraction sequence each red graph of which has
treewidth at most 1. Indeed, if v1, . . . , vn are its vertices, the parti-
tion sequence {{v1}, . . . , {vn}}, {{v1, v2}, {v3}, . . . , {vn}}, {{v1, v2, v3},
{v4}, . . . , {vn}}, . . . , {{v1, . . . , vn}} is such that each red graph is the
disjoint union of a star (i.e., a tree with at most one internal node)
and isolated vertices (i.e., vertices of degree 0).

However, for any parameter p that is unbounded on the class of
stars, it may be interesting to consider the reduced parameter p↓ defined
on every graph G as the minimum p↓(G) among every contraction
sequence G = Gn, . . . , G1 of maxi∈[n] p(R(Gi)). In particular, ∆↓ is
another notation for tww. In fact we have already encountered a similar
kind of alternative parameter to twin-width in the oriented twin-width.
The only small difference is that the oriented twin-width was defined
via the directed red graphs instead of the red graphs. We will now stick
to the red graphs, and consider several reduced parameters. As stars
are very simple graphs, we will exclusively consider parameters p↓ such
that tww v p↓, with p growing at least linearly in ∆.

The motivation then is not, as hinted by the footnote, to generalize
twin-width but on the contrary to particularize it. In Section 1 we
realize that clique-width and its linear counterpart are tied to some
reduced parameters. Section 2 introduces a hierarchy of novel reduced

1Arguably, at this point, the only motivation of twin-width we have seen outside
the overview of Chapter 1 is that classes of bounded twin-width are fairly general
(Chapter 5) while χ-bounded (Theorem 3.2). In the next chapters, we will see many
more applications, for efficient algorithms (Chapter 7), logical characterizations
and properties (Chapter 8), adjacency labeling schemes (Chapter 9), enumerative
combinatorics (Chapter 10). Anticipating these applications, one may legitimately
want to extend them to other families of graph classes based on contraction
sequences.

50

1. CHARACTERIZATION OF CLASSICAL WIDTH PARAMETERS 51

(a) Component twin-width. (b) Total twin-width.

Figure 6.1. Trigraphs of low component twin-width and low to-
tal twin-width, in seemingly sparse graphs, where these reduced
parameters are tied to treewidth and pathwidth, respectively.

parameters ranging from clique-width up to twin-width, gives some
motivations for their study, and briefly surveys some of their properties.
In Section 3 we show that this hierarchy is strict.

1. Characterization of classical width parameters

In this section, we recast the classical width invariants defined and
developed in the last fifty years, in the language of contraction sequences.
Let ?(G) be the maximum size among connected components ofG. Note
that ?(G) > ∆(G) + 1. We call component twin-width the reduced
parameter ?↓. Remarkably, component twin-width is functionally
equivalent to boolean-width, hence to clique-width and rank-width,
and within weakly sparse classes, to treewidth; see Figure 6.1a.

Theorem 6.1 ([24]). Component twin-width and boolean-width
are functionally equivalent.

Proof. The direction ?↓ v boolw is actually proven in Theorem 5.1.
Indeed, the reader can observe that we bound the maximum degree of
the red graphs by arguing they have no connected component larger
than a given (exponential) bound in the boolean-width.

We thus only need to argue that boolw v ?↓. Let, for any graph G,
Pn, . . . ,P1 be a partition sequence of G such that ?(R(Pi)) 6 ?↓(G)
for each i ∈ [n]. We initialize an eventual tree layout as the star Tn,
rooted at its center, whose n leaves are bijectively labeled by V (G).
Thus trivially, for every edge e ∈ E(Tn), there are only few distinct

52 6. OTHER PARAMETERS BASED ON CONTRACTION SEQUENCES

neighborhoods from one side of the bipartition (Xe, Ye) to the other.
However, Tn is not a binary tree so does not qualify as a tree lay-
out. Following the partition sequence, we define a sequence of trees
Tn, Tn−1, . . . , T1 such that T1 (deprived of its root) is a tree layout.

Let P, P ′ be the two merged parts when going from Pi to Pi−1,
and C be the connected component of P ∪ P ′ in R(Pi−1). Let CP
(resp. CP ′) be the connected component of P (resp. P ′) in R(Pi). Note
that C is made of CP , CP ′ (which can be equal) together with at most
?↓(G)− 1 other connected components of R(Pi). By induction, these
h 6 ?↓(G) + 1 connected components each labels the leaves of a binary
subtree Uj (with j ∈ [h]) rooted at a child of the root of Ti. We take
any rooted binary tree U with h leaves, for instance a balanced one,
identify each leaf with the root of a distinct Uj, and make the root of
U a child of Ti. We finally remove the previous occurrence of each Uj
(i.e., the one that is a child of the root), and obtain Ti−1. In T1, we
delete the initial root, and call the resulting rooted tree T .

As {V (G)} is the unique vertex of R(P1), T is indeed binary,
hence a tree layout of G. By induction, for every edge e ∈ E(T),
the bipartition (Xe, Ye) is such that there are at most 2?

↓(G) distinct
neighborhoods of subsets of Xe (resp. Ye) in Ye (resp. Xe). �

For what comes next we have to very slightly amend our red graphs:
Every non-singleton part has a red self-loop on it. This does not change
much the twin-width nor the other parameters based on contraction
sequences seen so far (oriented twin-width and component twin-width).
If we decide to disregard the red loops when counting the red degree,
this does not change the twin-width at all, and offsets it by at most 1,
otherwise.

If G is a graph possibly having self-loops, let e(G) be its total
number of edges. Let e⇓(G) be the minimum, among every contrac-
tion sequence G = Gn, . . . , G1, of maxi∈[n]e(R◦(Gi)), where R◦(Gi)
represents the amended red graph with self-loops. We use a different
arrow symbol to be consistent with our generic definition of p↓. The
reduced parameter e⇓, which we call total twin-width, is tied to the
linear variants of boolean-width, clique-width, and rank-width, and
within weakly sparse classes, to pathwidth; see Figure 6.1b.

Theorem 6.2 ([24]). Total twin-width and linear boolean-width
are functionally equivalent.

2. NEW PARAMETERS BETWEEN CLIQUE-WIDTH AND TWIN-WIDTH 53

sketch. To upper bound total twin-width as a function of linear
boolean-width, follow Theorem 5.1 in the particular case when the tree
layout is a comb. This yields a contraction sequence where, at any
given point, all the red edges (including the self-loops) lie in a single
subtree of bounded size. The converse is obtained by revisiting the
proof of Theorem 6.1. If the contraction sequence witnesses low total
twin-width, then the built tree layout can be made a comb. �

2. New parameters between clique-width and twin-width

The reduced parameters of the previous section can be thought
as the bottom of a hierarchy interpolating between clique-width and
twin-width. There are indeed many parameters p such that ∆ v p v ?.
The corresponding reduced parameter p↓ then sits between clique-width
and twin-width.

The bandwidth of an n-vertex graph G, denoted by bandw(G), is
the minimum of maxuv∈E(G) |f(u)−f(v)| taken among every bijection f
from V (G) to [n]. Its cutwidth, denoted by cutw(G), is the minimum
of maxi∈[n] |{uv ∈ E(G) : f(u) 6 i < f(v)}| also taken among all
the bijections f from V (G) to [n]. More intuitively, bandwidth is
about injectively labeling the vertices of a graph with integers so as to
minimize the maximum stretch of an edge, i.e., difference of its two
endpoints, whereas cutwidth is about linearly ordering its vertex set,
say on a horizontal line, so as to minimize the maximum number of
edges crossing any vertical line.

For every graph G, d∆(G)/2e 6 bandw(G) 6 ?(G)− 1, whereas
d∆(G)/2e 6 cutw(G) 6 ∆(G) · bandw(G) 6 2 bandw(G)2. Therefore,

∆ v (tw + ∆) v cutw v bandw v ?,

where (tw+ ∆)(G) is simply the sum of the treewidth of G with its
maximum degree. It is indeed known that cutw ≡ (pw+ ∆). Actually
these four inclusions are strict, so

∆ @ (tw + ∆) @ cutw @ bandw @ ?,

as evidenced by grids, full binary trees, subdivisions of the combs,
and paths.2 We obtain the three new parameters sandwiched between
clique-width and twin-width

tww = ∆↓ v (tw + ∆)↓ v cutw↓ v bandw↓ v ?↓ ≡ cw.
We will see in Section 3 that these inclusions too are strict.

2The second and third separating examples require more thought.

54 6. OTHER PARAMETERS BASED ON CONTRACTION SEQUENCES

A motivation for studying this hierarchy of reduced parameters
is to better understand and locate “phase transitions” between the
more structured but less general classes of bounded clique-width and
the more widespread but less tamed classes of bounded twin-width.
For example we have seen, on the one hand, that proper minor-closed
classes have bounded twin-width (see Theorem 4.8). On the other
hand, the class of all grids, which is K5-minor-free, has unbounded
clique-width. Which is the largest reduced parameter still bounded on
grids? Among the presented ones, we know the answer: it is bandw↓.

Theorem 6.3 ([26]). The Kt-minor-free graphs have bounded
reduced bandwidth.

This shows how structured we can have the red graphs in contraction
sequences of bounded width of Kt-minor-free graphs. They can be
made subgraphs of the constant power3 of paths, which characterizes
bounded bandwidth.

Let us take another example. We know that there are classes of
expanders of bounded twin-width, but none of bounded clique-width.
Where exactly do we lose every expander class? So far, we only have
a partial answer.

Theorem 6.4 ([26]). Every expander class has unbounded reduced
bandwidth.

It is likely that Theorem 6.4 holds for (tw+ ∆)↓, but this remains
conjectural. The presence of expanders in a class C is often an ob-
stacle to fast exact algorithms or good approximation algorithms de-
signed on C. Determining a smallest parameter p such that classes of
bounded p↓ exclude expanders would tell us how close to twin-width
one can be while falling in a qualitatively simpler regime.

There is also an interesting interplay between reduced parame-
ters and subdivisions. We saw in Chapter 5 that any (> 2dlog ne)-
subdivision of any n-vertex graph has twin-width at most 4, making
twin-width, unlike the classical width parameters, a non-topological
invariant. When trying to solve a combinatorial problem faster on
graphs of bounded twin-width than on general graphs, this comes in
the way. Indeed many graph problems, like finding an independent
set of maximum size or computing the diameter, are almost as hard
to solve exactly on a graph G as they are on any even subdivision
of G. Nonetheless, as we will see in Chapter 7, contraction sequences

3where one links vertices at distance at most a fixed constant

3. SEPARATION OF THE REDUCED PARAMETERS 55

of low width allow fixed-parameter tractable algorithms on problems
definable in first-order logic, and improved approximation algorithms.

Topological reduced parameters and their associated contraction
sequences, despite being less general than twin-width, would have
a wider range of algorithmic applications. But do they exist apart from
clique-width? We wonder for each q among (tw+ ∆)↓, cutw↓, bandw↓
if there is a function f : N→ N such that the (> f(n))-subdivisions of
all n-vertex graphs have bounded parameter q. The answer is positive
for all three parameters, with a logarithmic function f for (tw+ ∆)↓

(in fact, the same as for twin-width), and a polynomial function f for
cutw↓ and bandw↓ [26].

This motivates the introduction of stretch-width, denoted by stw,
which further constrains reduced bandwidth by imposing that the upper
bound on the bandwidth of every red graph is realized by a single
linear arrangement of the original vertices (see [18] for the technical
definition). This seemingly small difference between stretch-width and
reduced bandwidth is key. Even if stretch-width is still not topological,
only exponentially long subdivisions have bounded stretch-width [18],
which no longer precludes polynomial-time algorithms when given
witnesses of low stretch-width, on otherwise NP-hard graph problems.
Furthermore planar graphs, and more specifically grids, on which
problems beyond first-order model checking tend to be intractable,
have unbounded stretch-width.

As stw @ cw [18], this makes stretch-width a good candidate for
a generalization of clique-width still allowing parameterized algorithms
for a large fragment of monadic second-order model checking. And
indeed, this was established within bounded-degree graphs [18].

3. Separation of the reduced parameters

In this section, we establish that none of our reduced parameters
are functionally equivalent. We give a generic way of building families
with bounded p↓ but unbounded q↓ from families with bounded p and
unbounded q, when p and q are graph parameters respecting some mild
properties. This works by forcing a particular red graph to appear in
any contraction sequence of low width. We then set these particular
red graphs as those with bounded p and unbounded q.

For any graph G, let red(G) be the trigraph with red graph G, and
no black edge.

Lemma 6.1 ([26], adapted from [10]). For any connected graph H of
maximum degree d with no pair of twins, there is a graph G such that

56 6. OTHER PARAMETERS BASED ON CONTRACTION SEQUENCES

• G admits a partial d-sequence to red(H) such that all connected
components of red graphs of the sequence are isomorphic to subgraphs
of H, and
• every |V (H)|-sequence of G goes through a trigraph that admits
red(H) as an induced subtrigraph.

sketch. Assume that V (H) = [|V (H)|]. To build G, replace every
vertex v of H by a clique Cv = {av1, . . . , avh} with h := |V (H)||V (H)| +
|V (H)|, and every edge vw ∈ E(H) with v < w by a half-graph
between Av and Aw consisting of all the edges avi awj such that i 6 j.

The partial sequence from G to H is as follows. For i going from 1
to h − 1, contract avi and avi+1 for every v ∈ V (H), and still denote
by avi+1 the resulting vertex. It can be seen that the non-singleton
connected components of the red graphs are isomorphic to subgraphs
of H; actually, H itself after the first iteration is completed.

For the second item, we first notice that, while each Av has more
than |V (H)| vertices, contractions have to be done within cliques Av,
since H has no pair of twins. If contractions have happened in each Av,
the current red graph does admit H as induced subtrigraph. We
conclude since getting down to |V (H)| vertices in one Av requires, in
a |V (H)|-sequence, to have contracted in every clique Av′ . This last bit
is proven with the same argument as in Theorem 5.3, and requires H
be connected. �

To show that the inclusions among our reduced parameters are
strict, namely,

∆↓ @ (tw + ∆)↓ @ cutw↓ @ bandw↓ @ ?↓,

we simply invoke Lemma 6.1 with the graph H ranging over the set of
grids, full binary trees (which we 1-subdivide to remove twins), subdi-
visions of combs, and paths. The four obtained families of graphs G
make the four separations. Indeed if p↓, q↓ is the pair to separate, with
p @ q, the lemma ensures that q↓ is unbounded, and that we have
a partial sequence with red graphs of bounded p from G to red(H). We
only need to require that p can only decrease on subgraphs and when
isolated vertices are added, and that q can only decrease on induced
subgraphs, and grows with the maximum degree. We finally check that
red(H) admits a contraction sequence all red graphs of which have
• bounded maximum degree for the grids;
• bounded (tw+ ∆) for the 1-subdivision of the full binary trees;
• bounded cutwidth for the comb subdivisions;
• bounded bandwidth for the paths.

CHAPTER 7

Algorithmic Applications

In this chapter we see how to solve problems faster, or approximate
them better, on graphs of bounded twin-width as compared to general
graphs. These algorithms require that a d-sequence of the input graph
be given. For almost all1 the classes that we have shown to be of
bounded twin-width, we also know how to find a contraction sequence
of constant width in polynomial time. Admittedly, this may worsen
the running time of our linear algorithms.

But more problematically, it is still an open question—the most
pressing one on this very topic—whether twin-width can be efficiently
approximated. The humblest version of this question is as follows.
Are there functions f, g and an algorithm that, on input graphs G of
twin-width d, outputs an f(d)-sequence of G in time |V (G)|g(d)? It is
known, however, that deciding if the twin-width of a graph is at most 4
is NP-complete [9]. But the previous question with, say, f(d) = 2d is
wide open.

Section 1 presents fixed-parameter tractable algorithms for monadic
second-order model checking in graphs of bounded component twin-
width, and for first-order model checking in graphs of bounded twin-
width. These algorithms are based on dynamic programming along the
contraction sequences. In Section 2, we get approximation algorithms
for some of the classic combinatorial optimization problems, Min
Dominating Set, Max Independent Set, Min Coloring, with
improved approximation factors over what can be done in general
graphs. The common ingredient is the use of balanced contraction
sequences. In Section 3, twin-decompositions are leveraged to compute
shortest-path trees in n-vertex m-edge graphs of low twin-width within
time O(n log n), possibly sublinear in m.

Chapter 10 contains more algorithms on binary structures of low
twin-width, most of which do not require a given contraction sequence,
as well as algorithms on classes of unbounded twin-width benefiting
from twin-width theory.

1The only exception is the construction of expanders based on 2-lifts.

57

58 7. ALGORITHMIC APPLICATIONS

1. Parameterized algorithms

In this section, when claiming Od(n) running times, we assume
that the d-sequence is given in some read-only input tape, and permits
g(d, r)-time access to the subtrigraph H induced by the distance-r
neighborhood in the red graph of any newly formed vertex/part, with
g(d, r) = O(|V (H)|2). Alternatively, we could simply assume that only
these induced subtrigraphs are part of the input, as their total size is
g(d, r) · n. If we are only given the sequence of pairs to contract, an
extra O(m) additive term is needed to actually compute these induced
subtrigraphs, where m denotes the number of edges of the input.

1.1. In classes of bounded component twin-width. In this
subsection and the next, the general result on model checking is pre-
ceded by a particular case. This serves two purposes: presenting the
ideas in their simplest form, and showcasing that algorithms based on
contraction sequences need not be slow. The latter is worth mention-
ing in light of the implicit tetrational running times of Theorems 7.2
and 7.4. The 3-Coloring problem asks if the input graph can be
properly colored using at most three colors.

Theorem 7.1 ([24]). There is an algorithm solving 3-Coloring
in time O(7dd2n) in n-vertex graphs given with a partition sequence
witnessing that their component twin-width is at most d.

Proof. Let G be the input graph, and Pn, . . . ,P1 be a partition
sequence of G. A profile of a connected component C of R(Pi) is
a function λ : V (C)→ 2{1,2,3}\{∅} such that there is a proper 3-coloring
c of G[

⋃
P∈V (C) P] satisfying c(P) = λ(P) for every P ∈ V (C). Thus,

G is 3-colorable if and only if the unique connected component ofR(P1),
{V (G)}, admits a profile.

We determine if the latter holds by maintaining, via dynamic
programming, every profile of every connected component for each
red graph ranging from R(Pn) to R(P1). As R(Pn) is edgeless, the
vertex sets of its connected components are of the form {{v}} for each
v ∈ V (G). Each has three profiles: λ : {v} 7→ {1}, λ : {v} 7→ {2},
and λ : {v} 7→ {3}. Now we only need to describe how all the profiles
of R(Pi) can be computed, knowing all the profiles of R(Pi+1).

Say, Pi results from the fusion of P, P ′ ∈ Pi+1, and let C be the
connected component of R(Pi) containing the part P ∪ P ′. Since
|V (C)| 6 d, at most d + 1 connected components of R(Pi+1), say,

1. PARAMETERIZED ALGORITHMS 59

C1

C2

C3

2

2,3

1,3

3

1,2

3
1,2

C1

C2

C3

2

2,3

1,3
3

1

2

7
C1

C2

C3

2

2,3

1,3
1

3

2

3

1,2
1,2

2
1,3

3

2

1,2

3
1,2

1,2,3

C

Figure 7.1. Example of a profile of connected component C1 (top
left), compatible profiles of C1, C2, C3 (top right) yielding a profile
of C (bottom right), and incompatible profiles (bottom left).

C1, . . . , Ch, gather to form C; see Figure 7.1. Let Xj be the computed
set of profiles of Cj, for each j ∈ [h].

For each (λ1, . . . , λh) ∈ X1 × . . .×Xh, let λ′ =]j∈[h]λj. If no pair
P1, P2 ∈ dom(λ′) linked by a black edge is such that λ′(P1)∩λ′(P2) 6= ∅,
then we add λ to the profiles of C, where λ has domain V (C), and
is defined by λ(Q) = λ′(Q) for every Q ∈ dom(λ′) \ {P, P ′}, and
λ(P ∪ P ′) = λ′(P) ∪ λ′(P ′). Otherwise, we simply discard λ′.

In addition, we can store a witnessing proper 3-coloring cλ for each
profile λ, and eventually return cλ for a profile λ of R(P1), if one
exists. The algorithm is sound, since the way we filter out unions of
profiles, the coloring]j∈[h]c

λj cannot have a monochromatic edge. It is
complete, as one can consider the eventual aggregation in a single part
of the n profiles λ1 : {v1} 7→ {c(v1)}, . . . , λn : {vn} 7→ {c(vn)} where
V (G) = {v1, . . . , vn} and c is a proper 3-coloring of G.

At each contraction, we consider at most 7d+1 functions λ′. For
each, checking the absence of black edges between intersecting sets of
colors takes O(d2) time. Thus the overall running time is O(7dd2n),
possibly much lower than the number of edges of G. �

We now extend Theorem 7.1 to the whole monadic second-order
model checking. We fix some finite binary signature Σ, and denote
by MSOk(Σ) the set of MSO sentences over Σ with quantifier rank

60 7. ALGORITHMIC APPLICATIONS

at most k. Here, we call rank-k type of a Σ-structure G the set of
sentences

mso-tpk(G) := {ϕ ∈ MSOk(Σ) : G |= ϕ}.
We define FOk(Σ) and fo-tpk(G) analogously with first-order logic.
We fix some integer d such that the component twin-width of G is
at most d, witnessed by the partition sequence Pn, . . . ,P1. Let Σ+d be
Σ augmented with d unary relation symbols. The component rank-k
type of a Σ-structure H whose domain is partitioned by U1, . . . , Ud is
the set of sentences

ctpk(H,U1, . . . , Ud) := {ϕ ∈ MSOk(Σ
+d) : H,U1, . . . , Ud |= ϕ}.

We revisit the scheme of Theorem 7.1 by maintaining component
rank-k types instead of mere 3-colorings. Up to logical equivalence,
the number of rank-k types over a finite signature is tetrational, and
allowing repetitions they can be listed in tetrational time; see for
instance [64, Proposition 7.5].

For i ∈ [n− 1], let Di be the vertex set of the connected component
in R(Pi) containing the part stemming from the contraction in Pi+1.
Our goal is to compute the component rank-k type ofHi := G[

⋃
P∈Di P]

partitioned by Di, for every i ∈ [n− 1]. The component rank-k type of
singletons is easy to compute, and that ofD1 coincides with mso-tpk(G).
Thus our task boils down again to deriving the component rank-k types
of Hi, Di based on those previously computed.

Here and in the next subsection, we rely on the Ehrenfeucht–Fraïssé
game characterizations of types. Let us start with the variant for first-
order logic. In the Ehrenfeucht–Fraïssé game, or EF game, two players
Spoiler and Duplicator confront each other over two Σ-structures A
and B, with domain A and B, respectively. They play a succession of
rounds, where Spoiler wants to show that A and B are not isomorphic,
whereas Duplicator tries to argue the opposite. At the i-th round,
Spoiler chooses a structure A or B, and picks one element in it, say
ai ∈ A (or bi ∈ B). Duplicator answers by picking an element in the
other structure, say bi ∈ B (resp. ai ∈ A). If after k rounds, ai 7→ bi
(for i ∈ [q]) is still an isomorphism between the induced substructures
A[a1, . . . , ak] and B[b1, . . . , bq], Duplicator has survived k rounds of the
EF game.

The MSO-EF game is similar to the EF game, but Spoiler can
additionally decide to play a subset of A (resp. of B), to which Du-
plicator answers with a subset of B (resp. of A). Now after k rounds,
two tuples of e elements have been played, say (a1, . . . , ae) ∈ Ae and

1. PARAMETERIZED ALGORITHMS 61

(b1, . . . , be) ∈ Be, as well as two tuples of s sets, say (A1, . . . , As) ∈ (2A)s

and (B1, . . . , Bs) ∈ (2B)s, with k = e + s. Duplicator has survived
these k rounds if ai 7→ bi (for i ∈ [e]) is an isomorphism between
(A, A1, . . . , As)[a1, . . . , ae] and (B, B1, . . . , Bs)[b1, . . . , be].

We write A ≡FO
k B (resp. A ≡MSO

k B) if Duplicator has a strategy
in the EF game (resp. MSO-EF game) to survive k rounds. The
Ehrenfeucht–Fraïssé theorem states that this is equivalent to having
equal rank-k types.

Lemma 7.1 ([64], Theorem 3.9 and Corollary 7.8). Let A and B be
two Σ-structures, and L ∈ {FO,MSO}. Then, A and B satisfy the
same sentences of Lk(Σ) if and only if A ≡Lk B.

We can now indicate how the following theorem is obtained.

Theorem 7.2 ([24]). For any binary signature Σ, monadic second-
order model checking over Σ can be solved in time f(d, k) · n on
n-vertex Σ-structures given with a partition sequence witnessing
component twin-width d, and sentences of quantifier rank k, for
some tetrational function f .

sketch. Let us recall that our goal is to determine the component
rank-k type of Hi, Di, for i going from n− 1 down to 1. Let P ∪ P ′
be the newly created part in Pi. We observe that Di results from the
gathering of up to d+ 1 connected components C1, . . . , Ch, where for
every p ∈ [h], V (Cp) is some Dj with j > i. Let G′ be the substructure
of G induced by {v : p ∈ [h], v ∈ Q ∈ V (Cp)}; see Figure 7.2.

B

P P ′

B

P P ′

B

P P ′
C1, τ1

C2, τ2

C3, τ3

Figure 7.2. The Σ-structure G′ partitioned by the parts of the
connected components C1, C2, C3 in R(Pi+1), unifying to component
Di after the merge of P, P ′.

62 7. ALGORITHMIC APPLICATIONS

For each p ∈ [h], we set

Jp := G

 ⋃
Q∈V (Cp)

Q

 and Pp := {Up
1 , . . . , U

p
d},

the partition in the parts of V (Cp), with Up
z = ∅ when z > |V (Cp)|.

Assume that there is a Σ-structure H, a partition P of V (H), and
a trigraph isomorphism ψ from G′/{Q : p ∈ [h], Q ∈ V (Cp)} to H/P ,
such that for each p ∈ [h], Jp,Pp has the same component rank-k type,
say τp, as

Hp := H

⋃
z∈[d]

ψ(Up
z)

 and Qp := {ψ(Up
1), . . . , ψ(Up

d)},

extending ψ with ψ(∅) = ∅.
We claim that the component rank-k type, say τ , of Hi, Di :=

{P ∪ P ′, P1, . . . , Ps}, is determined by the data of P, P ′, τ1, . . . , τh,
and B, the black edges (or binary atomic types, if Σ has several
binary relation symbols) of G/Pi+1 linking parts from two distinct
V (Cp), V (Cp′). We thus need to argue that H partitioned by {ψ(P) ∪
ψ(P ′), ψ(P1), . . . , ψ(Ps)} also has component rank-k type τ .

For this, we invoke Lemma 7.1 and use the compositionality of games.
Duplicator wins by answering a vertex move in V (Jp) (resp. V (Hp))
by its winning reply in V (Hp) (resp. V (Jp)), which exists since Jp,Pp
and Hp,Qp have the same component rank-k type, and a subset move,
by the union of the winning replies to its projections on each V (Hp)
(resp. V (Jp)). �

Theorem 7.2, when phrased with clique-width rather than com-
ponent twin-width, is known as the Courcelle–Makowsky–Rotics the-
orem [37]. It generalizes the celebrated Courcelle’s theorem: that
monadic second-order model checking on incidence graphs of bounded
treewidth can be solved in fixed-parameter linear time [36].

1.2. In classes of bounded twin-width. Again, we start with
a simple problem, k-Independent Set, which seeks an independent
set of size at least k. In general graphs, for any function f , an f(k)nO(1)-
time algorithm is unlikely to exist for this problem [39].

Theorem 7.3 ([20]). k-Independent Set can be solved in time
O(d2kk2n) in n-vertex graphs given with a d-sequence.

1. PARAMETERIZED ALGORITHMS 63

Proof. Let Pn, . . . ,P1 be a partition sequence of width d of the
input graph G. Our plan is to store for each connected set X of size
at most k in each R(Pi), an independent set IX of G[

⋃
P∈X P] with

maximum cardinality among those that intersect every part P ∈ X.
As soon as some computed IX has size at least k, the algorithm outputs
it and terminates.

AsR(Pn) is edgeless, its only connected sets are {{v}} for v ∈ V (G),
and I{{v}} = {v}. The only connected set of R(P1) is {V (G)}, and
G is a no-instance if and only if I{V (G)} is computed and has size less
than k. In which case, as a consolation prize, I{V (G)} is a maximum
independent set of G.

G/Pi

P ∪ P ′

G/Pi+1

P

P ′

Figure 7.3. The set X (in gray) splits into subsets X1, . . . , Xh

(each in a different color). The option depicted is intersecting P ′
but not P , which is here the only one that may give rise to a partial
solution.

Once again, the crux is to efficiently compute the partial solutions
in Pi from those established at an earlier stage. Say P, P ′ are merged
in Pi+1 to make Pi. The only new connected sets X of R(Pi) are those
containing P ∪ P ′.

When looking in the previous partition Pi+1, there are three ways
of intersecting P ∪P ′: by intersecting P but not P ′, intersecting P ′ but
not P , and intersecting both. For each option, X splits into at most
d + 2 connected sets X1, . . . , Xh of R(Pi+1); see Figure 7.3. We set
IX to IX1 ∪ . . . ∪ IXh for the option maximizing the cardinality of this
set among those for which no pairs of parts in

⋃
p∈[h] Xp are linked by

64 7. ALGORITHMIC APPLICATIONS

a black edge in G/Pi+1, and no IXp is the nil symbol. It may happen
that none of the three options work, in which case we set IX := nil.

The running time is as claimed since there are at most d2k connected
sets of size at most k containing a fixed vertex in a graph of maximum
degree at most d. The algorithm is sound since every partial solution
is the union of pairwise non-adjacent partial solutions. It is complete
since any independent set of G of size k ends up in a connected set of
size at most k in some R(Pi). �

Similar parameterized algorithms can be designed for other prob-
lems such as k-Dominating Set, k-Subgraph Isomorphism or
Induced k-Subgraph Isomorphism with only slightly worse run-
ning times [20]. These problems are defined, given an input graph G,
as the search for a dominating set of G of size at most k, and with an
additional k-vertex graph H, as whether H is isomorphic to a subgraph
of G, or to an induced subgraph of G, respectively.

The Exponential-Time Hypothesis (or ETH) asserts that there is
a λ > 0 such that solving n-variable 3-SAT requires time λn. Under
this widely-believed assumption, Theorem 7.3 and the parameterized
algorithms for k-Dominating Set, k-Subgraph Isomorphism, and
Induced k-Subgraph Isomorphism have essentially-optimal run-
ning times. An algorithm in time 2o(k/ log k)nO(1), or in time 2o(n/ logn)

for that matter, for any of these problems would refute the ETH.
These parameterized algorithms can be lifted, admittedly at the

cost of a much higher running time, to the whole first-order model
checking. We fix the quantifier rank k of the first-order sentences we
wish to model check, and the binary signature Σ. Given a partition P
of the domain of a Σ-structure G, we say that a tuple (P1, . . . , Pq) ∈ Pq
with q 6 k is local (at P1) if for every j ∈ [2, q], part Pj is at distance
at most 2k−q of some part of {P1, . . . , Pj−1} in R(G/P).

A local sentence at P1 in G,P is a first-order sentence of the form
Q1x1 ∈ P1 · · ·Qqxq ∈ Pq φ, where Qj ∈ {∃,∀}, φ is quantifier-free
Σ+q-formula, and (P1, . . . , Pq) is local. The local rank-k type of G,P
at P ∈ P, denoted by ltpk(G,P , P), is the set of local sentences at P
in G,P that are true in G,P . We can now sketch a proof of the main
algorithmic result related to twin-width, following [47].

2. APPROXIMATION ALGORITHMS 65

Theorem 7.4 ([25]). There is a tetrational function f , and an
algorithm that inputs a d-sequence of an n-vertex binary structure
over signature Σ, and a sentence ϕ ∈ FO(Σ) of quantifier rank k,
and decides G |= ϕ in time f(d, k) · n.

sketch. The plan is as in Theorem 7.2 replacing component rank-k
types with local rank-k types. Let Pn, . . . ,P1 be a partition sequence
of G with width d. The reader can check that, again, computing the
local rank-k types in G,Pn is easy, and that the local rank-k types in
G,P1 coincide with fo-tpk(G).

So we mainly need to check that the local rank-k types in G,Pi
can be computed from those already established. Intuitively, we are
combining the proofs of Theorems 7.2 and 7.3, using the tailored notion
of local rank-k type. The merge in Pi+1 yielding Pi may bring closer
in the red graph pairs of parts that were until then far apart. That
the local rank-k types in G,Pi+1 suffice to get the new local types can
be shown with Ehrenfeucht–Fraïssé games, and Lemma 7.1.

Duplicator survives k rounds by splitting the game in a disjoint
union of local games. Say that q moves were already played, and that
the local games are J1, . . . , Jh. If Spoiler plays at distance at most 2k−q

of some Jp, Duplicator follows her winning strategy in this local game,
as computed in G,Pi+1. Otherwise, Duplicator starts a new local game
Jh+1. Crucially, as 2k−q is divided by 2 after each move, Spoiler cannot
confuse Duplicator by playing close to more than one local game. �

2. Approximation algorithms

The Min Dominating Set problem seeks, given a graph G, a sub-
set D ⊆ V (G) of minimum cardinality such that NG[D] = V (G),
called dominating set. On n-vertex graphs Min Dominating Set
admits polynomial-time lnn-approximation algorithms [57, 65]. This
is best possible, as (1− ε) lnn-approximating this problem is NP-hard,
for any ε > 0 [38].

We obtain a constant-factor polynomial-time approximation algo-
rithm on graphs of bounded twin-width. This is done by extracting in
a versatile tree of contractions a partial partition sequence maintaining
low weight of its parts, after vertices are weighted by a fixed optimum
solution of the linear relaxation of Min Dominating Set.

66 7. ALGORITHMIC APPLICATIONS

Theorem 7.5 ([20]). Min Dominating Set has a polynomial-
time Od(1)-approximation on graphs given with a d-sequence.

Proof. Let G be a non-empty input graph. We compute w∗ an
optimum solution to the linear program

minimize
∑

u∈V (G)

w(u) subject to

∀u ∈ V (G),
∑

v∈NG[u]

w(v) > 1, and 0 6 w(u) 6 1,

and γ∗ :=
∑

u∈V (G) w
∗(u) > 1. Theorem 4.5, the functional equiva-

lence of twin-width and versatile twin-width, is effective. This yields
a polynomial-time subroutine finding a maximal partial partition se-
quence S of width d′ = f(d), the versatile twin-width of G, from the
finest partition on G to P , that never creates a part P with w∗-weight
w∗(P) :=

∑
u∈P w∗(u) > 1

d′+1
. Hence parts of at least this w∗-weight

have to be singletons.
Partition P has at most 2d′(d′+ 1)γ∗ parts, since otherwise at least

one pair of the b|P|/d′c disjoint ones given by the versatility would
make a part of w∗-weight less than 1

d′+1
, thereby contradicting the

maximality of S.
We thus arbitrarily pick one vertex vP per part P ∈ P to define D

a dominating set of G within factor 2d′(d′+ 1) of the optimum solution.
We shall just argue that D indeed dominates every vertex of G. Every
vertex u ∈ P such that PP ′ is a black edge of G/P , for some P ′ ∈ P ,
is a neighbor of vP ′ ∈ D in G. The other vertices u ∈ P are such that
P has at most d′ neighbors, all red. At least one vertex u′ of NG[u]
has to be such that {u′} is a singleton part of NG/P [P], otherwise∑

v∈NG[u] w
∗(v) < |NG/P [P]| · 1

d′+1
6 1. Such a u′ is necessarily picked

in D, as the only representative of its part. �

The previous algorithm can be adapted to the task of finding
a largest subset of vertices pairwise at distance at least 3. However,
this method does not extend to Max Independent Set, for which
at least 3 is replaced by at least 2. Nevertheless, we achieve some
improved approximation algorithms for this problem via a different
route, based on properly coloring the red graph, and exploiting the
modular decomposition on each color class.

2. APPROXIMATION ALGORITHMS 67

The Max Independent Set problem simply asks for an indepen-
dent set of maximum cardinality. This problem is about as inapprox-
imable as it gets: for any ε > 0, it is NP-hard to n1−ε-approximate
on n-vertex graphs [52, 78]. Furthermore, for any r 6

√
n and ε > 0,

an r-approximation algorithm running in time 2n
1−ε/r1+ε would refute

the ETH [32]. Both barriers can be breached within graphs of bounded
twin-width.

Proposition 7.2 ([10]). Max Independent Set admits an Od(1)-
approximation algorithm running in time 2Od(

√
n) on n-vertex graphs

given with a d-sequence.

Proof. By Theorem 4.6, we compute in polynomial time a bal-
anced f(d)-sequence Pn, . . . ,P1 of the input graph G. We only make
use of P := Pd√ne, a partition leveling its number of parts, d

√
ne,

with the maximum size among its parts, which is between
√
n− 1 and

f(d)
√
n. Let I1, . . . , If(d)+1 be a partition of P into independent sets

of R(P). This partition exists since every graph of maximum degree ∆
can be properly ∆ + 1-colored by the first-fit coloring.

|JP 4 |

|JP 2 |

|JP 7 ||JP 13 |

|JP 10 | |JP 9 |

6
f(d)
√
n

vertices
. . .

I1 I2 I3

Figure 7.4. The trigraph G/P . An independent set of maximum
weight in B(G/P[I2]) (shaded) yields a maximum independent set
in G restricted to I2.

For each h ∈ [f(d) + 1], we can find a maximum independent set
of G[

⋃
P∈Ih P] in time 2Od(

√
n). Indeed for every P ∈ Ih, an exhaustive

search solves Max Independent Set in G[P] in time 2O(f(d)
√
n) and

outputs, say, JP . One then solves in time 2O(
√
n), again by exhaustive

search, the weighted Max Independent Set on the black graph
of G/P [Ih] (equivalently, its total graph since Ih induces no red edge, by
design) where every vertex P ∈ Ih has weight |JP |, and outputs, say, Jh.

68 7. ALGORITHMIC APPLICATIONS

Then Sh :=
⋃
P∈Jh JP is the desired optimum solution for G[

⋃
P∈Ih P];

see Figure 7.4. By the pigeonhole principle, at least one independent set
Sh is at least as large as an 1

f(d)+1
fraction of the optimum solution. �

Theorem 7.6 ([10]). For any ε > 0, Max Independent Set
admits a polynomial-time nε-approximation algorithm on n-vertex
graphs given with an O(1)-sequence.

sketch. In the previous algorithm, replace each exhaustive search
by a recursive call. This is possible since these calls are on induced
subgraphs. At depth q, this improves the running time to exp(O(n2−q))·
nO(1) while degrading the approximation factor to O(1)2q−1 . We obtain
the desired result for some q = O(log(ε log n)). �

Variations on the algorithm of Proposition 7.2 lead to similar
results for other problems such as Min Coloring and Max Induced
Matching, both as inapproximable as Max Independent Set in
general graphs [32, 78]. The Min Coloring problem asks for a proper
coloring of the input graph using the minimum number of colors, while
Max Induced Matching seeks the largest induced subgraph within
which every vertex has degree exactly 1.

Theorem 7.7 ([10]). For any ε > 0, Min Coloring and Max
Induced Matching admit polynomial-time nε-approximation
algorithms on n-vertex graphs given with an O(1)-sequence.

In contrast with the results presented so far in this section, some
optimization problems are (almost) as hard to approximate in graphs
of bounded twin-width as they are in general graphs. This is the
case of approximating the induced or non-induced longest paths, or
finding as small as possible independent sets that are also dominating
sets, called Min Independent Dominating Set. The reason for
the former is that logarithmically-long subdivisions of general graphs
have, by Theorem 5.2, bounded twin-width, while the latter uses that,
by Lemma 3.4 and Theorem 4.8, so do substitutions of independent
sets in planar graphs, on which a direct gap-introducing reduction from
Planar 3-SAT to Min Independent Dominating Set can be
designed [10].

It is interesting to note that the approximation factors of nε in The-
orems 7.6 and 7.7 could be in principle improved. A polynomial-time
approximation scheme (PTAS) for Max Independent Set is not

3. SHORTEST PATHS 69

ruled out on graphs of bounded twin-width, and a known reduction
based on self-substitutions would turn any constant-factor approxima-
tion algorithm into a PTAS [20].

3. Shortest paths

The Single-Source Shortest Paths problem inputs a graph G
and a vertex s ∈ V (G), and asks for a shortest-path tree rooted at s,
that is, a spanning tree T of the connected component of G containing s,
such that for every t ∈ V (T), s and t are at the same distance from
each other in T and in G.

Let us call width of a twin-decomposition the width of its corre-
sponding contraction sequence. In particular we saw in Chapter 3 that,
if a twin-decomposition (T,<,B) of an n-vertex graph G has width d,
then |B| 6 (d+ 1)(n− 1). Let us relabel the leaves of T such that the
i-th leaf in the left-to-right order of some fixed planar embedding of T
gets label {i}. From parents of the leaves to the root of T , let us label
each parent with the union of the labels of its two children. This way,
every node of T is labeled by a discrete interval that is the union of
the labels at the leaves of its rooted subtree; see Figure 7.5.

[1, 9]

[1, 3] [4, 9]

{1} [2, 3]

{2} {3}

[4, 8] {9}

[4, 5] [6, 8]

{4} {5} {6} [7, 8]

{7} {8}

Figure 7.5. Example of a twin-decomposition labeled by discrete
intervals, discarding the contraction order.

The original graph G can be described by at most (d+ 1)(n− 1)
bicliques partitioning E(G), which can be encoded as pairs of intervals.
We call this an interval biclique partition. For instance, the interval
biclique partition corresponding to the twin-decomposition of Figure 7.5
is {{[1, 3], [4, 8]}, {{2}, {3}}, {{3}, {9}}, {{5}, [6, 8]}, {[4, 8], {9}}, {{7},
{8}}}. While every graph admits an edge partition into at most n− 1

70 7. ALGORITHMIC APPLICATIONS

bicliques, not every n-vertex graph admits a vertex ordering and an
edge partition into O(n) bicliques whose sides are all intervals. We use
interval biclique partitions to speed up the computation of shortest
paths.

Theorem 7.8 ([20]). Single-Source Shortest Paths can be
solved in time O(dn log n) in n-vertex graphs given with a twin-
decomposition of width d.

Proof. We first compute B the corresponding interval biclique
partition in O(dn) time. We add the at most 2(d+ 1)(n− 1) intervals
that are sides of a biclique in an augmented tree TB. For us, an
augmented tree is a red-black tree, where nodes v are labeled by discrete
intervals Iv, and possess two additional fields: the maximum value
found within labels in the subtree rooted at v, and the list of intervals
forming with Iv a biclique of B. We call maximum field the former,
and neighbor field the latter. As a binary search tree, the sorting key
is the label left endpoint; see Figure 7.6.

[6,8]

max = 9

{5}

{2}

max = 3

{3}

{5}

max = 5

[6,8]

{8}

max = 9

{7}

[4,8]

max = 8

[1,3],{9}

[1,3]

max = 3

[4,8]

{7}

max = 7

{8}

{9}

max = 9

{3}, [4,8]

{3}

max = 3

{2},{9}

Figure 7.6. Augmented tree matching Figure 7.5. Each node
has a label (inside the node), a maximum field (top, in gray), and
a neighbor field (bottom, in blue).

The maximum field allows to find, given a query interval I, a label
intersecting I (if one exists) in time log(O(dn)) = O(log n). This is
done, starting at the root, by reporting the current label if it intersects I,

3. SHORTEST PATHS 71

moving to the left child v if the left endpoint of I is smaller or equal
to the maximum field of v, and moving to the right child otherwise;
see [35, Section 14.3: Interval trees].

Insertions and deletions are done like in plain red-black trees, except
some maximum fields may need an update, and still takes O(log n)
time. Thus reporting all the q labels intersecting a query interval I
may be performed in O(q log n) time, by removing one by one the
found intervals, and eventually adding them back. When making such
queries, we will not add the intervals back, as we wish them removed.
We observe in passing that this operation can be supported in optimal
time O(q + log n) [74], but it would not improve the overall running
time, up to a multiplicative constant factor.

Let G, s ∈ V (G) = [n] be the input. We initialize a second aug-
mented tree TV whose nodes have labels {i} for i ∈ V (G), and solely
have a maximum field. We also set a queue Q initially only containing s.
We make a breadth-first search from s using the bicliques in B, rather
than the individual edges of G.

While Q is non-empty, we do the following. We remove the head u
of Q from TV , set an empty list Lu of intervals, and query the list
of intervals of TB intersecting {u}. Each found interval is removed
from TB, after its neighbor field is appended to Lu. For every interval I
of Lu, we query the list of singletons of TV (open vertices) intersecting I.
Each found singleton {v} is removed from TV , and v is added to the
tail of Q. The parent of v in the eventual shortest-path tree is set to u;
its distance to s is that of u plus 1.

The correctness relies on the fact that no shortest path takes more
than two edges of a biclique. More precisely, if {X, Y } ∈ B and
P = v1, . . . , vh is a shortest path in G, then there is at most one i
such that vi ∈ X and vi+1 ∈ Y . In other words, once the biclique is
traversed from X to Y , the option X → Y can be erased, as we do
when deleting the side X from TB. It is however possible that the
biclique is then traversed from Y to X, and we indeed leave the option
Y → X open by not removing Y from TB, nor shrinking its neighbor
field.

Each node of TV or TB is responsible for at most O(log n) compu-
tation time, leading to its eventual deletion. Hence the overall running
time is O((n+ 2|B|) log n) = O(dn log n). �

If we are only given a contraction sequence of the input m-edge
graph, the corresponding twin-decomposition can be computed in O(m)
time. For Single-Source Shortest Paths this is too slow, as O(m)

72 7. ALGORITHMIC APPLICATIONS

is the time for computing a breadth-first search in any connected
graph (of possibly large twin-width). However, this preprocessing
is acceptable for All-Pairs Shortest Paths, which asks for the
shortest-path distance between every two vertices. Hence we get the
following algorithm, less demanding on its input representation.

Theorem 7.9 ([20]). All-Pairs Shortest Paths can be solved
in time O(dn2 log n) in n-vertex graphs given with a d-sequence.

For comparison, in general graphs the unweighted All-Pairs
Shortest Paths essentially takes matrix-multiplication time. One
may wonder if the diameter can be computed faster than calling All-
Pairs Shortest Paths, when a d-sequence of the input graph is pro-
vided. Again, logarithmically-long subdivisions (which have bounded
twin-width) entail that, like in general graphs, a truly subquadratic
algorithm is unlikely, even one that only 1.499-approximates the di-
ameter [20]. Nevertheless, if the diameter is constant, a d-sequence
allows an Od(n)-time algorithm by Theorem 7.4, as the problem is
then definable by a first-order sentence.

CHAPTER 8

First-Order Logic and Twin-Width

Clique-width and its weakly sparse counterpart, treewidth, enjoy
a deep connection to monadic second-order logic. As we recalled in
the previous chapter, model checking this logic in graphs of bounded
clique-width [37] or incidence graphs of bounded treewidth [36] is
fixed-parameter tractable. Moreover the family of classes of bounded
clique-width is closed under MSO transductions. In Section 1, we show
that the same holds with twin-width and first-order transductions. This
was already announced in Chapter 5 as a powerful way of establishing
that a class has bounded twin-width. Besides, it is useful directly or
indirectly in all the results of the current chapter.

Classes of bounded clique-width (resp. linear clique-width) coincide
with MSO transductions of a very simple graph class, that of trees
(resp. paths) [34]. No similar result can hold for twin-width since
grids have bounded twin-width, their MSO transductions contain
the class of all graphs, and transductions compose. However, the
previous theorems can be expressed in terms of first-order transductions.
Classes of bounded clique-width (resp. linear clique-width) are the
transductions of tree orders (resp. linear orders) [34]. This can further
be phrased in terms of permutation classes. Denoting by Av(σ) the
proper permutation class containing all the permutations except those
having σ as a pattern, linear orders can replaced by Av(21), i.e, the
class of all identity permutations, and tree orders, by Av(231). We
will see in Section 2 that a class of binary structures has bounded
twin-width if and only if a proper permutation class transduces it. This
can be strengthened. There is a fixed permutation σ—not nearly as
nice as 21 or 231 with the current proof—such that classes of bounded
twin-width are the transductions of Av(σ); see Table 1.

The parallel between clique-width & MSO and twin-width & FO
breaks (in disfavor of the latter duo) as the efficient algorithm for model
checking in classes of bounded clique-width or bounded treewidth goes
almost as far as possible [63]. On the contrary there are classes,
like bounded-degree graphs, of unbounded twin-width yet admitting

73

74 8. FIRST-ORDER LOGIC AND TWIN-WIDTH

Bounded Fast model checking FO transduction of

linear clique-width MSO linear orders, Av(21)
clique-width MSO tree orders, Av(231)

(effective) twin-width FO Av(σ)

Table 1. Parallel between clique-width and twin-width.

a fixed-parameter tractable first-order model checking. More generally
monadically stable classes, i.e, those which cannot transduce the class of
all linear orders, admit such an algorithm [40]. It is in fact expected that
this extends to every monadically dependent class, and is known to not
go any further [40]. It is challenging to name a natural monadically
dependent class that is not of effectively bounded twin-width1 nor
monadically stable. Up to the naturalness requirement, interpretations
of classes where the clique-width is bounded by a function of r in every
distance-r neighborhood are such an example, and one for which an
efficient FO model checking algorithm is known [17]. In Section 3 we
explore on which classes C, bounded twin-width andmonadic dependence
coincide for every subclass of C. We call these classes C delineated.

1. First-order transductions preserve bounded twin-width

We get the following theorem essentially as a by-product of the
parameterized algorithm for first-order model checking of Chapter 7.

Theorem 8.1 ([25]). Let C,D be two classes of binary structures
such that C has bounded twin-width and transduces D. Then D
has bounded twin-width.
Proof. By Lemma 3.10, a finite monadic lift of a class of bounded

twin-width had bounded twin-width. Thus we shall simply prove the
theorem when C interprets D, and D has only binary relations. Let
Σ,Γ be the vocabularies of C,D, respectively.

Let ϕ1(x, y), . . . , ϕh(x, y) describe this simple interpretation I, that
is, ϕj(x, y) is a Σ-formula interpreting the j-th (binary) relation of Γ.
We set k := maxj∈[h] qr(ϕj). For any G ∈ C, let Pn, . . . ,P1 be a par-
tition sequence of G of width at most d := tww(C). We define local
rank-k s-types similarly to local rank-k types with first-order formulas
having s free variables instead of sentences. For each i ∈ [n], let P ′i

1A class C has effectively bounded twin-width if there is a polynomial-time
algorithm that inputs a graph G ∈ C and outputs an O(1)-sequence of G.

1. FIRST-ORDER TRANSDUCTIONS PRESERVE BOUNDED TWIN-WIDTH75

refine partition Pi by splitting every P ∈ Pi into equivalence classes
of local rank-(k + 1) 1-types. The upper bound on the number of
types implies that P ′i is an f(d, k)-refinement of Pi for some tetrational
function f . Thus for every i ∈ [n], the partition P ′i over I(G) has width
at most f(d, k) · d2k+1 . We conclude by Lemma 3.8. �

Theorem 8.1 is handy to extend the family of classes with known
bounded twin-width. For instance, one can combine Theorem 8.1 and
Theorem 4.8 to derive that squares of planar graphs have bounded
twin-width. Bounded-degree segment graphs is another example of
a class for which the only known upper bound on the twin-width
uses Theorem 8.1.

Proposition 8.1. Every subclass of segment graphs with bounded
maximum degree has bounded twin-width.

Proof. From a geometric representation of the segment graph, we
build a (bipartite) planar graph H, with one vertex per segment inter-
section, one vertex per truncated segment, defined as path-component
once the intersections are removed, and every edge between an inter-
section and incident truncated segments.

Figure 8.1. Geometric representation (left), proper coloring of the
segments (center), and intersection vertices and appropriate coloring
of the unary expansion (right).

As planar graphs have bounded twin-width, we simply need to
present a transduction that reconstructs any segment graph of maxi-
mum degree at most ∆, from one corresponding planar graph H. For
the monadic lift of the transduction, we use 2(∆+1)+1 unary relations.
We get a proper ∆ + 1-coloring c of the segments. The first unary
relation X is interpreted as the set of vertices of H corresponding to
intersections. Each other vertex of H (truncated segment) gets the
color of its including segment assigned by c, but one extremity (between
the segment endpoint and its first intersection) gets a lighter version
of this color; see right of Figure 8.1.

76 8. FIRST-ORDER LOGIC AND TWIN-WIDTH

The simple interpretation sets the new domain as the light-colored
vertices. We define the following formula for every pair of colors, here
(blue, red), and every pair i, j ∈ [∆]:

ϕ•,•i,j (x, y) = light-blue(x) ∧ light-red(y)∧
∃x1∃x′1 . . . ∃xi−1∃x′i−1∃xi ∃y1∃y′1 . . . ∃yj−1∃y′j−1∃yj E(x, x1) ∧ E(y, y1)

∧ xi = yj ∧
∧
h∈[i]

X(xh) ∧
∧

h∈[i−1]

blue(x′h) ∧
∧
h∈[j]

X(yh) ∧
∧

h∈[j−1]

red(y′h)

∧
∧

h∈[i−1]

E(xh, x
′
h) ∧ E(x′h, xh+1) ∧

∧
h∈[j−1]

E(yh, y
′
h) ∧ E(y′h, yh+1).

Note that this formula is satisfied by a pair of light-colored truncated
segments such that the i-th intersection of the first including segment
coincides with the j-th intersection of the second including segment.
The proper coloring of the segments ensure that the two sequences of
truncated segments do not deviate from their original including segment.
For the edge set of the segment graph, we take the disjunction ϕ(x, y)
of the above formula for every pair of colors and every i, j ∈ [∆]. The
latter range is sufficient as every segment is intersected at most ∆
times. �

With a more elaborate implementation of the same general strategy,
one can show that any weakly sparse subclass of segment graphs have
bounded twin-width [15]. Theorem 8.1 is also an important pillar in
the development of the theory. All the results that come next use, at
some point, Theorem 8.1. Besides, it mirrors the fact that monadic
second-order transductions of classes of bounded clique-width have
bounded clique-width [34].

2. Permutations strike back

As detailed in Chapter 1, twin-width originates from some beautiful
work on permutations [49]. In this section we outline the proof of the
following characterization, linking twin-width back to permutations.

Theorem 8.2 ([28]). A class of binary structures has bounded
twin-width if and only if it is a first-order transduction of a proper
permutation class.

sketch. We know that proper permutation classes have bounded
twin-width. So Theorem 8.1 implies the if statement. Our task is then

2. PERMUTATIONS STRIKE BACK 77

to build, from a class C of bounded twin-width, a permutation class
excluding a pattern that transduces C.

We work with twin-models, which are twin-decompositions (T,<,B)
deprived of the linear order < on the internal nodes of T . We distinguish
three encodings of twin-models on V (T):
• the plain twin-model defined by the tree edges ET := E(T), and the
biclique edges EB := B;
• the full twin-model defined by the tree order ≺T of T , and EB;
• the ordered twin-model defined by the pre-order transversal <T of T ,
ET , and EB;

Let us recall that the pre-order tree transversal visits the current node,
recursively explores the left subtree, and recursively explores the right
subtree. The full twin-model, unlike the mere twin-model, is expressive
enough to reinterpret the original graph G encoded by (T,B). Indeed
uv ∈ E(G) if and only if ∃u′∃v′ u′ �T u ∧ v′ �T v ∧ EB(u′, v′), since
a biclique edge u′v′ expresses that the sets of leaves of the two subtrees
rooted at u′ and v′ are fully adjacent in G.

This motivates full twin-models. The justification for introducing
ordered twin-models is that they contain a linear order. This brings
us closer to permutations as those are nothing but two linear orders
on a same set. It is a nice (and in the present case, useful) exercise to
check that ≺T can transduce ET , <T , and vice versa. Each variant of
twin-model, as a binary structure itself, has a well-defined twin-width.
Figure 8.2 summarizes the current situation.

graphs full tms ordered tms
tww <∞ tww <∞ tww <∞ tww <∞

? Theorem 8.1 Theorem 8.1

permutations
sparsityobserved nice exercise

Figure 8.2. Proof outline. Single-headed arrows are logical impli-
cations, and double-headed arrows are transductions (tms stands for
twin-models).

Let us only say a few words on the two-way transductions between
ordered twin-models and permutations. The twin-models having both
bounded twin-width and bounded degeneracy, they have, by Theo-
rem 5.10, bounded expansion. One thus benefits from the toolkit of
sparsity theory [68], and in particular, twin-models can be properly
colored with a constant number of colors such that any two color classes
induce a disjoint union of stars. This coloring is used to define two

78 8. FIRST-ORDER LOGIC AND TWIN-WIDTH

linear orders on a same set (hence a permutation), both built around
the pre-order traversal <T , such that the permutation can be uniquely
decoded. By Theorem 8.1, the constructed permutations have bounded
twin-width, and thus their pattern closure is a proper permutation
class.

We would be done, except we never justified why the different
twin-models have bounded twin-width. This is the question mark
of Figure 8.2. As there is no transduction from graphs to their full twin-
models, we cannot simply invoke Theorem 8.1. One possible argument
is that the in-order traversal witnesses low mixed number. �

Looking at the full proof in [28], it appears that n-vertex graphs
of C are images by a transduction T of permutations on O(n) elements
of a proper permutation class P. Thus C has, up to isomorphism,
at most (2cT)O(n)c

O(n)
P = 2O(n) graphs on n vertices, where cT is the

number of unary relations of T, and cP , an upper bound on the basis of
the single-exponential growth of P guaranteed by the Marcus–Tardos–
Klazar theorem [60, 66]. In the language of the next chapter, classes
of bounded twin-width are tiny.

In Theorem 8.2 the transduction and the permutation class depend
on the graph class of bounded twin-width. We can eliminate the
dependence in the permutation class. There is a single permutation
class that captures all classes of bounded twin-width in the following
sense.

Theorem 8.3 ([14]). There is a permutation class P such that
for every class C of binary structures, C has bounded twin-width if
and only if C is a first-order transduction of P.

The class P can be chosen as Av(σ) for some permutation σ, which
could be made explicit. However, the current proof does not yield a par-
ticularly insightful permutation σ, unlike the similar characterizations
for clique-width and linear clique-width.

3. Delineation

We say that a class C of binary structures is (effectively) delineated
if for every hereditary closure D of a subclass of C it holds that D has
(effectively) bounded twin-width if and only if D is monadically depen-
dent. Note that, as every class of bounded twin-width is monadically
dependent, we can equivalently drop “and only if ” in the previous defi-
nition. On the one hand, first-order model checking is fixed-parameter
tractable on classes of effectively bounded twin-width [25]. On the

3. DELINEATION 79

other hand, this problem is intractable on any monadically independent
class [40]. Hence the question of efficient first-order model checking is
completely understood in every effectively delineated class.

Every class of (effectively) bounded twin-width trivially is (ef-
fectively) delineated, but improperly so. We are interested here in
identifying effectively delineated classes of unbounded twin-width.

Theorem 8.4. These classes are effectively delineated:
• permutation graphs [25], and more generally,
• intersection graphs of chords of a circle [55],
• interval graphs [15, 55], and more generally,
• intersection graphs of vertical paths in a tree [15], and
• ordered graphs [22].

In the previous statement, a vertical path in a rooted tree is any subpath
of a root-to-leaf path. The last item will be central to Chapter 10. It
suggests another characterization of classes of bounded twin-width.

Theorem 8.5 ([22]). A graph class has bounded twin-width if and
only if it is the reduct of a monadically dependent class of ordered
graphs.

To show that a class is effectively delineated, the main strategy is
to come up with an ordering process of the domain. We want that
the order either witnesses that the binary structure has low mixed
number, hence low twin-width, or reveals an obstruction to monadic
dependence. Let us see this in action on interval graphs.

Proposition 8.2 ([15, 55]). Interval graphs are effectively delineated.

sketch. Let D be any hereditary subclass of interval graphs. We
order the vertices of graphs in D by increasing left endpoints, which
we can assume all distinct, in a fixed geometric representation. Let
us denote by ≺ this order. If the resulting adjacency matrices have
bounded mixed number, we conclude by Theorem 4.2 that D has
bounded twin-width. We thus assume that we find increasingly large
mixed minors among these adjacency matrices.

For every integer n there is an adjacency matrix M := A≺(G)
with G ∈ D that has a 3n-mixed minor, which we can suppose to
be a symmetric division, i.e., of the form (P ,P) for a division P of
(V (G),≺). Let A,B,C be the n first, n middle, and n last parts of P ,
respectively. We claim that D transduces the class of all permutations
(encoded by two linear orders), known to be monadically independent.

80 8. FIRST-ORDER LOGIC AND TWIN-WIDTH

The n-mixed minor of M [
⋃
B,
⋃
C] yields n segments of

⋃
C setting

any linear order on n segments of
⋃
B, reading b1, . . . , bn by increasing

left endpoints; see right of Figure 4.2. The segments of
⋃
A, whose

adjacencies with
⋃
B only depend on the left endpoints of segments in⋃

B, can then set the linear order b1 ≺′ . . . ≺′ bn. �

We now turn to classes that are not delineated. Of course, any
monadically dependent class containing all cubic graphs is not delin-
eated, as the equivalence between bounded twin-width and monadic de-
pendence fails on the class itself. The following facts contrast with The-
orem 8.4.

Theorem 8.6 ([15]). These classes are not delineated:
• axis-parallel segment graphs,
• intersection graphs of paths in a tree,
• visibility graphs of simple polygons.

A visibility graph of points in a geometric configuration puts an edge
between pairs of points whenever they are visible from each other.
Here we consider the most natural visibility notion: two points see
each other if the line segment they define does not cross the rest of
the geometric configuration. A simple polygon is a polygon that is not
self-crossing and has no hole. Visibility graphs of simple polygons have
as vertex set the geometric vertices of a simple polygon, and as edges
every pair of vertices seeing each other.

The way we show that the classes C of Theorem 8.6 are not delin-
eated is by exhibiting a subclass D ⊆ C transduction equivalent to the
class B63 of all bipartite subcubic graphs, i.e., such that (i) D trans-
duces B63, and (ii) B63 transduces D. Indeed, item (i) implies by The-
orem 8.1 that D has unbounded twin-width since B63 is not small and
so has unbounded twin-width, while item (ii) implies that D is monad-
ically dependent, as a transduction of a monadically dependent class.

We construct an appropriate subclass D to show, as an illustrative
example, the third item of Theorem 8.6. Subclass D consists of the
image by the following transformation Π of each bipartite subcubic
graph G, with bipartition (A := {a1, . . . , as}, B := {b1, . . . , bt}). For
each vertex ai ∈ A, we add the 2dG(ai) + 1 ∈ {1, 3, 5, 7} first vertices
of di, pi, d′i, p′i, d′′i , p′′i , d′′′i . For each vertex bj ∈ B, we add a vertex qj.
Let D be the set of vertices of the form di, d

′
i, d
′′
i , d
′′′
i , let P be the set

of vertices of the form pi, p
′
i, p
′′
i , and Q := {qj : bj ∈ B}.

We make pi (p′i, p′′i , respectively) adjacent to qj such that bj is the
neighbor of ai with largest (second largest, third largest, respectively)

3. DELINEATION 81

index. We make di adjacent to pi, d′i adjacent to pi and p′i, d′′i adjacent
to p′i and p′′i , and d′′′i adjacent to p′′i . Finally we turn D∪Q into a clique.
This ends the construction of Π(G). Figure 8.3 shows that, for every
G ∈ B63, Π(G) is the visibility graph of a simple polygon.

a1

b1

a2

b2

a3

b3

a4

b4

−→Π

q1 q2 q3 q4

p1 p′1 p′′1 p2 p′2 p3 p′3p4 p′4

D

Figure 8.3. Representation as visibility graph of a simple polygon
for Π applied to the graph on the left.

Proposition 8.3 ([15]). D and B63 are transduction equivalent.

sketch. To get a transduction from B63 to D, simply observe that
Π(G) deprived of the edges of the clique D ∪ Q is itself a bipartite
subcubic graph with bipartition (P,D ∪Q). These edges can be added
with a single unary relation interpreted as D ∪ Q. For the converse
transduction, consider adding three unary relations, interpreted as
in Figure 8.4.

q1 q2 q3 q4

p1 p2 p3 p4

Figure 8.4. The desired interpretation of the three unary relations.

Now we recover the initial bipartite subcubic graph, by redefining
the domain as the set of blue or red vertices, and edges as linking
a blue vertex x to a red vertex y, whenever they are already adjacent,
or there is a green vertex w adjacent to y, such that there is a path
between x and w on three or five vertices that goes blue–uncolored–
green(–uncolored–green). �

CHAPTER 9

Growth of Classes and Labeling Schemes

How many graphs are there in my class C? This is a natural inquiry,
if not for the fact that the answer will almost always be unrevealing:
an infinity. Instead, what we want to ask is how the number of graphs
of C on n vertices scales up with n. This is still not formal enough.
Indeed, we defined a graph class as a collection of graphs closed under
isomorphism. Thus every single graph G ∈ C entails that an infinity of
graphs (on various vertex sets) isomorphic to G are also in C. There are
two ways to fix the question: counting up to isomorphism or imposing
a canonical vertex set. So we either ask for the number of isomorphism
equivalence classes among n-vertex graphs in C, that is, the number of
n-vertex unlabeled graphs—which have indistinguishable vertices. Or
we count up to equality the number of n-vertex labeled graphs in C,
whose vertex set is imposed to be [n]; see Figure 9.1.

, 2 1 3 1 2

3

1 2 3

1 3 2

,

,

,

vs.

Figure 9.1. A simple class with two unlabeled graphs, and four
labeled graphs. The 3-vertex path has 2 automorphisms, so gives
rise to 3!/2 = 3 labeled graphs.

A class C has growth (resp. unlabeled growth) f : N→ N if for every
natural number n, class C has at most f(n) labeled (resp. unlabeled)
n-vertex members. We may denote by Cn the set of the n-vertex labeled
members of C. Note that if a class has unlabeled growth f(n), then it
has growth n! f(n). Most natural hereditary graph classes fall into one
of the following three categories:
• growth n! 2O(n) such as planar graphs, and more generally Kt-minor-
free graphs, or graphs with bounded treewidth or clique-width;
• growth 2Θ(n logn) such as interval graphs, graphs with bounded de-
generacy, and more generally with bounded symmetric difference;

82

1. SMALL AND TINY CLASSES 83

• growth 2Θ(n2) such as bipartite graphs, or the class of all graphs.
There is a formal categorization of the growth of hereditary classes: Ev-
ery hereditary graph class has constant, polynomial, single-exponential,
or at least factorial growth [75]. While these “jumps” are noteworthy,
they do not reflect very relevant dividing lines. Indeed note that the
growth of the very simple class of all paths is n!/2, hence paths, as
most interesting graph classes, fall in the last category.

On the other hand, most classes with growth 2Θ(n2), or simply
growth 2Ω(nβ) and β > 1, are too complex to lend themselves to ex-
ploitable structural decompositions. We thus focus on factorial classes,
i.e., hereditary classes with growth 2O(n logn). We ask for connections
between the growth of a class and its structural or algorithmic sim-
plicity. Among factorial classes, we are particularly interested in the
so-called small classes.

1. Small and tiny classes

A hereditary graph class C is small if there is a number c such that
C has growth n! cn, and tiny if C satisfies the stronger condition that its
unlabeled growth is at most cn. We unify and generalize the smallness
shown on individual classes of bounded twin-width [8, 60, 66, 69, 58].

Theorem 9.1 ([21]). Every class of bounded twin-width is small.

Proof. For the sake of simplicity, we give the argument in the case
of a graph class C. By Theorem 4.5, C has versatile twin-width at most
d < ∞. We show the stronger fact that the class Vd of all trigraphs
with versatile twin-width at most d is small. Let Ldn ⊆ Vdn consist of
the labeled trigraphs of Vdn wherein vertex n can be contracted with
another vertex such that the resulting labeled trigraph is in Vdn−1.

By definition of versatile twin-width, |Ldn| > |Vdn|/d. Indeed, in
at least n/d circular rotations of the the vertex set of a member of Vdn,
the last vertex is in a pair that can be contracted. We can now upper
bound |Ldn| in terms of |Vdn−1|. Indeed from any labeled trigraph H
of Vdn−1 can only come at most (n− 1) · 3 · 7d labeled trigraphs of Ldn,
where n−1 upper bounds the number of vertices j ∈ V (H) that can be
split into j, n, the number 3 accounts for the existence of an edge, red
edge, or non-edge between j and n, and 7d = (32 − 2)d upper bounds
the possible relations between j, n and the at most d red neighbors of j

84 9. GROWTH OF CLASSES AND LABELING SCHEMES

in H. Therefore
|Vdn| 6 d · |Ldn| 6 d · (n− 1) · 3 · 7d · |Vdn−1|,

and we conclude by induction that |Vdn| 6 n! · cn with c := 3d · 7d. �
The previous proof was a pretext to play with versatile twin-width,

and revisit the scheme of [69]. We already know a stronger result.
Indeed, as we have observed in Chapter 8, the linear transduction
of Theorem 8.2 transfers the tinyness of proper permutation classes [60,
66] to any class of bounded twin-width.

Theorem 9.2 ([28]). Every class of bounded twin-width is tiny.

This prompts two questions:
• Is every hereditary small class tiny?
• Is every hereditary tiny class of bounded twin-width?
Without the hereditary condition, these questions have easy negative
answers. While the first question remains open, Section 3 answers the
second one negatively. Not only bounded twin-width fails to characterize
smallness within hereditary classes, but so does any countable family
of graph parameters.

2. Labeling schemes and universal graphs

The unlabeled growth of a class C gives an information-theoretic
lower bound on how compactly its n-vertex members can be repre-
sented, up to isomorphism. One indeed needs at least log |Cun| bits
to do so, where Cun denotes the set of n-vertex unlabeled graphs
of C. As the unlabeled growth of classes of bounded twin-width is
single-exponential, an O(n)-bit representation is theoretically possible.
The interval biclique partition already guarantees a representation
with at most 4(d + 1)n log n bits, for n-vertex unlabeled graphs of
twin-width at most d. Some ingenious recursive data structure on ma-
trices with low mixed number indeed meets the information-theoretic
bound of Od(n) [73], albeit with a worst dependence in d, but improved
Od(log log n) time per adjacency query.

A related task, primarily motivated by network representation in
a distributed setting, is that of finding short adjacency labeling schemes.
A graph class C has an f(n)-bit adjacency labeling scheme, or labeling
scheme for short, if there is a decoding function A : {0, 1}∗×{0, 1}∗ →
{0, 1} such that for every n-vertex graph G ∈ C there is an injective
labeling function ` : V (G)→ {0, 1}∗, satisfying |`(u)| 6 f(n) for every

2. LABELING SCHEMES AND UNIVERSAL GRAPHS 85

u ∈ V (G), and A(`(u), `(v)) = 1 if and only if uv ∈ E(G). Intuitively,
we want to assign to each vertex a bit string as short as possible so
that the adjacency between u and v can be determined solely based
on their labels. For example, trees have a log n+O(1)-bit adjacency
labeling scheme [2].

Class C has an f(n)-bit adjacency labeling scheme if and only if, for
every integer n, there is a universal graph Un, not necessarily in C, on
at most 2f(n) vertices such that every n-vertex graph of C is an induced
subgraph of Un; to see this, consider the possible labels as the vertex set
of the universal graph. Numerous classes, such as interval graphs and
Kt-minor-free graphs, have O(log n)-bit labeling schemes. By counting,
only factorial classes may possibly admit O(log n)-bit labeling schemes.
Indeed the number κ of distinct labels is 2O(logn) = nO(1). Hence
the number of n-vertex graphs that can be induced subgraphs of the
universal graph Un is upper bounded by

(
κ
n

)
= nO(n). The implicit graph

conjecture originally simply asks whether every factorial hereditary class
has an O(log n)-bit labeling scheme [59]. It was recently refuted [53]
but holds in classes of bounded twin-width.

Theorem 9.3 ([21]). For every integer d, the class of graphs with
twin-width at most d admits a 22O(d)

log n-bit labeling scheme.

And equivalently, every class of bounded twin-width has universal
graphs of polynomial size. We give a simple Od(log2 n)-bit labeling
scheme directly based on twin-decompositions (T,<,B) where T has
depth Od(log n), whose existence is implied by Theorem 4.5.

The graph (V (T), B) has degeneracy at most f(d) := d′+1, where d′
is the versatile twin-width of the class of graphs of twin-width at most d.
Thus there is an orientation of (V (T), B) with maximum outdegree
at most f(d), i.e., such that every vertex has at most f(d) out-neighbors.
We first give an identifier to every vertex in V (T), in the form of
a nonzero bit string of length dlog 2ne. The label `(u) of a leaf u of T
is the concatenation of the identifiers of u and its ancestors (first half),
followed by the identifiers of the out-neighbors of u and its ancestors
(second half). We can pad the first half of the label with zeros, so
that each has exactly length dlog 2ne · h with h = Od(log n) being the
depth of T . This way, one can distinguish the first half of the label
from its second half. As every identifier has length exactly dlog 2ne,
breaking `(u) down to its identifiers is also easy. The decoding A
simply outputs 1 whenever an identifier in the first half of one label is
equal to an identifier in the second half of the other label.

86 9. GROWTH OF CLASSES AND LABELING SCHEMES

This produces labels of size at most dlog 2ne · h · (f(d) + 1) =
Od(log2 n). The correctness of the decoding relies on a property of
twin-decompositions that we already observed, for instance, in the
proof of Theorem 8.2. The proof of Theorem 9.3 also uses twin-
decompositions of logarithmic depth, but is less wasteful in the label
size by describing what locally happens when a contraction occurs.

It is an open question to design effective labeling schemes with
(poly)logarithmic label size, where by effective we require that the
labeling function can be computed in polynomial-time. An orthogonal
quest is to reduce the label length. As far as we currently know,
the information-theoretic lower bound of (1 + od(1)) log n-bit labeling
scheme could be reachable.

3. Complex tiny classes

We are going to see that small hereditary classes can have un-
bounded twin-width, and actually that, for every number c, there
are tiny monotone classes with both unbounded twin-width and no
c log n-bit labeling scheme—far from the information-theoretic lower
bound of (1 + o(1)) log n. This testifies that even in this growth regime,
classes can be particularly untamed. By analyzing the behavior of
the Erdős–Rényi random graphs G(n, d

n
), it can be shown [19] that

a polynomial fraction of n-vertex graphs of average degree at most d
satisfy the following properties for some γ depending only on d:
(1) each of their k-vertex connected subgraphs with k 6 log2 n has

at most k(1 + 1
log k

) edges, and for every k′ ∈ [n]

(2) they have at most γk′ subgraphs on k′ vertices up to isomorphism.
Let us denote by D(d) the class of graphs of average degree at most d
satisfying the above properties. By the previous claim shown in [19],

|D(d)un| > 2(1−o(1))(d
2
−1)n logn.

The class Y of all connected n-vertex graphs with at most n(1+ 1
logn

)
edges, for n ranging over the natural numbers, is tiny. Indeed any such
graph can be described by a spanning tree and fewer than n/ log n
extra edges. And, as the number of unlabeled n-vertex trees is at most
n · 4n [71]:

|Yun | 6 n · 4n ·
∑

06i6 n
logn

((n
2

)
i

)
6

n2

log n
· 4n · n

2n
logn =

n2

log n
· 16n.

3. COMPLEX TINY CLASSES 87

As the partition function1 is subexponential (it is upper bounded by
exp(π

√
2n/3) [43]), the class Z of all disjoint unions of graphs of Y is

also tiny, with |Zun| 6 50n for every n.
Let us define the sequence `0 := 1 and `i+1 := d2

√
`ie for every i ∈ N.

We now have all the ingredients to build a complex tiny monotone
class. For each `i, we can select up to 2O(log2 `i) many `i-vertex graphs
of D(d), and take the subgraph closure of our collection of graphs.
Figure 9.2 illustrates why such a class is indeed tiny.

vertex count
4 log2 log n

log2 n

n

2
√
n

`i−2

`i−1

`i

`i+1

k

2O(log2 n)

selected graphs

2O(n)

selected graphs

#unlabeled k-vertex graphs 6 50k + 2O(n) γk

= 2O(k)

Figure 9.2. Why the built class is tiny. The blue strip represents
the class Z. The gray dots are the graphs of D(d), and the black
dots, those selected. The green “cones” represent their subgraphs.

Indeed, on k vertices with n := `i < k 6 `i+1, we find
• subgraphs of selected graphs on `j vertices with j > i+ 1, but these
are in Z by Property (1), so up to isomorphism fewer than 50k,
• subgraphs of the at most 2O(n), hence 2O(k), selected graphs on `i+1

vertices, each of which has at most γk non-isomorphic subgraphs
on k vertices by Property (2).
As D(d) is not a small class for any d > 5, it has unbounded

twin-width, and picking a single `i-vertex graph Hi ∈ D(d) with
limi→∞ tww(Hi) = ∞, builds a tiny monotone class of unbounded
twin-width. We could decide not to select any graph on `i vertices, for
some i. We only need to pick an infinite number of graphs Hi. Let
us say that a graph parameter p is small (resp. tiny) if every class

1This is perhaps a misnomer for a function that counts the number of multisets
of positive integers summing up to n, and is not the sequence of Bell numbers.

88 9. GROWTH OF CLASSES AND LABELING SCHEMES

with bounded p is small (resp. tiny). With the previous observation,
and since N2 and N are equipotent, one can construct a tiny monotone
class simultaneously with unbounded p for a countable number of small
parameters p.

We can use a “second-order” counting argument devised to refute
the implicit graph conjecture [53], in order to show, for every c, the
existence of tiny monotone classes without c log n-bit labeling scheme
or equivalently nc-vertex universal graph. A “first-order” counting
argument would simply be that an nc-vertex graph has at most

(
nc

n

)
induced subgraphs on n vertices. The “second-order” counting argument
upper bounds the number of collections of κn graphs on n vertices
that can simultaneously be induced subgraphs of a graph on un := nc

vertices by

2(un2)
((un

n

)
κn

)
6 2n

2c+cκnn logn.

If we set κn := n2c−1, this upper bound becomes 2(1+c logn)n2c . On the
other hand, the number of families of κn graphs of D(d)un is at least(

2(1−o(1))(d
2
−1)n logn

κn

)
> 2

d
3
κnn logn = 2

d
3

logn·n2c

,

with the first inequality holding for sufficiently large n. If we initially
chose d := 3c + 4, then 2

d
3

logn·n2c
> 2(1+c logn)n2c . Thus at least one

choice (in fact most choices) to select the κn = 2O(log2 n) graphs rules
out a universal graph of size nc. We deduce:

Theorem 9.4 ([19]). For every family (pi)i∈N of small parameters
and every number c, there is a tiny monotone graph class that has
unbounded pi for every i ∈ N, and no c log n-bit labeling scheme.

The girth of a graph is the length of its shortest cycles. Another
way to design small classes of unbounded twin-width uses a random
group construction [70], which isometrically embeds any infinite family
of bounded-degree graphs with rapidly increasing girth and bounded
diameter to girth ratio, within a single Cayley graph of a finitely
generated group. Interestingly both this method and the one we
presented rely on a counting argument. As in Section 4.2 of Chapter 5,
so far no small or tiny hereditary class of unbounded twin-width has
been explicitly built.

CHAPTER 10

Ordered Graphs and Matrices

An ordered graph is a relational structure made of two binary re-
lations: one interpreted as a simple graph, and the other, as a linear
order on its vertices. This final chapter is devoted to characterizing
bounded twin-width within ordered graphs or matrices over finite alpha-
bets whose rows and columns carry their natural ordering. Looking
back at the previous chapters, a list of shortcomings of twin-width—or
of us, for the first item—could read as follows:
• We do not know how to efficiently approximate O(1)-sequences;
• Twin-width does not characterize monadic dependence, nor classes
with a fixed-parameter tractable first-order model checking;
• Twin-width comes close but fails to characterize small classes.
All these complaints dissipate within ordered graphs. A possible
conclusion would be that twin-width really is about linearly ordered
binary structures. Nevertheless, this should be nuanced as we also saw
some interesting applications of twin-width on unordered graphs, some
for which an extra linear order would not be particularly meaningful.

1. Rank minors, rank number, and rich divisions

Now that our graph G comes equipped with a linear order ≺,
it would be tempting to think that A≺(G,≺) has low mixed number if
and only if (G,≺) has low twin-width. This is not quite true. Consider
the ordered graph (G,≺) with V (G) = [n] such that ≺ is the natural
order on [n], and ij ∈ E(G) whenever i + j is odd. The matrix
A≺(G,≺) has a bn/2c-mixed minor (see left of Figure 10.1), but the
linear order ≺′ such that i ≺′ j if i is odd and j is even, or if i and j
have the same parity and i < j, verifies that A≺′(G,≺) is 4-mixed free
(see right of Figure 10.1).

A t-mixed minor, we recall, is a t-division every cell of which has
at least two distinct rows and at least two distinct columns. Let us
instead require that every cell has at least t distinct rows and at least
t distinct columns. We call this new t-division a t-rank minor. We can
now define the rank number of a matrix as the largest t such that it

89

90 10. ORDERED GRAPHS AND MATRICES

Figure 10.1. A≺(G,≺) (left) has a large mixed minor, while
A≺′(G,≺) (right) is 4-mixed free. In the color coding of entry
(i, j), red means i > j, blue means i < j, and edges of G make the
color darker.

admits a t-rank minor, and the rank number of a binary structure as
the minimum rank number among its adjacency matrices. Promisingly,
A≺(G,≺) has no 3-rank minor. This new definition, as we shall see,
spares us the task of finding the “good” ordering ≺′. Given an ordered
binary structure (G,≺), i.e., a binary structure G and a linear order ≺
on the same domain, we call canonical adjacency matrix of (G,≺) the
matrix A≺(G,≺).

Theorem 10.1 ([22]). A class of ordered binary structures has
bounded twin-width if and only if its canonical adjacency matrices
have bounded rank number.

Theorem 10.1 is established by introducing yet another kind of
matrix divisions. A t-rich division of a matrix M is a division (R, C)
of M such that
• for every R ∈ R and X ∈

(C
t

)
, the submatrix M [R, C \

⋃
X] has at

least t distinct row vectors, and symmetrically
• for every C ∈ C and X ∈

(R
t

)
, the submatrix M [R \

⋃
X,C] has at

least t distinct column vectors.
Intuitively, the diversity of vectors in every part should be robust under
any removal of a few “orthogonal” parts. Observe that a t + 1-rank
minor is a t-rich division. Indeed after deleting, say, any t row parts
of the rank minor, every column part still forms with the non-deleted
row part a submatrix with at least t+ 1 distinct columns. Conversely,
the existence of huge rich divisions implies that of large rank minors.

1. RANK MINORS, RANK NUMBER, AND RICH DIVISIONS 91

Lemma 10.1 ([22]). There is a function f , such that for every integer t
and finite alphabet A, every matrix M over A with an f(t, |A|)-rich
division admits a t-rank minor.

sketch. Let (R, C) be an f(t, |A|)-rich division of M , for some
large function f . For every R ∈ R (and symmetrically in columns),
• the number of cells M [R,C] with C ∈ C that are the first, from left
to right, to contain a particular column vector among the cells with
fewer than t distinct column vectors
• plus the number of cells M [R,C] with C ∈ C having at least t
distinct column vectors and at least t distinct row vectors

has to be large. Otherwise R can be shown to contradict that (R, C) is
a rich division. We then find a t-rank minor by applying the Marcus–
Tardos theorem (see Theorem 4.1) to the auxiliary matrix with a 1-entry
for each cell fitting the above description. �

Therefore Theorem 10.1 may be obtained by relating twin-width and
rich divisions. Let us see a first direction of this functional equivalence.

Lemma 10.2. Let (G,≺) be an ordered binary structure of twin-width
at most d. Then A≺(G,≺) has no 2(d+ 2)2-rich division.

Proof. Let D be any division of M :=A≺(G,≺), and let us show
that D is not a 2(d+ 2)2-rich division. Consider the first partition P of
a d-sequence of (G,≺) such that a part P ∈ P intersects three different
parts of D, say the column parts C1, C2, C3; see Figure 10.2.

Pc
P

Pr

C1 C2 C3

Figure 10.2. The division D in black, the part P ∈ P in orange.
A part Pc intersecting C2 and one of its red neighbors Pr make for
at most two parts of D to remove.

92 10. ORDERED GRAPHS AND MATRICES

There are at most d other parts P ′ of P intersecting C2 since such
a part P ′ is a red neighbor of P . Indeed any (x, y) ∈ (P ∩C1)×(P ′∩C2)
and (x′, y′) ∈ (P ∩C3)×(P ′∩C2) have distinct binary atomic types due
to ≺. For each Pc ∈ P (seen as a column part) intersecting C2, there
are at most d+1 parts Pr ∈ P (seen as a row part) such that M [Pr, Pc]
is not constant. Each part Pr intersects, by design, at most two row
parts of D. Let us remove these at most 2(d+ 1) row parts of D for
each such Pc; including P , for which the upper bound is 2(d+ 1) + 1.
That is a total of 2(d + 1)2 + 1 < 2(d + 2)2 removed parts. In the
remaining matrix, C2 has at most d+ 1 distinct columns; at most one
per part of P intersecting C2. �

The other direction comes in some algorithmic form, important
in its own right. There is a fixed-parameter tractable algorithm that,
on the canonical adjacency matrix of an ordered binary structure,
either finds a rich division witnessing large twin-width, or a contraction
sequence of relatively low width.

Theorem 10.2 ([22, 23]). There are functions f, g and an al-
gorithm that, given an n-vertex ordered binary structure (G,≺)
over Σ and an integer d, either returns
• a 2(d+ 2)2-rich division of A≺(G,≺), thus tww(G,≺) > d, or
• a g(d, |Σ|)-sequence of (G,≺),
in time f(d, |Σ|)n2 log n.

sketch. The idea is to first greedily compute a partition sequence
such that every part P of every partition P contradicts that P is a rich
division. If this process is stopped, we can exhibit a 2(d + 2)2-rich
division of A≺(G,≺). Otherwise, the partition sequence can be turned
into one with low width, similarly to Lemma 4.2. �

Theorem 10.2 is the sort of parameterized approximation algorithm
that is still missing for unordered binary structures.

2. Equivalences

Unless the parameterized complexity classes FPT and AW[∗] co-
incide, which is very unlikely, there is no fixed-parameter tractable
algorithm for first-order model checking on general graphs. This prob-
lem is indeed complete for the class AW[∗]. Our next milestone is the
following theorem, which equates bounded twin-width with algorithmic,
model-theoretic, and enumerative properties.

2. EQUIVALENCES 93

Theorem 10.3 ([22]). Let C be a hereditary class of ordered
binary structures. The following are equivalent:
(1) C has bounded twin-width;
(2) C is monadically dependent;
(3) C admits a fixed-parameter tractable first-order model checking;

(this item only implies the other items under FPT 6= AW[∗].)
(4) C is tiny.

From the previous chapters, we know that the first item implies
the other ones; actually, (1) ⇒ (3) also requires Theorem 10.2. We
now need to understand ordered binary structures with unbounded
twin-width. From Section 1 we learned that the canonical adjacency
matrices of these structures have unbounded rank number.

We call disguised n-grid permutation any 2n2 × 2n2 matrix over an
alphabet of size 2 obtained from the matrix of the grid permutation
on n2 elements, by turning 1-entries into non-constant 2× 2 matrices,
and 0-entries into constant 2 × 2 matrices. Figure 10.3 illustrates
a disguised 3-grid permutation.

Figure 10.3. A disguised 3-grid permutation. The red squares
show the 1-entries of the grid permutation.

There is a function f such that every matrix with rank number
at least f(n) contains a disguised n-grid permutation as a submatrix.
This is shown by iterating over non-constant cells C forming the grid
permutation, and restricting the current matrix to a submatrix where C
is only aligned with constant cells. This establishes Theorem 10.3 since
there is a transparent transduction from any class with arbitrarily large

94 10. ORDERED GRAPHS AND MATRICES

disguised grid permutations to the class of all (ordered) permutations.
The latter class is monadically independent, has an AW[∗]-hard first-
order model checking, and is factorial. Indeed any graph can be encoded
as an ordered matching, for example, by allocating intervals along the
order ≺ for each vertex, with edges of length 1 along ≺ to delimit the
intervals, and one edge bridging two intervals if they correspond to
adjacent vertices. Permutations and ordered matchings can be seen
transduction equivalent, the same way bipartite graphs and general
graphs are.

We can deepen our understanding of hereditary classes of ordered
binary structures over a finite signature with unbounded twin-width.
Some further applications of Ramsey’s theorem on disguised grid permu-
tations show that any such class includes the class of all permutations
in at least one of the six forms of Figure 10.4.

Figure 10.4. Grid permutation in each of the six families.

The first family is simply the class of all permutations. The sec-
ond one flips 0- and 1-entries. The other four propagate 1-entries of
a permutation matrix downward, upward, leftward, and rightward,
respectively. Note that this description is tailored for 0–1 matrices. In
the general case of finite alphabets A, the 0- and 1-entries are realized
by two distinct elements of A, and the six families thus collapse to only
three.

In any hereditary class of ordered graphs with unbounded twin-
width, we either find the class of permutation graphs with their natural
order, or arbitrarily large sets X, Y such that X ≺ Y and their bi-
adjacency matrix is the grid permutation in one of the six forms
of Figure 10.4. In the latter case, we can further obtain that X, Y
are one the four combinations of cliques and independent sets. This
defines 25 families (1 + 6 · 4) with unbounded twin-width. These
families are all minimal: all their proper hereditary subclasses have
bounded twin-width. An ordered graph, due to its linear order, has no
automorphism other than the identity. Thus the growth and unlabeled
growth of any class of ordered graphs are exactly an n! multiplicative

3. UNCONDITIONAL ALGORITHMS 95

factor apart. One can check that the growth of each of the 25 fami-
lies is appropriately fast, to confirm a conjecture that the growth of
hereditary classes of ordered graphs jumps from single-exponential to
factorial [6].

Theorem 10.4 ([22]). Every hereditary class of ordered graphs
has growth at most single-exponential or at least

∑bn/2c
k=0

(
n
2k

)
k!.

Proof. Either the class has bounded twin-width and hence is tiny
by Theorem 9.2, or it includes one the 25 described families. �

3. Unconditional algorithms

We conclude with some algorithms free of the caveat of Chapter 7.

3.1. Matrices of bounded twin-width. Due to Theorem 10.2,
we no longer require contraction sequences to be given in order to
efficiently compute on matrices of bounded twin-width. We will
exclusively deal with matrices M over a fixed finite alphabet, say
A = {a0, . . . , aq−1}, and consider them as binary structures whose
signature is {E0, . . . , Eq−1,≺, R} and domain is the set of row and
column indices, with for every i ∈ [0, q − 1],
• Ei has arity 2, and is interpreted as Ei(x, y)⇔M [x, y] = ai,
• ≺ is interpreted as the natural linear order on the row indices
followed by the column indices, and
• R is a unary symbol interpreted as R(x)⇔ x is a row index.

We will rely on an augmented logic. First-order logic with modulo
counting, denoted by FO+MOD, introduces a new type of quantifiers:
∃i[p] for some fixed integer p, and for any i ∈ [0, p−1]. For any structure
M with domain D,

M |= ∃i[p]xϕ(x) holds whenever |{a ∈ D : M |= ϕ(a)}| ≡ i mod p.

One can now express that the number of witnesses for a first-order
formula ϕ(x) is equal to i modulo p. Despite this seemingly increased
power, both the model checking algorithm (Theorem 7.4) and the
closure of the family of classes of bounded twin-width by transductions
(Theorem 8.1) readily generalize to this logic.

As (0 A
B 0)

2
= (AB 0

0 BA), multiplying two matrices or simply squaring
one is essentially the same. Interestingly, squaring a matrix M over
a finite field Fq can be written as an FO+MOD-interpretation. One

96 10. ORDERED GRAPHS AND MATRICES

can keep the relations R and ≺ as in M , and set for every i ∈ [0, q− 1],

EM2

i (x, y) :=
∨

a:[q−1]2→[0,q−1]∑
j,k∈[q−1]2

a(j,k)·(j̃k̃)=ĩ

∧
j,k∈[q−1]

∃a(j,k)[q]z EM
j (x, z) ∧ EM

k (z, y).

In the previous formula, we write ĩ for the element of Fq corresponding
to relation Ei, and assume that 0̃ is the absorbing element. The
expression j̃k̃ is a product in Fq, while a(j, k) · (j̃k̃) is meant as the
sum of a(j, k) occurrences of j̃k̃ in Fq. As every element of (Fq,+)
has an order dividing q, it is enough to count the number of pairs
(j̃, k̃) = (M [x, z],M [z, y]) modulo q, which the formula does.

Given a collection F of matrices, let us denote by F2 the set of all
products MN such that M,N are in F , with the right dimension for
MN to be defined. By the claimed extension of Theorem 8.1 and the
above interpretation, we get the following fact.

Theorem 10.5 ([23]). Let F be a family of matrices of bounded
twin-width over Fq. Then F2 has bounded twin-width.

Moreover we can square matrices, hence multiply them, in time
Od(n

2 log n) within n × n matrices of twin-width at most d. One
way is to use an extension of Theorem 7.4 [47]: Given a Σ-structure
M on domain D, a d-sequence of M, and a first-order Σ-formula
ϕ(x1, . . . , xh) of quantifier rank k, a data structure can be computed
in time Od,h,k(n) that answers whether M |= ϕ(v1, . . . , vh) holds for
any query v1, . . . , vh ∈ D in time Od,h,k(log log n). The same is pos-
sible with construction time Od,h,k(n

1+ε) for any ε > 0, and query
time Od,h,k(1/ε) [47]. Again, this result readily applies to FO+MOD.
Combined with Theorem 10.2 and the FO+MOD-interpretation for
squaring matrices, we obtain the following theorem.

Theorem 10.6 ([23]). The square of n×n matrices over Fq with
twin-width at most d can be computed in time Od(n

2 log n).

The current bottleneck is to compute an Od(1)-sequence. Should
this step be done in Od(n

2), we would get an optimal quadratic-time
algorithm for multiplying two matrices of bounded twin-width. Al-
ternatively to using the data structure in [47], one can convert the
contraction sequence into a twin-decomposition in time Od(n

2). Then
an ad hoc squaring algorithm can be designed operating at the level of
twin-decompositions.

3. UNCONDITIONAL ALGORITHMS 97

Theorem 10.7 ([23]). Given a twin-decomposition with width d of
an n×n matrix M over Fq, one can compute a twin-decomposition
of M2 with width 2Oq(d) in time 2Oq(d) n.

The linear time in n, sublinear in the number of matrix entries,
renders twin-decompositions a good encoding of matrices of bounded
twin-width to perform multiplications. The represented matrix can be
recovered in O(n2) time, and on twin-decompositions of width d and
depth h, individual entry queries can be answered in O(dh) time.

Theorem 10.2 also leads to parameterized algorithms on matrices.
Interestingly, while only a fixed-parameter tractable approximation
algorithm is known for the twin-width of matrices, we can exactly
compute their grid, mixed, and rank numbers.

Theorem 10.8 ([23]). Computing the grid number, mixed number,
or rank number of a matrix is fixed-parameter tractable.

sketch. We show the statement for the grid number as the other
numbers can be computed analogously. Let M be the input n ×m
matrix that we assume, for simplicity, to be a 0–1 matrix. The argument
would work the same on any finite alphabet. By Theorem 10.2, we find
a d-sequence forM . By Theorem 4.2, we know that d is upper bounded
by a fixed function of gn(M); hence this first step is fixed-parameter
tractable (in gn(M)). We finally express the existence of a t-grid minor
in M by a first-order sentence, and conclude with Theorem 8.1.

For an integer t going from 1 to min(n,m), supposed to guess the
grid number of M , we test if M has a t-grid minor with the sentence

∃x0∃x1 · · · ∃xt−1 ∃y0∃y1 · · · ∃yt−1

R(x0) ∧ ¬R(y0) ∧ ∀x′(R(x′)→ x0 � x′) ∧ ∀y′(¬R(y′)→ y0 � y′) ∧∧
i∈[t−1]

R(xi) ∧
∧

i∈[t−1]

¬R(yi) ∧
∧

i∈[t−2]

(xi ≺ xi+1 ∧ yi ≺ yi+1) ∧

∧
06i,j6t−2

(∃x ∃y xi � x ≺ xi+1 ∧ yj � y ≺ yj+1 ∧ E1(x, y)) ∧∧
06i6t−2

(∃x ∃y xi � x ≺ xi+1 ∧ yt−1 � y ∧ E1(x, y)) ∧∧
06j6t−2

(∃x ∃y xt−1 � x ∧ yj � y ≺ yj+1 ∧ E1(x, y)) ∧

∃x ∃y xt−1 � x ∧ yt−1 � y ∧ E1(x, y),

98 10. ORDERED GRAPHS AND MATRICES

where E1 interprets the 1-entries of M . At the first value of t for which
the model checking algorithm reports a no-instance, we output t−1. �

3.2. Algorithms on classes of unbounded twin-width. Al-
gorithms made possible by the theory on twin-width, but operating on
classes of unbounded twin-width, use a win-win argument, and follow
in the footsteps of [49]. The argument distinguishes two covering cases:
the twin-width is either above or below a certain threshold. In the
former case, the existence of a large pattern as depicted in Figure 10.4
provides enough information to efficiently conclude. In the latter case,
we resort to the algorithm of Theorem 7.4. This of course requires
that the problem at hand is definable in first-order logic, possibly with
modulo counting. We finish with an example contrasting with that,
in the exact same setting, such an algorithm for k-Dominating Set
would refute the ETH [27].

Theorem 10.9 ([15]). k-Independent Set in visibility graphs
of simple polygons given with a representation is fixed-parameter
tractable.

sketch. Let P be a simple polygon, and G, its visibility graph.
We identify vertices of G with the corresponding vertices of P . Let ≺
be a linear order whose successor relation is a Hamiltonian path of
the boundary of P. We run Theorem 10.2 on (G,≺) with d being
a large (but fixed) function of k. If the algorithm outputs a contraction
sequence, we solve k-Independent Set by Theorem 7.3. If instead
we obtain a large rich division, the algorithm simply answers yes. Let
us justify this decision.

Visibility graphs of simple polygons satisfy that: If b′ ≺ a ≺ b ≺ c ≺
d ≺ c′ and {ac, bd, ac′, b′d} ⊆ E(G), then ad ∈ E(G); see Figure 10.5.

a

b c

d

c′b′

b′ a b

c
d
c′

Figure 10.5. Above or below the diagonal of A≺(G) no 0-entry
can have four “surrounding” 1-entries.

This precludes the second pattern of Figure 10.4 in A≺(G).

3. UNCONDITIONAL ALGORITHMS 99

Figure 10.6. The pattern ruled out by Figure 10.5.

That is 4 of the 25 families of ordered graphs that cannot occur.
The algorithm is correct to output yes if we get a representative of
the family of permutation graphs with their natural order, or of any
family where one of the sides X, Y of the biadjacency matrix is an
independent set. This leaves us with the five families of Figure 10.6
when both sides X, Y are cliques. Each would imply the existence
of x1 ≺ x2 ≺ x3 ≺ x4 ∈ X, and y4 ≺ y3 ≺ y2 ≺ y1 ∈ Y such that
xiyj ∈ E(G) if and only if i = j (i 6 j, i > j, respectively). Let us
write X ′ := {x1, x2, x3, x4} and Y ′ := {y1, y2, y3, y4}.

x1

x2

x3 x4

y2

y3

x1

x2

x3 x4

y2 y3

y1 x1

x2

x3 x4

y2

y3

Figure 10.7. If quadrangle q := x2x3y3y2 self-intersects, one edge
of x2y2, x3y3 would be missing (left), if q is not convex, one of X ′, Y ′
would not be a clique (middle), and the edges x2x3, x2y2, x3y3, y2y3

force q to be included in P , thus x2y3 and x3y2 are edges (right).

Figure 10.7 is a proof by picture that the edges x2y2, x3y3 and the
fact that X ′, Y ′ are cliques force both x2y3 and x3y2 to be in E(G),
thus not fitting the pattern. �

Bibliography

[1] Jungho Ahn, Debsoumya Chakraborti, Kevin Hendrey, and Sang-il Oum.
Twin-width of subdivisions of multigraphs. CoRR, abs/2306.05334, 2023.

[2] Stephen Alstrup, Søren Dahlgaard, and Mathias Bæk Tejs Knudsen. Optimal
induced universal graphs and adjacency labeling for trees. J. ACM, 64(4):27:1–
27:22, 2017.

[3] Jakub Balabán and Petr Hlinený. Twin-width is linear in the poset width. In
Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium
on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021,
Lisbon, Portugal, volume 214 of LIPIcs, pages 6:1–6:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[4] Jakub Balabán, Petr Hlinený, and Jan Jedelský. Twin-width and transductions
of proper k-mixed-thin graphs. CoRR, abs/2202.12536, 2022.

[5] John T. Baldwin and Saharon Shelah. Second-order quantifiers and the com-
plexity of theories. Notre Dame Journal of Formal Logic, 26(3):229–303, 1985.

[6] József Balogh, Béla Bollobás, and Robert Morris. Hereditary properties of
partitions, ordered graphs and ordered hypergraphs. Eur. J. Comb., 27(8):1263–
1281, 2006.

[7] Ambroise Baril, Miguel Couceiro, and Victor Lagerkvist. Linear bounds be-
tween component twin-width and clique-width with algorithmic applications
to counting graph colorings. 2023.

[8] Lowell W Beineke and Raymond E Pippert. The number of labeled k-
dimensional trees. Journal of Combinatorial Theory, 6(2):200–205, 1969.

[9] Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at
most 4 is NP-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of
LIPIcs, pages 18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[10] Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approxi-
mating highly inapproximable problems on graphs of bounded twin-width. In
Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha
Kanté, editors, 40th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254
of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023.

[11] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral
gap*. Combinatorica, 26(5):495–519, 2006.

100

BIBLIOGRAPHY 101

[12] Robin L. Blankenship. Book embeddings of graphs. Louisiana State University
and Agricultural & Mechanical College, 2003.

[13] Édouard Bonnet, Romain Bourneuf, Julien Duron, Colin Geniet, Stéphan
Thomassé, and Nicolas Trotignon. A tamed family of triangle-free graphs with
unbounded chromatic number. arXiv preprint arXiv:2304.04296, 2023.

[14] Édouard Bonnet, Romain Bourneuf, Colin Geniet, and Stéphan Thomassé.
Factoring pattern-free permutations into separable ones. In Proceedings of the
2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
752–779. SIAM, 2024.

[15] Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul
Lopes, and Stéphan Thomassé. Twin-width VIII: delineation and win-wins.
In Holger Dell and Jesper Nederlof, editors, 17th International Symposium
on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022,
Potsdam, Germany, volume 249 of LIPIcs, pages 9:1–9:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[16] Édouard Bonnet and Hugues Déprés. Twin-width can be exponential in
treewidth. J. Comb. Theory, Ser. B, 161:1–14, 2023.

[17] Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas
Mählmann, Pierre Simon, and Szymon Torunczyk. Model checking on inter-
pretations of classes of bounded local cliquewidth. In Christel Baier and Dana
Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in
Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 54:1–54:13. ACM,
2022.

[18] Édouard Bonnet and Julien Duron. Stretch-width. In Neeldhara Misra and
Magnus Wahlström, editors, 18th International Symposium on Parameterized
and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The
Netherlands, volume 285 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023.

[19] Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim
Zhukovskii. Small but unwieldy: A lower bound on adjacency labels for small
classes. In SODA 2024, 2024.

[20] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi
Watrigant. Twin-width III: Max Independent Set, Min Dominating Set, and
Coloring. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th
International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of
LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[21] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi
Watrigant. Twin-width II: small classes. Combinatorial Theory, 2(2), 2022.

[22] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon,
Stéphan Thomassé, and Szymon Torunczyk. Twin-width IV: ordered graphs
and matrices. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 924–937. ACM, 2022.

102 BIBLIOGRAPHY

[23] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan
Thomassé. Twin-width V: linear minors, modular counting, and matrix mul-
tiplication. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Ma-
madou Moustapha Kanté, editors, 40th International Symposium on The-
oretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Ham-
burg, Germany, volume 254 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

[24] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé.
Twin-width VI: the lens of contraction sequences. In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1036–
1056. SIAM, 2022.

[25] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width I: tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022.

[26] Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a
qualitative strengthening of twin-width in minor-closed classes (and beyond).
CoRR, abs/2202.11858, 2022.

[27] Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery
problems. ACM Trans. Algorithms, 16(4):42:1–42:23, 2020.

[28] Édouard Bonnet, Jaroslav Nesetril, Patrice Ossona de Mendez, Sebastian
Siebertz, and Stéphan Thomassé. Twin-width and permutations. CoRR,
abs/2102.06880, 2021.

[29] Romain Bourneuf and Stéphan Thomassé. Bounded twin-width graphs are
polynomially χ-bounded. CoRR, abs/2303.11231, 2023.

[30] Samuel Braunfeld and Michael C. Laskowski. Characterizations of monadic
NIP, 2021.

[31] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of
graphs. Theor. Comput. Sci., 412(39):5187–5204, 2011.

[32] Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Graph
products revisited: Tight approximation hardness of induced matching, poset
dimension and more. In Sanjeev Khanna, editor, Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1557–1576. SIAM,
2013.

[33] Josef Cibulka and Jan Kyncl. Füredi-Hajnal limits are typically subexponential.
CoRR, abs/1607.07491, 2016.

[34] Thomas Colcombet. A combinatorial theorem for trees. In Lars Arge, Chris-
tian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata,
Languages and Programming, 34th International Colloquium, ICALP 2007,
Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes
in Computer Science, pages 901–912. Springer, 2007.

[35] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[36] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and Computation, 85(1):12 – 75, 1990.

[37] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable
optimization problems on graphs of bounded clique-width. Theory Comput.
Syst., 33(2):125–150, 2000.

BIBLIOGRAPHY 103

[38] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In
David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 624–633. ACM, 2014.

[39] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[40] Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michal
Pilipczuk, and Szymon Torunczyk. First-order model checking on monadically
stable graph classes. CoRR, abs/2311.18740, 2023.

[41] Zdenek Dvorák and Daniel Král’. Classes of graphs with small rank decompo-
sitions are x-bounded. Eur. J. Comb., 33(4):679–683, 2012.

[42] David Eppstein. The widths of strict outerconfluent graphs. arXiv preprint
arXiv:2308.03967, 2023.

[43] Pául Erdos. On an elementary proof of some asymptotic formulas in the theory
of partitions. Annals of Mathematics, pages 437–450, 1942.

[44] Jacob Fox. Stanley-Wilf limits are typically exponential. CoRR, abs/1310.8378,
2013.

[45] Zoltán Füredi and Péter Hajnal. Davenport-schinzel theory of matrices. Discret.
Math., 103(3):233–251, 1992.

[46] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcen-
trators. J. Comput. Syst. Sci., 22(3):407–420, 1981.

[47] Jakub Gajarský, Michal Pilipczuk, Wojciech Przybyszewski, and Szymon
Torunczyk. Twin-width and types. In Mikolaj Bojanczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata,
Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France,
volume 229 of LIPIcs, pages 123:1–123:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

[48] Fred Galvin. A proof of Dilworth’s chain decomposition theorem. The American
Mathematical Monthly, 101(4):352–353, 1994.

[49] Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in
linear time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,
2014, pages 82–101, 2014.

[50] Frank Gurski and Egon Wanke. The tree-width of clique-width bounded
graphs without Kn, n. In Ulrik Brandes and Dorothea Wagner, editors, Graph-
Theoretic Concepts in Computer Science, 26th International Workshop, WG
2000, Konstanz, Germany, June 15-17, 2000, Proceedings, volume 1928 of
Lecture Notes in Computer Science, pages 196–205. Springer, 2000.

[51] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of
modular decomposition. Comput. Sci. Rev., 4(1):41–59, 2010.

[52] Johan Håstad. Clique is hard to approximate within n1−ε. In 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 627–636, 1996.

[53] Hamed Hatami and Pooya Hatami. The implicit graph conjecture is false. In
63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1134–1137.
IEEE, 2022.

104 BIBLIOGRAPHY

[54] Petr Hlinený and Jan Jedelský. Twin-width of planar graphs is at most 8, and
at most 6 when bipartite planar. In Kousha Etessami, Uriel Feige, and Gabriele
Puppis, editors, 50th International Colloquium on Automata, Languages, and
Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume
261 of LIPIcs, pages 75:1–75:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023.

[55] Petr Hlinený and Filip Pokrývka. Twin-width and limits of tractability of FO
model checking on geometric graphs. CoRR, abs/2204.13742, 2022.

[56] Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth
graphs, planar graphs, and bipartite graphs. In Michael A. Bekos and Michael
Kaufmann, editors, Graph-Theoretic Concepts in Computer Science - 48th
International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022,
Revised Selected Papers, volume 13453 of Lecture Notes in Computer Science,
pages 287–299. Springer, 2022.

[57] David S. Johnson. Approximation algorithms for combinatorial problems.
In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors,
Proceedings of the 5th Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1973, Austin, Texas, USA, pages 38–49. ACM, 1973.

[58] Shahin Kamali. Compact representation of graphs of small clique-width. Algo-
rithmica, 80(7):2106–2131, 2018.

[59] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of
graphs. SIAM J. Discret. Math., 5(4):596–603, 1992.

[60] Martin Klazar. The Füredi-Hajnal conjecture implies the Stanley-Wilf con-
jecture. In Formal power series and algebraic combinatorics, pages 250–255.
Springer, 2000.

[61] Daniel Král and Ander Lamaison. Planar graph with twin-width seven. CoRR,
abs/2209.11537, 2022.

[62] Daniel Král, Kristýna Pekárková, and Kenny Storgel. Twin-width of graphs
on surfaces. CoRR, abs/2307.05811, 2023.

[63] Stephan Kreutzer and Siamak Tazari. Lower bounds for the complexity of
monadic second-order logic. In Proceedings of the 25th Annual IEEE Sympo-
sium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,
United Kingdom, pages 189–198. IEEE Computer Society, 2010.

[64] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2004.

[65] László Lovász. On the ratio of optimal integral and fractional covers. Discret.
Math., 13(4):383–390, 1975.

[66] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the
Stanley-Wilf conjecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004.

[67] Jan Mycielski. Sur le coloriage des graphs. In Colloquium Mathematicae,
volume 3, pages 161–162, 1955.

[68] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures,
and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

[69] Serguei Norine, Paul D. Seymour, Robin Thomas, and Paul Wollan. Proper
minor-closed families are small. J. Comb. Theory, Ser. B, 96(5):754–757, 2006.

BIBLIOGRAPHY 105

[70] Damian Osajda. Small cancellation labellings of some infinite graphs and
applications. 2020.

[71] Richard Otter. The number of trees. Annals of Mathematics, pages 583–599,
1948.

[72] Michal Pilipczuk and Marek Sokolowski. Graphs of bounded twin-width are
quasi-polynomially χ-bounded. J. Comb. Theory, Ser. B, 161:382–406, 2023.

[73] Michal Pilipczuk, Marek Sokolowski, and Anna Zych-Pawlewicz. Compact
representation for matrices of bounded twin-width. In Petra Berenbrink and
Benjamin Monmege, editors, 39th International Symposium on Theoretical
Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille,
France (Virtual Conference), volume 219 of LIPIcs, pages 52:1–52:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[74] Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An
Introduction. Texts and Monographs in Computer Science. Springer, 1985.

[75] Edward R. Scheinerman and Jennifer S. Zito. On the size of hereditary classes
of graphs. J. Comb. Theory, Ser. B, 61(1):16–39, 1994.

[76] Detlef Seese. The structure of models of decidable monadic theories of graphs.
Ann. Pure Appl. Log., 53(2):169–195, 1991.

[77] Martin Vatshelle. New width parameters of graphs. 2012.
[78] David Zuckerman. Linear degree extractors and the inapproximability of max

clique and chromatic number. Theory of Computing, 3(1):103–128, 2007.

	Chapter 1. Introduction
	1. The origin of twin-width
	2. The Guillemot–Marx permutation width on graphs
	3. Overview of the document

	Chapter 2. Background and Twin-Width
	1. Sets, partitions, functions
	2. Graphs
	3. First-order and monadic second-order logic
	4. Model checking
	5. Interpretations, transductions, and dependence
	6. Contraction or partition sequences, and twin-width

	Chapter 3. First Properties
	1. Operations preserving bounded twin-width
	2. Split sequences and proper colorings
	3. Twin-decompositions
	4. Technical lemmas

	Chapter 4. Characterization via Adjacency Matrices
	1. Grid minors and the Marcus–Tardos theorem
	2. Mixed minors and characterization via mixed number
	3. Applications of the characterization
	4. Versatile twin-width and balanced sequences
	5. Oriented twin-width

	Chapter 5. Which Classes Have Bounded Twin-Width?
	1. Classical graph widths
	2. Subdivisions, grids, and expanders
	3. Intersection graphs
	4. Sparse classes

	Chapter 6. Other Parameters based on Contraction Sequences
	1. Characterization of classical width parameters
	2. New parameters between clique-width and twin-width
	3. Separation of the reduced parameters

	Chapter 7. Algorithmic Applications
	1. Parameterized algorithms
	2. Approximation algorithms
	3. Shortest paths

	Chapter 8. First-Order Logic and Twin-Width
	1. First-order transductions preserve bounded twin-width
	2. Permutations strike back
	3. Delineation

	Chapter 9. Growth of Classes and Labeling Schemes
	1. Small and tiny classes
	2. Labeling schemes and universal graphs
	3. Complex tiny classes

	Chapter 10. Ordered Graphs and Matrices
	1. Rank minors, rank number, and rich divisions
	2. Equivalences
	3. Unconditional algorithms

	Bibliography

