Twin-Width and Contraction Sequences - Set 2

Édouard Bonnet

CSSDM 2024, July 2nd

1 Warm up

Question 1. Explicit versatile trees of contractions for the class of planar square grids.
An interval graph is the intersection graph of a collection of intervals of the real line.
Question 2. Is the class of interval graphs of bounded twin-width?

2 Subdivisions

The s-subdivision of a graph G is the graph obtained from G, by replacing every edge of G by a path on $s+1$ edges.
Question 3. Lower bound the twin-width of the s-subdivision of the n-vertex clique, in the regime $s=o(\log n)$.
Question 4. Upper bound the twin-width of the s-subdivision of the n-vertex clique, when $s \geqslant 2 \log n$.

For Question 4, observe that $2 \log n$ upper bounds any leaf-to-leaf distance in a full binary tree with n leaves.

3 Contraction sequences via product structure

For the next question, it may paradoxically be easier to directly show that classes of bounded clique-width have bounded twin-width (and admit the known fact that classes of bounded treewidth have bounded clique-width).
Question 5. Show that classes of bounded treewidth have bounded twin-width.
The strong product $G_{1} \boxtimes G_{2}$ of two graphs G_{1}, G_{2} has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and an edge between two distinct vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of $V\left(G_{1}\right) \times V\left(G_{2}\right)$ whenever u_{1}, v_{1} are equal or adjacent in G_{1}, and u_{2}, v_{2} are equal or adjacent in G_{2}. For instance, the strong product of two paths is a grid with diagonals. A recent breakthrough in our understanding of planar graphs (and beyond) came from the following result.
Theorem 1 ([1). Every planar graph is a subgraph of the strong product of a path and a graph of treewidth at most 8 .

The upper bound of 8 has been decreased, but this is immaterial to the next question.
Question 6. Use Question 5 and Theorem 1 to bound the twin-width of planar graphs.

References

[1] V. Dujmovic, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood. Planar graphs have bounded queue-number. J. $A C M, 67(4): 22: 1-22: 38,2020$.

