Twin-Width and Contraction Sequences - Set 2 Édouard Bonnet CSSDM 2024, July 2nd

1 Warm up

Question 1. Explicit versatile trees of contractions for the class of planar square grids.

An *interval graph* is the intersection graph of a collection of intervals of the real line. **Question 2.** Is the class of interval graphs of bounded twin-width?

2 Subdivisions

The s-subdivision of a graph G is the graph obtained from G, by replacing every edge of G by a path on s + 1 edges.

Question 3. Lower bound the twin-width of the s-subdivision of the n-vertex clique, in the regime $s = o(\log n)$.

Question 4. Upper bound the twin-width of the s-subdivision of the n-vertex clique, when $s \ge 2 \log n$.

For Question 4, observe that $2 \log n$ upper bounds any leaf-to-leaf distance in a full binary tree with n leaves.

3 Contraction sequences via product structure

For the next question, it may paradoxically be easier to directly show that classes of bounded clique-width have bounded twin-width (and admit the known fact that classes of bounded treewidth have bounded clique-width).

Question 5. Show that classes of bounded treewidth have bounded twin-width.

The strong product $G_1 \boxtimes G_2$ of two graphs G_1, G_2 has vertex set $V(G_1) \times V(G_2)$ and an edge between two distinct vertices (u_1, u_2) and (v_1, v_2) of $V(G_1) \times V(G_2)$ whenever u_1, v_1 are equal or adjacent in G_1 , and u_2, v_2 are equal or adjacent in G_2 . For instance, the strong product of two paths is a grid with diagonals. A recent breakthrough in our understanding of planar graphs (and beyond) came from the following result.

Theorem 1 ([1]). Every planar graph is a subgraph of the strong product of a path and a graph of treewidth at most 8.

The upper bound of 8 has been decreased, but this is immaterial to the next question. Question 6. Use Question 5 and Theorem 1 to bound the twin-width of planar graphs.

References

 V. Dujmovic, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020.