Twin-Width and Contraction Sequences - Set 3

Édouard Bonnet

CSSDM 2024, July 4th

1 Algorithms based on contraction sequences

The k-DOMINATING SET problem asks, given a graph G and a positive integer k, if there is a subset $S \subseteq V(G)$ of size at most k such that the closed neighborhood of S in G equals the entire set V(G). In other words, every vertex of G shall either be in S, or be a neighbor of some vertex in S.

Question 1. Design an algorithm with running time $f(d, k) \cdot n$ that solves k-DOMINATING SET on n-vertex graphs given with a d-sequence, for some function f.

You should manage to get the dependence of f in k to be single-exponential. (Ask for hints, if you're not sure how to get started.)

The MAX INDUCED MATCHING problems asks, given a graph G, for a largest subset of edges whose endpoints induce in G a 1-regular graph (i.e., matching). Both MAX INDUCED MATCHING and MIN COLORING are as inapproximable as MAX INDEPENDENT SET: for any $\varepsilon > 0$, approximating these problems on *n*-vertex graphs within ratio $n^{1-\varepsilon}$ is NP-hard.

Question 2. For either MIN COLORING or MAX INDUCED MATCHING, design an $O_d(1)$ approximation algorithm in $2^{O_d(\sqrt{n})}$ time on n-vertex graphs given with a d-sequence.

As we saw during the lecture for MAX INDEPENDENT SET, this leads to polynomialtime n^{ε} -approximation algorithm, for any $\varepsilon > 0$. For MIN COLORING: find the suitable problem generalization. For MAX INDUCED MATCHING: distinguish different types of edges with respect to a given vertex-partition.

2 Other parameters based on contraction sequences

We go back to some facts we did not prove during the lecture.

Question 3. Show that (conversely to what we saw during the lecture) classes of bounded component twin-width have bounded boolean-width.

Question 4. Show that total twin-width is tied to linear boolean-width.