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Exact categories

Definition

An exact category is an additive category E , with a collection of
admissible short exact sequences

E ′ f // E
g // E ′′,

satisfying some axioms.

Example

1 An abelian category A, with the usual exact sequences.

2 A full subcategory E ⊂ A, closed under extensions and with A
abelian.

3 Vect(X ), the category of vector bundles over X .
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Exact categories

Example

Given any additive category E , we can turn it into an exact category by
declaring the sequences

E ′ −→ E ′ ⊕ E ′′ −→ E ′′

to be the admissible exact sequences. We will write E⊕ for this exact
category.

Remark

Let X be a scheme and put E = Vect(X ).
Then E = E⊕ when X is affine, but not otherwise.
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Grothendieck’s K0

Definition

Let E be an essentially small exact category. The abelian group K0(E) is
defined by the formula

K0(E) =
free abelian group generated by objects E ∈ E

(E ′ − E + E ′′) for every admissible E ′ −→ E −→ E ′′

Definition (convenient shorthand)

When X is a reasonable scheme, we define K0(X ) = K0

[
Vect(X )

]
.
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Higher K–theory

Mayer-Vietoris sequence

Given a scheme X and two open sets U,V ⊂ X with X = U ∪ V ,
there are obvious restriction functors

K0(Vect(X )) //

��

K0(Vect(U))

��
K0(Vect(V )) // K0(Vect(U ∩ V ))

This gives a sequence

K0(X ) // K0(U)⊕ K0(V ) // K0(U ∩ V )

which turns out to be exact. We would like to extend to
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Mayer-Vietoris sequence, continued

rr
K1(X ) // K1(U)⊕ K1(V ) // K1(U ∩ V )

rr
K0(X ) // K0(U)⊕ K0(V ) // K0(U ∩ V )

rr
K−1(X ) // K−1(U)⊕ K−1(V ) // K−1(U ∩ V )

rr

This turns out to be possible. It is the culmination of the work of many
people.
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Vanishing observations

Two conjectures

1 Weibel’s conjecture: If X is a noetherian scheme of dimension n,
then Kr (X ) = 0 for all r < −n.

2 Schlichting’s theorem: It is a theorem that, if X is a noetherian,
regular and finite dimensional scheme, then Kr (X ) = 0 for all r < 0.

Schlichting conjectured a major generalization.

Weibel’s conjecture is true, it was proved in

Moritz Kerz, Florian Strunk, and Georg Tamme, Algebraic K-theory
and descent for blow-ups, Invent. Math. 211 (2018), no. 2, 523–577.
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Focus on Schlichting’s conjecture

Schlichting conjecture isn’t only about schemes.

Remember: given any exact category E there is a recipe to produce a
K -theory out of it. And until now we have focused on the case
E = Vect(X ).

If a noetherian scheme X is regular and finite-dimensional then
there exists an abelian category A with K∗

[
Vect(X )

]
= K∗(A).

Explicitly: A = Coh(X ) works.

And Schlichting’s conjecture says: if A is any abelian category, then
Kn(A) = 0 for all n < 0. See Conjecture 1 of Section 10 in

(Conjecture A)

Marco Schlichting, Negative K-theory of derived categories, Math. Z.
253 (2006), no. 1, 97–134.
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Schlichting proved:

1 If the abelian category A is noetherian, then Kn(A) = 0 for n < 0.

2 For any abelian category A, we have K−1(A) = 0.
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Plausibility argument

Theorem (Quillen). Suppose B is an abelian category, assume A ⊂ B is a
Serre subcategory, and let C = B/A.

rr
K1(A) // K1(B) // K1(C)

rr
K0(A) // K0(B) // K0(C)

rr
K−1(A)0 // K−1(B) // K−1(C)

rr

Daniel Quillen, Higher algebraic K-theory. I, Algebraic K -theory, I:
Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle,
Wash., 1972), Lecture Notes in Math., vol. 341, Springer verlag, 1973,
pp. 85–147.
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How difficult can it be?

Given A we want to construct

A �
� // B // B/A = C

with K∗(B) = 0. The plausible way to try to achieve this is via the
“Eilenberg swindle”; if the category B has countable coproducts then
K∗(B) = 0.

The reason is: we can form F : B −→ B by the formula

F (B) =
∞∐
i=1

B

We notice

F (B) ∼= B ⊕ F (B) hence Kn(F ) = Kn(id) + Kn(F )
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The problem with this:

Given A, we can let B be the smallest abelian category containing A and
closed under countable coproducts.

Then A is not going to be a Serre subcategory.

Let A ∈ A be some chosen object, and let {fi : Ai −→ A} be a countable
collection of morphisms in A.

The image of a map

∞∐
i=1

Ai
// A

will not usually lie in A.
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Let T be a model category with a bounded t–structure. Antieau, Gepner
and Heller proved the following generalization of Schlichting’s results:

1 If the abelian category T ♡ is noetherian, then Kn(T ) = 0 for n < 0.

2 Unconditionally we have K−1(T ) = 0.

If A is an abelian category, Schlichting’s results come about by putting
T = Db(A) with the standard t–structure.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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T = Db(A) with the standard t–structure.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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The generalized Schlichting conjecture (Conjecture B)

For any T with a bounded t–structure, Kn(T ) = 0 for all n < 0.

Yet another conjecture, in case the above are false (Conjecture C)

For any T with a bounded t–structure, the natural map
Kn(T ♡) −→ Kn(T ) is an isomorphism for n < 0.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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Plausibility argument

Let R ⊂ S be model categories with T = S/R. Then

rr
K−1(R) // K−1(S) // K−1(T )

ss
K−2(R) // K−2(S) // K−2(T )

ss
K−3(R) // K−3(S) // K−3(T )

rr
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Punchline

Schlichting’s conjecture (Conjecture A)

and the generalized Schlichting conjecture (Conjecture B)

are both false.

The counterexample appeared in

Amnon Neeman, A counterexample to vanishing conjectures for
negative K-theory, Invent. Math. 225 (2021), no. 2, 427–452.
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The categories Acb (E) ⊂ Kb(E) and Db(E) = Kb(E)/Acb (E)
Let E be any idempotent-complete exact category. Let Kb(E) be the
category whose objects are bounded cochain complexes in E , meaning

· · · ∂ i−2
// E i−1 ∂ i−1

// E i ∂ i
// E i+1 ∂ i+1

// · · ·

with E i = 0 for |i | ≫ 0.

The full subcategory Acb (E) of acyclics contains those cochain complexes
for which there exist admissible short exact sequences

0 // K i αi
// E i βi

// K i+1 // 0

such that ∂ i = αi+1 ◦ βi .

And Db(E) = Kb(E)/Acb (E).
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The t–structure on Acb (E)

Acb (E)≤0 = {E ∗ ∈ Acb (E) | E i = 0 for all i > 0}
Acb (E)≥0 = {E ∗ ∈ Acb (E) | E i = 0 for all i < −2}
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Proof that this is a t–structure

A morphism from an object E ∗ ∈ Acb (E)≤0 to an object F ∗ ∈ Acb (E)≥1

may be represented by a cochain map

· · · ∂−3
// E−2 ∂−2

//

��

E−1 ∂−1
//

f
��

E 0 //

g
��

θ

yy

0 //

��

· · ·

· · · // 0 // F−1

∂̃−1

// F 0

∂̃0

// F 1

∂̃1

// · · ·

that is:
g = ∂̃−1 ◦ θ .
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Proof that this is a t–structure, continued

Next choose any object E ∗ ∈ Acb (E), that is a complex

· · · ∂ i−2
// E i−1 ∂ i−1

// E i ∂ i
// E i+1 ∂ i+1

// · · ·

Write ∂−1 : E−1 −→ E 0 as a composite E−1 β−1

−→ K 0 α0

−→ E 0. Now
consider the cochain maps

· · · ∂−3
// E−2 ∂−2

//

id
��

E−1 β−1
//

id
��

K 0 //

α0

��

0 //

��

· · ·

· · · ∂−3
// E−2 ∂−2

//

��

E−1 ∂−1
//

β−1

��

E 0 ∂0
//

id
��

E 1 ∂1
//

id
��

· · ·

· · · // 0 //

��

K 0 α0
//

id
��

E 0 ∂0
//

��

E 1 ∂1
//

��

· · ·

· · · −∂−2
// E−1 −β−1

// K 0 // 0 // 0 // · · ·
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The heart

The heart of this t–structure, denoted Acb (E)♡, is by definition the full
subcategory

Acb (E)♡ = Acb (E)≤0 ∩ Acb (E)≥0 .

The objects are the acyclic cochain complexes

0 // E−2 // E−1 // E 0 // 0

and the morphisms are the homotopy equivalence classes of cochain maps.

Formal consequence of the general theory

The category Acb (E)♡ is abelian.
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Now we have Acb (E) ⊂ Kb(E) with quotient Db(E), giving

rr
K−1(Ac

b (E)) // K−1(Kb(E)) // K−1(Db(E))

rr
K−2(Ac

b (E)) // K−2(Kb(E)) // K−2(Db(E))

rr
K−3(Ac

b (E)) // K−3(Kb(E)) // K−3(Db(E))

rr
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which rewrites as

rr
K−1(Ac

b (E)) // K−1(E⊕) // K−1(E)

ss
K−2(Ac

b (E)) // K−2(E⊕) // K−2(E)

ss
K−3(Ac

b (E)) // K−3(E⊕) // K−3(E)

rr
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Thus the vanishing of Kn(Ac
b (E)) for all n < 0 would imply that the map

Kn(E⊕) −→ Kn(E)

would have to be an isomorphism for all n < 0. Hence, for a
counterexample to the generalized Schlichting conjecture, all we need to
do is find an E for which this fails.

If we want to disprove the (ungeneralized) Schlichting conjecture and/or
to study the yet another conjecture, then it might be helpful to look at the
natural map

Kn

(
Acb (E)♡

)
−→ Kn(Ac

b (E)) .
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Theorem

Let E be an idempotent-complete exact category. Then the natural functor

Db
(
Acb (E)♡

)
−→ Acb (E)

is an equivalence of triangulated categories if and only if E is hereditary,
meaning Exti (E ,E ′) = 0 for all i > 1 and E ,E ′ ∈ E .

Corollary

If E is hereditary then the map

Kn

(
Acb (E)♡

)
−→ Kn(Ac

b (E))

must be an isomorphism for all n ∈ Z.
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Example

If Y is any algebraic curve, then the category E = Vect(Y ) is hereditary.

After all: there is a spectral sequence

H i (Ext j(E ,E ′)) =⇒ Ext i+j(E ,E ′),

For vector bundles we know the vanishing of Ext j(E ,E ′) for j > 0, and for
curves we have the vanishing of H i for i > 1.

The corollary on the previous page informs us that, for any algebraic curve
Y and with E = Vect(Y ), the natural map

Kn

(
Acb (E)♡

)
−→ Kn(Ac

b (E))

is an isomorphism for all n ∈ Z.
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In the published article

Amnon Neeman, A counterexample to vanishing conjectures for
negative K-theory, Invent. Math. 225 (2021), no. 2, 427–452.

I specialize to the case of singular projective curves with only simple nodes
as singularities, directly prove that K−1(E⊕) = 0, and then cite the known
examples where K−1(E) ̸= 0.

LOUSY ARGUMENT!
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Recall the general exact sequence

rr
K−1(Ac

b (E)) // K−1(E⊕) // K−1(E)

ss
K−2(Ac

b (E)) // K−2(E⊕) // K−2(E)

ss
K−3(Ac

b (E)) // K−3(E⊕) // K−3(E)

rr
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The right approach would have been to prove the more general statement:

Theorem

Let E be an idempotent-complete additive category. Assume that, for all
objects E ∈ E , the ring Hom(E ,E ) is Artinian.

Then Kn(E⊕) = 0 for all n < 0.
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Recall the general exact sequence

rr
K−1(Ac

b (E)) // K−1(E⊕) // K−1(E)

ss
K−2(Ac

b (E)) // K−2(E⊕) // K−2(E)

ss
K−3(Ac

b (E)) // K−3(E⊕) // K−3(E)

rr

If E has Artinian endomorphism rings
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For a discussion of how this might lead to counterexamples to
Conjecture C, the reader is referred to

A. Neeman. Obstructions to the existence of bounded t-structures.
Triangulated categories in representation theory and beyond—the Abel
Symposium 2022. Abel Symp., vol. 17, Springer (2024) pp. 195–215.

This survey was written some time ago, as you can check by looking up
the version on the archive

arXiv:2208.06863.

By now we know that Conjecture C is definitely false, see the preprint

M. Ramzi, V. Sosnilo, and C. Winges.
Every spectrum is the K-theory of a stable ∞-category.
arXiv:2401.06510.
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The rough sketch goes as follows: in the counterexample I explained, we
start with an exact category E , and out of it construct a new category
Acb (E), and the key properties are:

1 The category Acb (E) has a bounded t-structure.

2 For many choices of E and for n < 0, the natural map
Kn(E) −→ Kn−1

(
Acb (E)

)
is an isomorphism.

And one key idea of the new paper is to do the same, but with E a
stable infinity category.

And then, to show that this cannot possibly agree with the negative

K-theory of Acb (E)♡, one argues that the negative K-theory of an abelian
category has a simple chromatic structure, while K (E) is arbitrary.
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Let T be a model category with a bounded t–structure. Antieau, Gepner
and Heller proved the following generalization of Schlichting’s results:

1 If the abelian category T ♡ is noetherian, then Kn(T ) = 0 for n < 0.

2 Unconditionally we have K−1(T ) = 0.

If A is an abelian category, Schlichting’s results come about by putting
T = Db(A) with the standard t–structure.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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Corollary

Let X be a finite-dimensional, noetherian scheme with enough vector
bundles. Assume K−1(X ) is nonzero. Then the category Db

(
Vect(X )

)
has

no bounded t-structure.

If Kn(X ) is nonzero for n ≤ −2, then any bounded t-structure on
Db

(
Vect(X )

)
cannot have a noetherian heart.

This can be found as Conjecture 1.5 in

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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Corollary

Let X be a finite-dimensional, noetherian scheme with enough vector
bundles. Assume K−1(X ) is nonzero. Then the category Db

(
Vect(X )

)
has

no bounded t-structure.

If Kn(X ) is nonzero for n ≤ −2, then any bounded t-structure on
Db

(
Vect(X )

)
cannot have a noetherian heart.

This can be found as Corollary 1.4 in

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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Conjecture.

Let X be a finite-dimensional, noetherian scheme with enough vector
bundles. The category Db

(
Vect(X )

)
has a bounded t-structure if and only

if X is regular, in which case Db
(
Vect(X )

)
= Db

coh(X ).

This can be found as Conjecture 1.5 in

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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Theorem

Let X be a finite-dimensional, noetherian scheme with enough vector
bundles. Let Z ⊂ X be a closed subset. Let Db

Z

(
Vect(X )

)
be the category

whose objects are the bounded complexes of vector bundles on X , whose
restriction to the open set X − Z is acyclic.

The category Db
Z

(
Vect(X )

)
has a bounded t-structure if and only if Z is

contained in the regular locus of X , in which case
Db

Z

(
Vect(X )

)
= Db

coh,Z (X ).

The proof is in

Amnon Neeman, Bounded t-structures on the category of perfect
complexes, Acta Math. 233 (2024), no. 2, 239–284.
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Idea of the proof

Let A = Dperf
Z (X )≤0, and form in Dqc,Z (X ) the t-structure with aisle

B = ⟨A⟩(−∞,0]
.

The key is to prove that there exists an integer n > 0 with

Dqc,Z (X )≤−n ⊂ B ⊂ Dqc,Z (X )≤n .

Now let F ∈ Db
coh,Z (X ) be any object, and after shifting assume

F ∈ Dqc,Z (X )≥n+1. Choose a triangle

D // E // F∈ ∈

Dqc,Z (X )≤−n Dqc,Z (X )≥n+1

⊂ ⊂

⟨A⟩(−∞,0] A⊥
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Amnon Neeman, Strong generators in Dperf(X ) and Db
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Amnon Neeman, Triangulated categories with a single compact
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Thank you!
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