Lidé
Katedra matematické analýzy
doc. RNDr. Dalibor Pražák, Ph.D.
Zástupce vedoucího katedry
Telefon 951 55 3250
Místnost K 280 (3033)
Anna Balci, Ph.D.
calculus of variations, regularity theory and numerical analysis for nonlinear models
doc. RNDr. Tomáš Bárta, Ph.D.
Evoluční a integrodiferenciální rovnice, obyčejné diferenciální rovnice, asymptotické chování
Mgr. Barbora Benešová, Ph.D.
Variační počet a slabá zdola polospojitost; Parciální diferenciální rovnice - existence slabého řešeni; Aplikace v mechanice kontinua - modely pevných látek a jejicj matematická analýza
Tania Biswas, M.Sc., Ph.D.
doc. Mgr. Marek Cúth, Ph.D.
Funkcionální analýza: neseparabilní Banachovy prostory (a související témata z topologie a teorie množin)
studium nelineární struktury Banachových prostorů (především pak studium tzv. ,,Lipschitzovsky-volných`` Banachových prostorů)
Marc Fehling, Ph.D.
prof. RNDr. Stanislav Hencl, Ph.D.
Geometricka teorie funkcí, zobrazení s konečnou distorzí, vlastnosti Jakobiánu, reálné funkce více proměnných, slabá diferencovatelnost, aproximace, Variační počet , prostory funkcí
doc. RNDr. Petr Holický, CSc.
Deskriptivní teorie množin - borelovské, analytické, suslinovské, ... množiny, zobrazení, prostory, deskriptivní vlastnosti konkrétních množin v analýze.
Topologické vlastnosti Banachových prostorů. některé partie z teorie reálných funkcí, teorie míry, funkcionální analýzy, topologie, ...
doc. Mgr. Petr Honzík, Ph.D.
prof. RNDr. Miroslav Hušek, DrSc.
Obecná topologie (i uniformní prostory, topologické grupy)
doc. RNDr. Michal Johanis, Ph.D.
Funkcionální analýza, Banachovy prostory, geometrie a struktura, izomorfní teorie, renormace - hladkost a konvexita, analýza v Banachových prostorech.
prof. RNDr. Ondřej Kalenda, Ph.D., DSc.
Banachovy prostory - geometrická a topologická struktura,
kvantitativní verze jejich vlastností, míry slabé nekompaktnosti.
Operátorové algebry a Jordanovy struktury, zejména z pohledu
teorie Banachových prostorů.
Třídy neseparabilních Banachových prostorů a související třídy
kompaktních prostorů.
Deskriptivní topologie a kompaktní konvexní množiny.
doc. Mgr. Petr Kaplický, Ph.D.
Parciální diferenciální rovnice. Systémy popisující jevy daleko od > rovnovážných stavů.
Kim Kristian Myyryläinen, M.Sc., Ph.D.
RNDr. Kristýna Kuncová, Ph.D.
Teorie integrálu, Kurzweilův integrál a jeho zobecnění
Dr. rer. nat. Malte Laurens Kampschulte,
Variační počet, geometrická teorie míry, mechanika kontinua, parciální diferenciální rovnice, nelineární analýza
Oleksandr Minakov, Ph.D.
Integrovatelné parciální diferenciální rovnice: dlouhodobá asymptotická analýza problémů počáteční hodnoty s krokovými počátečními daty (Kortewegova - de Vriesova rovnice, Camassa - Holmova rovnice, nelineární Schrödingerova rovnice atd.). Přímé a inverzní rozptylové transformace pro neklesající a zvyšující se potenciály. Riemann-Hilbertovy problémy a asymptotické metody pro oscilační Riemann-Hilbertovy problémy. Další zájmy: ortogonální polynomy, Painlevé rovnice, náhodné matice.
prof. RNDr. Luboš Pick, CSc., DSc.
Prostory funkcí, symetrisace, prostory s normou invariantní vůči
nerostoucímu přerovnání, Orliczovy prostory, Lorentzovy prostory,
vnoření, kompaktní vnoření, optimalita, logaritmické Sobolevovy
nerovnosti na prostorech s pravděpodobnostní mírou, analýza nekonečně
mnoha proměnných v pravděpodobnostním prostoru, věty o stopách,
regularita řešení diferenciálních rovnic, optimální partnerské páry
prostorů funkcí, teorie interpolací, teorie aproximací, omezenost a
kompaktnost operátorů, míra nekompaktnosti, supremální oparátory,
integrální operátory, diskretisace, váhové nerovnosti, elementární
témata z analýzy, základní nerovnosti a odhady, rekreační matematika,
historie matematiky, popularisace matematiky, překlady knih.
doc. RNDr. Dalibor Pražák, Ph.D.
Parciální diferenciální rovnice (existence a regularita řešení, chování pro velké časy, odhady dimenze atraktorů).
Další zájmy: dynamické systémy, teorie her, nestandardní analýza.
doc. RNDr. Pavel Pyrih, CSc.
Teorie kontinuí, konstrukce prostorů s danými vlastnostmi, lokální vlastnosti kontinuí, homogenita kontinuí.
doc. RNDr. Mirko Rokyta, CSc.
PDR, zejména hyperbolické systémy zákonů zachování; numerická analýza, zejména metoda konečných objemů, popularizace matematiky
doc. Sebastian Schwarzacher, Dr.
Nelineární parciální diferenciální rovnice (existence, jednoznačnost, regularita, numerická analýza).
Dynamika tekutin (struktura, interakce, ne-Newtonovaká tekutina).
Variační počet (nestandardní růst, elastická tělesa).
Numerické výpočty pro PDR (časová schémata, řád konvergence, Galerkinovy metody).
Analýza evolučních nelineárních PDR (proměnné oblasti, vnitřní geometrie, systémy s proměnlivým kontaktem).
RNDr. Lenka Slavíková, Ph.D.
Banachovy prostory funkcí, prostory Sobolevova typu, lineární a multilineární multiplikátory, singulární integrální operátory, maximální funkce, váhové nerovnosti
prof. RNDr. Jiří Spurný, Ph.D., DSc.
Integrální reprezentace konvexních množin; Choquetova teorie; Banachovy
prostory a algebry; operátorové prostory a jejich geometrické a
topologické vlastnosti
doc. Mgr. Benjamin Vejnar, Ph.D.
Obecná topologie, teorie kontinuí, polské prostory, borelovské redukce, topologické dynamické systémy
RNDr. Václav Vlasák, Ph.D.
Klasická deskriptivní teorie množin.
Reálná a harmonická analýza
doc. RNDr. Miloš Zahradník, CSc.
Matematická statistická fyzika. Kombinace analytických, pravděpodobnostních ale i kombinatorických metod při studiu rovnovážných stavů (matematicky: "Gibbsovských měr") velkých systémů o mnoha interagujících komponentách.
Možná témata bakalářských prací s dalšími partiemi matematiky ležícími na pomezí analýzy, algebry, diskrétní matematiky a s aplikacemi, zvláště ve fyzice.
Na úrovni koníčka: meteorologie a matematické aspekty jejích dat.
doc. RNDr. Miroslav Zelený, Ph.D.
Deskriptivní teorie množin. Reálná a harmonická analýza.