70 KAM Mathematical Colloquium
Slawomir Solecki
(University of Illinois, USA)
EXTREME AMENABILITY, RAMSEY THEOREMS, AND CONCENTRATION OF MEASURE
úterý 19. ledna 2010 ve 14:00, posluchárna S5, druhé patro
KAM MFF UK
Malostranské nám. 25
118 00 Praha 1
Abstract
A topological group is called extremely amenable if all its
continuous actions on compact spaces have fixed points. Many
well-studied non-locally compact groups are extremely amenable,
for example, the unitary group of the infinite dimensional
separable Hilbert space (Gromov--Milman) or the group of order
preserving permutations of the rationals (Pestov). Historically
the first groups to be proved extremely amenable
(Christensen--Herer) were of the form L_0(phi, H) for carefully
chosen submeasures phi and certain locally compact groups H.
Concentrating mostly on automorphism groups of countable
structures, as in Pestov's example above, and on L_0(phi, H)
groups, for a submeasure phi, I will explain in what way
proving extreme amenability of a group involves the mathematical
phenomena mentioned in the title. Part of this talk will be based
on a joint work with Ilijas Farah.
O přednášejícím
Slawomir Solecki je jednim z nejznamejsich matematiku pracujicich v teorii mnozin, topologii a matematicke logice. Studoval na univerzite
ve Vratislavi a posleze na Californskem technologickem institutu
(Caltech),
kde ziskal doktorat pod vedenim A. S. Kechrise. Za svou dizertaci ziskal
2 oceneni, Sacksovu cenu za nejlepsi dizertaci v oboru matematicka logika a W. P. Careyovu cenu za nejlepsi dizertaci na Caltechu v roce 1994/5.
Solecki
byl hostem prednich svetovych matematickych instituci (napr. IHES ve
Francii
nebo Fieldsuv Institut v Torontu). V soucasnosti je radnym profesorem na
Illinoiske univerzite v Urbane v USA. Solecki je clenem edicnich rad 3
mezinarodnich casopisu a editorem nekolika sborniku konferenci, ktere
(spolu)poradal. Je autorem vice nez 50 publikaci vesmes v prednich
mezinarodnich
casopisech. Jeho prace v deskriptivni teorii mnozin, teorii metrickych
prostoru,
topologii a v posledni dobe rovnez v kombinatorice jsou velmi citovany.
Vzajemnym souvislostem uvedenych oboru bude venovano jeho prazske
kolokvium.