71 KAM Mathematical Colloquium
Ralph McKenzie
(Vanderbilt University, USA)
A COMBUSTIBLE MIX: FINITE ALGEBRAS, GRAPHS, AND THE CSP-DICHOTOMY CONJECTURE
čtvrtek 11. března 2010 ve 14:00, refektář, první patro
KAM MFF UK
Malostranské nám. 25
118 00 Praha 1
Abstract
T. Feder and M. Vardi conjectured in 1990 that every instance of the
constraint satisfaction
problem is either tractable, i.e., is computable by a Turing machine
working in polynomial
time, or else is $NP$-complete. A classical result of universal algebra
implies
that for each finite relational structure $\m t$, the instance
$\mbox{CSP}(\m t)$ of
$CSP$ has a computational complexity determined just by the clone
$\mbox{Poly}(\m t)$
consisting of all homomorphisms $f: \m t^n\rightarrow \m t$ (for arbitrary
positive integers $n$).
If $\mbox{Poly}(\m t)$ has no operations satisfying certain equations,
then
very many relations must be definable from the basic relations of $\m t$
via
primitive positive definitions in first order logic. In this case,
$\mbox{CSP}(\m t)$
is $NP$-complete.
These considerations led A. Bulatov, P. Jeavons and A. Krokhin to
conjecture in 2000 that
$\mbox{CSP}(\m t)$ is tractable (i.e., polynomial time computable) iff
$\mbox{Poly}(\m t)$ contains a ``non-trivial operation''. By now, the
appropriate meaning of ``non-trivial operation'' has stabilized as:
an operation $s(x,y,z,u)$ satisfying the equations $s(x,x,x,x)=x$
and $s(x,y,z,z)=s(y,z,x,y)$ over $T$. The conjecture of
Bulatov-Jeavons-Krokhin
implies the Feder-Vardi dichotomy conjecture, and in light of some
thirty-year-old
developments in universal algebra, is plausible. The famous $P=NP$
conjecture is
equivalent to Feder-Vardi combined with the statement that in some
reasonable sense,
every problem in $NP$ is computationally equivalent to a problem in $CSP$.
None of these conjectures have been proved, but they have produced a strong flow
of beautiful results combining algebra, combinatorics, and logic.
In my talk, I will strive to clearly illuminate these developments.
O přednášejícím
Profesor Ralph McKenzie studoval na univerzite v Coloradu a pak byl
dlouholetym
profesorem na Kalifornske univerzite v Berkeley (kde je dosud emeritnim
profesorem).
Od roku 1994 je profesorem na Vanderbiltove universite v Nashvillu. Byl rovnez hostem prednich svetovych instituci (Institute for
Advanced
Studies v Princetonu, ETH Zurich a Ulamuv profesor na Univerzite v Coloradu).
Hlavnim oborem Ralpha McKenzieho je algebra, logika a teorie mnozin.
Bez nadsazky je mozne tvrdit, ze Ralph McKenzie je jednim z nejvlivnejsich algebraiku a zvlaste v univerzalni algebre je jeho
postaveni naprosto
jedinecne. Seznam jeho temer 60 spoluautoru se cte jako ``Kdo je kdo'' v univerzalni
algebre a velke mnozstvi uspesnych zaku se stara o sireni jeho vehlasu.
Jeho rozsahla
publikacni cinnost zahrnuje vyreseni rady klasickych problemu (napr.
problemy A. Tarskeho a G. Birkhoffa). Ralph je rovnez autorem rady knih, vcetne dnes jiz
klasicke
Algebras, Lattices and Varieties (spolu s G. McNultym a W. Taylorem) a monumentalnich ctyr
svazku sebranych spisu Alfreda Tarskeho (spolu S. Givanem).
Vztahy Ralpha McKenzieho k ceske matematice jsou dlouhodobe a intenzivni a zahrnuji radu praci
hlavne s Jaroslavem Jezkem a dalsimi (vcetne vyreseni stareho problemu V.
Mullera, J. Pelanta a J. N. o turnajovych algebrach).
Vedecka prace prof. McKenzieho je vsestranna a definujici obor univerzalni
algebry v ramci
soucasne matematiky a informatiky. O tom ostatne svedci i jeho prazske
kolokvium, ktere je venovano
souvislostem univerzalni algebry a problemum optimalizacnim (tzv.
Contstraint Satisfaction Problems).